
Chapter 2 
 
1.  (a) The tenth datum is unknown, so the population mean can’t be computed. The nine known 

values are not a random sample. Since they are the nine smallest values, the sample mean is 
below the population mean by an unknown amount.  

 
(b) The population median can be computed because the rank of the missing value is known. 
The median (the expected survival time) is µ1

2
=  (2.6 + 2.9)/2 = 2.75.  

.  
2. (a) x = x1

2
= 5. This is a sample, so 

s2 =
1

10
2 25 +16 + 9 + 4 +1( ){ } = 11,  and  s = 3.31.  

(b) x = x1
2
= 5.  

 s2 =
2

24
16 + 2 ⋅9 + 3 ⋅ 4 + 4 ⋅1{ } = 4.167,  and  s = 2.04.  

 
3. (a) is a uniform distribution, with  
 

P(i) = 1
11

,   for integers 0 ≤ i ≤ 10.  (else P(i) = 0)  

(b) is a “triangular” distribution with  

P(i) = 1
25

5 − x − 5⎡⎣ ⎤⎦,   for integers 0 ≤ i ≤ 10.  (else P(i) = 0)  

 
4. (a) In the absence of further information, this appears to be a Poisson process, with a mean 

rate of 1.7 events per year per square km or r = 1.7 x 10-4 events per yr per 100 m2 roof.  
 

(b) The probability of zero events per year on the roof is given by the Poisson distribution: 
 

 P = PP (0, r) =
1
1
exp(−1.7 ×10−4 ) = .99983   

(c) The probability of more than one penetration in 40 years will be: 
 

P = 1− PP (0, 40r)− P(1, 40r) = 1− exp(−6.8 ×10
−3)− 6.8 ×10

−3

1
exp(−6.8 ×10−3)

= 1− 0.99322(1+ .0068) = 2.6 ×10−5

 

 
5. Because the integral of this function between the limits of zero and infinity diverges, it cannot 

be interpreted as a valid probability function. (The integral of a normalized continuous 
probability function equals unity.) This distribution with γ > 0 becomes arbitrarily large as a 
approaches zero. A student might argue that the mean will be driven this limit, and so in a 
sense this represents a “typical” member of the population. But the function also permits 



indefinitely large values a, so in another sense a mean of zero does not represent the 
population at all. Imposing upper and lower limits on the permitted values of the random 
variable will allow a computation of a valid mean and standard deviation. (If one investigates 
the mathematical definitions of the mean and standard deviations of continuous distributions 
even slightly, it is easy to show that imposing only a lower limit on a —and no upper limit —
leads to a well-defined mean if γ > 2, and a well-defined variance if γ > 3.) 

   
6. Follow the reasoning in the example on page 48. Transform the variable q into the standard 

normal variable z: 
 z = (q − 0.8) / 0.6,   zlow = −1.50,   zhigh = −0.833   
 

Now compute the probability that a single trial will result in the discovery of an earth-like 
planet. Use the tabulation of the standard normal distribution PSN(z)=G(z) and its integral 
given in Appendix C: 
 
 

Prob(earthlike) = G(z)dz
−1.5

−0.833

∫ = P(1.5)− P(.833) = .933− .796 = .137  

 
So in 500 trials, on should expect 68.5 earthlike planets discovered.  
 

 
7. Counting photons is a Poisson process. The fractional uncertainty in counting N events 
(equation 2.15) is  
 

(a) 0.05 = 1
N
,  so N=400. (b) N=40,000. 

9. The standard deviation of the sample of four measurements is 13.6 km/s, which implies an 
uncertainty in the mean  of 13.6 / 4 = 6.8  km/s. If the astronomer measures N additional 
stars, to reach an uncertainty of 2.0 km/s, then:  

2.0 = 13.6
N + 4

 

and therefore N=43. 
 

8. Assume she spends equal amounts of time measuring the target and the background. The 
counts are N*=Nb=Nmeas/2. The uncertainty in the star brightness can be computed from the 
variance:  

σ∗
2 = σmeas

2 +σ b
2 = 3N∗  

So the relative uncertainty is  
σ∗

N∗

=
3
N∗

=
6

Nmeas

 

and (a) for 5% uncertainty Nmeas = 2400, (b) Nmeas = 240,000. 
 



9. The uncertainty in the mean is related to the scatter in the population and the number of 
samples, N, by : 

 

 σ mean =
σ
N

  

We estimate the scatter in the population from the standard deviation (N-1 weighting) of the 
four measurements as 13.6 km/s. The above equation then implies a sample size of N = 46 
would yield an uncertainty in the mean of 2 km/s. 

 
10. Because we know that the fluctuations in the value of r in 10 second exposures are normally 

distributed with scatter of .05 mV, we can use the Central Limit Theorem to conclude that 
uncertainty of r in 100-s exposures will be reduced by a factor of 1 10 . We will assume 
that this detector accumulates voltage in a linear fashion as exposure time increases, so the 
values for each of the Ns in equation 2.39 on the longer exposures will each increase by a 
factor of 10. Making these substitutions in equation 2.39: 

 

 
σ *
2 = 1660 + 850 + .05

5
⎛
⎝⎜

⎞
⎠⎟
2 1
10

⎛
⎝⎜

⎞
⎠⎟ 2.7556 + .7225( )×106⎡⎣ ⎤⎦ = 2510 + 3.5 = 2513

N*

σ *

= 810
50.1

= 16.2
  

 
11. (a) A straight-forward average of the five trials and a treatment of the five results as random 

variables gives: x = 21.2,  σ mean = 37.2 5 = 16.6   
  
(b) An alternative approach is to use that fact that these are (presumably) counts of 

photons, so an arrival 106 photons in five seconds suggests (Poisson distribution) an 
uncertainty in the average of 106 5 = 2.06     
 
The divergence of these two methods suggests that something may be amiss, as does the fact 
that the mean and median values are quite different. The fact that the result of trial 2 differs 
from the mean by more than almost 2σ in method (a) is a little suspect. However, if we really 
believe that we are counting photons (as in method b) then the second trial is 29σ larger than 
the mean, and it is highly unlikely that we are correct in including it as a valid measurement 
of the same process as the other trials. Often a single deviant event like trial number 2 will 
alert us to a systematic error. 

 
12.  As in the Chapter 1 problem, it is important that the aperture used for each star be identical 

in size; i.e. use the same total number of pixels for each star image, and centering of the 
apertures will require the use of fractional pixels.  Repeating the measurements made in the 
solutions for Chapter 1:  

 
 

34 16 26 33 37 22 25 25 29 19 28 25 



22 20 44 34 22 26 14 30 30 20 19 17 

31 70 98 66 37 25 35 36 39 39 23 20 

34 99 229 107 38 28 46 102 159 93 37 22 

33 67 103 67 36 32 69 240 393 248 69 30 

22 33 34 29 36 24 65 241 363 244 68 24 

28 22 17 16 32 24 46 85 157 84 42 22 

18 25 27 26 17 18 30 29 35 24 30 27 
32 23 16 29 25 24 30 28 20 35 22 23 
28 28 28 24 26 26 17 19 30 35 30 26 

 
Background: the 18 pixels 3 X 6 box in the lower left corner has a total count of 440 and a mean 
value of 24.44. Uncertainty in the total count is 440 = 20.98  and uncertainty in the average 
background is 440 /18 = 1.165.  Note that the standard deviation of the sample of 18 pixels is  s 
=4.49, which implies an uncertainty in their mean value of 1.06. This is consistent with the 
uncertainty computed under the assumption of Poisson statistics.  
 
Brighter star: This star is very symmetric around a point midway between the pixels with values 
393 and 363. Add the values of the 16 shaded pixels: Sum of star and background = 2680, so the 
total number of counts for the brighter star alone is FSTD =2680 – (16 x 24.44) = 2288.9 with an 
uncertainty given by: 

σ std
2 = 2680 + 16

18
⎛
⎝⎜

⎞
⎠⎟
2

440 = 3027.7  

so σstd = 55.0. 
 

Fainter star: Also very symmetric, but around the center of the pixel with value 229. Take the 21 
pixels indicated, but give 13 pixels full weight (dark shading) and give the 8 outer pixels a 
weight of 3/8. Thus the effective number of pixels in both star apertures are the same. For the 
fainter star alone the total counts are: Ff = 1056 + ((3/8) x 253) - (16 x 24.44) = 759.8 and the 
uncertainty is: 
 

σ 2
f = 1056 +

3
8

⎛
⎝⎜

⎞
⎠⎟
2

253+ 16
18

⎛
⎝⎜

⎞
⎠⎟
440 = 1439.25  

so σf = 37.9 
 
Magnitude: If the magnitude of the brighter star is 9.000, the magnitude of the follows from the 
ratio R= Ff / FSTD = 759.8/2288.9 = 0.332: 
 

mf = −2.5 log(759.8 / 2288.9) + 9.0 = 10.197  
 
To get the uncertainty in the magnitude of the fainter star, first note that for the uncertainty in the 
ratio, R (for a product or ratio, the relative variances add), we have  



σ 2
Ff FSTD

Ff FSTD( )2
=

σ 2
Ff FSTD

0.332( )2
=

37.9
759.8

⎛
⎝⎜

⎞
⎠⎟
2

+
55

2288.9
⎛
⎝⎜

⎞
⎠⎟
2

= (0.055)2  

 
Then either use the result from Problem 1.13, or note, since 
 

mf = −2.5 log(Ff / FSTD ) + 9.0 = −2.5 log(R) + 9.0

σm
2 = (−2.5)2 σ R loge

R
⎛
⎝⎜

⎞
⎠⎟
2

= (1.086)2 σ R

R
⎛
⎝⎜

⎞
⎠⎟
2

= (0.060)2
 

This assumes that the cataloged standard magnitude of the brighter star is perfectly known. (Not 
always the case!). So mf = 10.197 ± 0.060. 
 


