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Introduction

The purpose of this instructor’s manual is primarily to provide worked so-

lutions for the end-of-chapter problems. In writing up the solutions, I didn’t

try to mimic the solutions that an A+ student will submit; instead, I tried to

go into “verbose” mode, giving general solutions that emphasize the physics

behind the problem. I also indulge in occasional asides, and recommenda-

tions for further problems you can pose for your students. (The solutions

were written in some haste, so errors could lurk – let me know if you find

any.)

In the worked solutions, I refer to equations both in the textbook Intro-

duction to Cosmology (2nd edition) and in this Instructor’s Manual. To help

keep things clear, when I refer to an equation in the textbook, I use the

format “Eq. 6.66”; when I refer to an equation in this Instructor’s Manual,

I use the format “equation (6.66)”.

In addition to worked solutions, I also give a brief summary of the changes

that I made in going from the first edition to the second edition. I also give

references for some of the assertions made in the text. (I didn’t want to

clutter up the text with references, but I assume that some of you will be

curious about the source of some of my less-obvious assertions.)

In writing the second edition, I took the opportunity to correct the ty-

pographical errors present in the first edition of Introduction to Cosmology.

However, I am sure I introduced some new errors! If you find any, please let

me know at ryden.1@osu.edu. Future versions of the Instructor’s Manual

will contain a list of errata.
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Fundamental observations

In the second edition of Introduction to Cosmology, Section 2.1 contains

a more physically realistic analysis of Olbers’ paradox. Instead of treating

stars as point light sources, as I did in the first edition, I acknowledge that

they are spheres of finite size, and use a mean free path analysis to find the

resulting surface brightness of the night sky in an infinite Euclidean universe.

In Section 2.2, I clarify the difference between the Copernican principle

and the cosmological principle, which I failed to make clear in the first

edition.

Section 2.3 contains a bit more historical background on Hubble’s law,

placing it in the context of the work by Lemâıtre and others. My default

value of the Hubble constant, taken to be H0 = 70± 7 km s−1 Mpc−1 in the

first edition, is H0 = 68± 2 km s−1 Mpc−1 in the second edition. (Note that

although this value of H0 is consistent with the WMAP 9-year results and

the Planck 2015 results, it is lower than value found by direct measurements

in the local universe. For instance, Riess et al. (2016) find H0 = 73.24 ±
1.74 km s−1 Mpc−1. In the textbook, I do not bring up this tension; you may

want to use it as a topic of discussion with your students.)

In Section 2.4, I clarify the discussion of the different neutrino mass states,

placing upper and lower limits on the sum of the neutrino masses. (These

limits reappear in Chapter 11, during the discussion of the difference between

hot dark matter and cold dark matter.)

Exercises

2.1 Assume you are a perfect blackbody at a temperature of T = 310 K.

What is the rate, in watts, at which you radiate energy? (For the pur-

poses of this problem, you may assume you are spherical.)

I have a mass Mme = 70 kg, and my density is comparable to that of
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water, ρme = 1000 kg m−3. If I curl myself into a ball, my radius is

Rme =

(

3Mme

4πρme

)1/3

= 0.256 m = 3.65 × 10−10 R⊙ . (2.1)

My temperature is

Tme = 310 K = 0.0534 T⊙ . (2.2)

(The Sun’s radius is given Section 2.1 of the text, and the Sun’s effective

temperature is given in Section 2.4.) Since the luminosity of a spher-

ical blackbody is L = 4πR2σsbT
4, where σsb is the Stefan-Boltzmann

constant, my luminosity is

Lme = L⊙

(

Rme

R⊙

)2 (

Tme

T⊙

)4

(2.3)

= 3.838 × 1026 watts(3.65 × 10−10)2(0.534)4 = 420 watts .

(Note that the text never explicitly states that L ∝ R2T 4 for a spher-

ical blackbody; your students may need a prompt, depending on their

physics background.)

2.2 Since you are made mostly of water, you are very efficient at absorbing

microwave photons. If you were in intergalactic space, how many CMB

photons would you absorb per second? (The assumption that you are

spherical will be useful.) What is the rate, in watts, at which you would

absorb radiative energy from the CMB?

Since my radius is Rme = 0.256 m (from the previous problem), my

geometric cross-section is

σme = πR2
me = 0.205 m2 . (2.4)

The number density of CMB photons is (from Eq. 2.35 of the text),

nγ = 4.107 × 108 m−3 . (2.5)

At what rate will I absorb CMB photons? This is easiest to compute if

I adopt the fiction that all the CMB photons are moving in the same

direction. In that case, during a time interval dt, I would sweep up all

the photons in a cylinder of length cdt and cross-sectional area σme.

That is, the number dN of photons absorbed during time interval dt is

dN = cdtσmenγ , (2.6)

or
dN

dt
= cσmenγ = 2.52 × 1016 s−1 . (2.7)
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The average energy of a CMB photon is Emean = 6.344 × 10−4 eV =

1.016× 10−22 J, from Eq. 2.36 of the text. Thus, the heating rate from

absorbing CMB photons will be

Gme =
dN

dt
Emean = 2.6 × 10−6 J s−1 = 2.6 × 10−6 watts . (2.8)

[A student wise in the ways of the Stefan-Boltzmann law might make

the following alternative argument: If I had a temperature equal to

that of the CMB, I would be in an equilibrium state, with the rate at

which I absorbed energy from the CMB being exactly equal to the rate

at which I emitted energy from my surface. Thus, I can state that the

rate at which I absorb energy from the CMB is

Gme = 4πR2
meσsbT

4
0 , (2.9)

where T0 = 2.7255 K is the temperature of the CMB. Using Rme =

0.256 m and σsb = 5.670 × 10−8 watts m−2 K−4, this works out to

Gme = 2.58 × 10−6 watts , (2.10)

from which I can work backward to find dN/dt, the rate at which CMB

photons are absorbed.]

2.3 Suppose that intergalactic space pirates toss you out the airlock of your

spacecraft without a spacesuit. Combining the results of the two previous

questions, at what rate would your temperature change? (Assume your

heat capacity is that of pure water, C = 4200 J kg−1 K−1.) Would you

be most worried about overheating, freezing, or asphyxiating?

From the previous two problems, I know that since my temperature

(Tme ≈ 310 K) is much greater than that of the CMB (T0 = 2.7255 K),

I will lose energy rather than gain it, at a net rate

Lnet = Lme − Gme = 420 watts − 0.000003 watts = 420 watts . (2.11)

My temperature will then drop at the rate

dTme

dt
= − Lnet

CMme
= − 420 J s−1

2.94 × 105 J K−1 = −1.4 × 10−3 K s−1 . (2.12)

It takes about 12 minutes for my temperature to drop by one degree;

even if I hyperventilate with panic at the prospect of being tossed out

the airlock, I will asphyxiate before I freeze.

2.4 A hypothesis once used to explain the Hubble relation is the “tired light

hypothesis.” The tired light hypothesis states that the universe is not

expanding, but that photons simply lose energy as they move through
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space (by some unexplained means), with the energy loss per unit dis-

tance being given by the law

dE

dr
= −kE, (2.13)

where k is a constant. Show that this hypothesis gives a distance-redshift

relation that is linear in the limit z ≪ 1. What must the value of k be

in order to yield a Hubble constant of H0 = 68 km s−1 Mpc−1?

If a photon starts with energy E0 at r = 0, then the “tired light”

equation

dE

dr
= −kE (2.14)

can be integrated to find the solution

E(r) = E0e
−kr . (2.15)

Since a photon’s energy E is related to wavelength λ by the equation

E = hf =
hc

λ
, (2.16)

the redshift z of the light can be written as

z ≡ λ − λ0

λ0
=

1/E − 1/E0

1/E0
=

E0 − E

E
. (2.17)

Substituting from equation 2.15 above, we find the distance-redshift

relation

z =
1 − e−kr

e−kr
= ekr − 1 . (2.18)

In the limit kr ≪ 1, we can use the expansion exp(kr) ≈ 1 + kr, and

thus

z ≈ kr . (2.19)

This is the Hubble law, with k = H0/c. To yield H0 = 68 km s−1 Mpc−1,

the “tired light” parameter must be

k =
H0

c
=

68 km s−1 Mpc−1

3 × 105 km s−1
= 2.3 × 10−4 Mpc−1 . (2.20)

2.5 Consider blackbody radiation at a temperature T . Show that for an

energy threshold E0 ≫ kT , the fraction of the blackbody photons that

have energy hf > E0 is

n(hf > E0)

nγ
≈ 0.42

(

E0

kT

)2

exp

(

−E0

kT

)

. (2.21)
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The cosmic background radiation is currently called the “cosmic mi-

crowave background.” However, photons with λ < 1 mm actually lie

in the far infrared range of the electromagnetic spectrum. It’s time for

truth in advertising: what fraction of the photons in today’s “cosmic

microwave background” are actually far infrared photons?

At photon energies hf ≫ kT , the number density of photons as a

function of frequency is (from Eq. 2.30 of the text),

n(f) =
8π

c3

f2

exp(hf/kT ) − 1
≈ 8π

c3
f2 exp(−hf/kT ) . (2.22)

Thus, the number density of photons with energy greater than some

threshold energy E0 = hf0 ≫ kT is

n(hf > E0) ≈
8π

c3

∫

∞

f0

f2 exp(−hf/kT )df . (2.23)

Making the substitution x = hf/kT , this becomes

n(hf > E0) ≈ 8π

(

kT

hc

)3 ∫

∞

x0

x2e−xdx , (2.24)

where x0 = hf0/kT = E0/kT ≫ 1. The total number density of pho-

tons is, from Eqs. 2.31 and 2.32 of the text,

nγ =
2.4041

π2

(

kT

h̄c

)3

= 2.4041(8π)

(

kT

hc

)3

. (2.25)

Thus, the fraction of the photons with hf > E0 ≫ kT is

F (hf > E0) =
n(hf > E0)

nγ
≈ 1

2.4041

∫

∞

x0

x2e−xdx . (2.26)

Doing the integral, we find that

F (hf > E0) = 0.416e−x0 [x2
0 + 2x0 + 2] , (2.27)

where x0 = E0/kT . Since we have already made the approximation

x0 ≫ 1, equation (2.27) can be adequately approximated as

F (hf > E0) ≈ 0.416x2
0e

−x0 ≈ 0.42

(

E0

kT

)2

exp

(

−E0

kT

)

. (2.28)

A photon with wavelength λ0 = 1 mm, at the threshold of the far-

infrared range, has an energy E0 = hc/λ0 = 1.240 × 10−3 eV. For the

CMB, kT0 = 2.349 × 10−4 eV, yielding x0 = E0/kT0 = 5.28, which I
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declare (slightly rashly) to be much larger than one. The fraction of

CMB photons in the far-infrared range, with hf > E0, is then

F (hf > 1.24 meV) ≈ 0.42(5.28)2e−5.28 ≈ 0.06 . (2.29)

2.6 Show that for an energy threshold E0 ≪ kT , the fraction of blackbody

photons that have energy hf < E0 is

n(hf < E0)

nγ
≈ 0.21

(

E0

kT

)2

. (2.30)

Microwave (and far infrared) photons with a wavelength λ < 3 cm are

strongly absorbed by H2O and O2 molecules. What fraction of the pho-

tons in today’s cosmic microwave background have λ > 3 cm, and thus

are capable of passing through the Earth’s atmosphere and being de-

tected on the ground? At photon energies hf ≪ kT , the number density

of photons as a function of frequency is (from Eq. 2.30 of the text),

n(f) =
8π

c3

f2

exp(hf/kT ) − 1
≈ 8π

c3

f2

hf/kT
≈ 8πkT

hc3
f . (2.31)

Thus, the number density of photons with energy less than some thresh-

old energy E0 = hf0 ≪ kT is

n(hf < E0) ≈
8πkT

hc3

∫ f0

0
fdf

≈ 4πkTf2
0

hc3
≈ 4πkTE2

0

(hc)3
. (2.32)

The total number density of photons is, from Eqs. 2.31 and 2.32 of the

text,

nγ =
2.4041

π2

(

kT

hc

)3

= 2.4041(8π)

(

kT

hc

)3

. (2.33)

Combining the two above results, we find that the fraction of photons

with hf < E0 ≪ kT is

F (hf < E0) =
n(hf < E0)

nγ
≈ 0.208

(

E0

kT

)2

. (2.34)

A wavelength λ0 = 3 cm corresponds to a photon energy E0 = hc/λ0 =

4.133×10−5 eV. For the CMB, kT0 = 2.349×10−4 eV, yielding E0/kT0 =

0.176, which I declare, somewhat rashly, to be much smaller than one.

The fraction of CMB photons with λ > 3 cm is then

F (hf < 41.33 µeV) ≈ 0.2080(0.176)2 ≈ 0.006 . (2.35)


