Just Enough Programming Logic and Design, 1st Edition

Chapter 2

Exercises

1. In Figure 2-11 the process of buying and planting flowers in the spring was shown using the same structures as the generic example in Figure 2-10. Describe some other process with which you are familiar using exactly the same logic.

Answer:
Student answers will vary widely. They should come up with processes that fit the generic logic shown in Figure 2-10. Some examples could include: bringing making a dentist appointment or registering for a class. Pseudocode for each follows.

```
if it's time for your annual teeth cleaning
    call the dentist for an appointment tomorrow
    while the day and time you want isn't available
        if another time the same day is available
                make the appointment at the new time on the same day
            else
                pick a new day and time
            endif
    endwhile
    write appointment on your calendar
endif
if you are taking a class this semester then
    register for a class
    while the class is full
        if another section is available
            enroll for the available section
            else
                select a new class
            endif
    endwhile
    print schedule
endif
```

2. Each of the flowchart segments in Figure 2-35 is unstructured. Redraw each flowchart segment so that it does the same thing but is structured.

Answer:
a.

b.

d.

e.

3. Write pseudocode for each example (a through e) in Exercise 2 making sure your pseudocode is structured but accomplishes the same tasks as the flowchart segment.

Answer:
a. do A

```
while B is true
    do C
    do A
```

 endwhile
 b. do D
if E is true then
do H
do I
else
do F
if G is true then do I
endif
endif
c. do k
if L is true then
do P
while Q is true do P
endwhile
do R
else
do M
do N
if O is true then do R
endif
endif
d. do S
if T is true then
do Y
if Z is true then do V if W is true then do A else do X endif
else do A
endif
else
do U
do V
if W is true then do A
else do X
endif
endif

```
e. if B is true then
    do G
    while H is not true
                do I
            do G
    endwhile
    do D
    while E is true
            do I
            do D
    endwhile
    do F
else
    do C
    do D
    while E is true
            do I
            do D
    endwhile
    do F
endif
```

4. Assume you have created a mechanical arm that can hold a pen. The arm can perform the following tasks:

- Lower the pen to a piece of paper.
- Raise the pen from the paper.
- Move the pen one inch along a straight line. (If the pen is lowered, this action draws a one-inch line from left to right; if the pen is raised, this action just repositions the pen one inch to the right.)
- Turn 90 degrees to the right.
- Draw a circle that is one inch in diameter.

Draw a structured flowchart or write structured pseudocode describing the logic that would cause the arm to draw the following:
a. a one-inch square
b. a two-inch by one-inch rectangle
c. a string of three beads
d. a short word (for example, "cat").

Have a fellow student act as the mechanical arm and carry out your instructions. Do not tell your mechanical arm partner what he or she will be drawing (or writing) before the partner attempts to carry out your instructions.

Answer:
This solution assumes the above tasks are labeled as follows:
A. Lower the pen to a piece of paper.
B. Raise the pen from the paper.
C. Move the pen one inch along a straight line. (If the pen is lowered, this action draws a oneinch line from the left to right; if the pen is raised, this action just repositions the pen one inch to the right.)
D. Turn 90 degrees to the right.
E. Draw a circle that is one inch in diameter.
a. a one-inch square

Pseudocode:

```
start
    lower the pen to a piece of paper
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    raise the pen from the paper
stop
or
start
    do A
    do C
    do D
    do C
    do D
    do C
    do D
    do C
    do B
stop
```


b. a two-inch by one-inch rectangle

Pseudocode:

```
start
    lower the pen to a piece of paper
    move one inch along a straight line
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    move one inch along a straight line
    turn 90 degrees to the right
    move one inch along a straight line
    raise the pen from the paper
```

```
stop
or
    start
        do A
        do C
        do C
        do D
        do C
        do D
        do C
        do C
        do D
        do C
        do B
stop
```


c. a string of three beads

Pseudocode:

start
lower the pen to a piece of paper
draw a circle that is one-inch in diameter
raise the pen from the paper

```
    move one inch along a straight line
    lower the pen to a piece of paper
    draw a circle that is one-inch in diameter
    raise the pen from the paper
    move one inch along a straight line
    lower the pen to a piece of paper
    draw a circle that is one-inch in diameter
    raise the pen from the paper
stop
or
start
        do A
        do E
        do B
        do C
        do A
        do E
        do B
        do C
        do A
        do E
        do B
stop
```


d. a short word (for example, "cat")

```
start
lower the pen to a piece of paper
move one inch along a straight line
```

```
            raise the pen from the paper
            turn 90 degrees right
            turn 90 degrees right
            move one inch along a straight line
            turn 90 degrees right
            lower the pen to a piece of paper
            move one inch along a straight line
            turn 90 degrees right
            move one inch along a straight line
            raise the pen from the paper
                    move one inch along a straight line
                    14.lower the pen to a piece of paper
                    move one inch along a straight line
                    turn 90 degrees right
                    move one inch along a straight line
                    turn 90 degrees right
                    move one inch along a straight line
                    turn 90 degrees right
                    move one inch along a straight line
                    move one inch along a straight line
                    raise the pen from the paper
                    turn 90 degrees right
                    move one inch along a straight line
                    turn 90 degrees right
                    lower the pen to a piece of paper
                    move one inch along a straight line
                    turn 90 degrees right
                    turn 90 degrees right
                    turn 90 degrees right
                    raise the pen from the paper
                    move one inch along a straight line
                    lower the pen to a piece of paper
                    move one inch along a straight line
                    move one inch along a straight line
                    turn 90 degrees right
                    turn 90 degrees right
                    raise the pen from the paper
                    move one inch along a straight line
                    lower the pen to a piece of paper
                    turn 90 degrees right
                    move one inch along a straight line
                    raise the pen from the paper
stop
```

or
start
do A
do C
do B
do D
do D
do C
do D
do A
do C

| do | D |
| ---: | :--- | :--- |
| do | C |
| do | B |
| do | C |
| do | A |
| do | C |
| do | D |
| do | C |
| do | D |
| do | C |
| do | D |
| do | C |
| do | C |
| do | B |
| do | D |
| do | C |
| do | D |
| do | A |
| do | C |
| do | D |
| do | D |
| do | D |
| do | B |
| do | C |
| do | A |
| do | C |
| do | C |
| do | D |
| do | D |
| do | B |
| do | C |
| do | A |
| do | D |
| do | C |
| do | B |
| | |

The flowchart will be very similar to parts a-c.
5. Assume you have created a mechanical robot that can perform the following tasks:

- Stand up.
- Sit down.
- Turn left 90 degrees.
- Turn right 90 degrees.
- Take a step.

Additionally, the robot can determine the answer to one test condition:

- Am I touching something?

Place two chairs 20 feet apart, directly facing each other. Draw a structured flowchart or write pseudocode describing the logic that would allow the robot to start from a sitting position in one chair, cross the room, and end up sitting in the other chair.

Have a fellow student act as the robot and carry out your instructions.

Answer:

This solution assumes the above tasks are labeled as follows:
A. Stand up.
B. Sit down.
C. Turn left 90 degrees.
D. Turn right 90 degrees.
E. Take a step.
F. Am I touching something?

Pseudocode:

start
stand up
take a step
while Am I touching something? is not true
take a step
endwhile
turn left 90 degrees
turn left 90 degrees
sit down
stop
or

```
start
    do A
    do E
    while F is not true
        do E
    endwhile
    do C
    do C
    do B
stop
```


Flowchart:

6. Looking up a word in a dictionary can be a complicated process. For example, assume you want to look up "logic." You might proceed by opening the dictionary to a random page and see "juice." You know that word comes alphabetically before "logic," so you flip forward and see "lamb." That is still not far enough, so you flip forward and see "monkey." That means you have gone too far, so now you flip back, and so on. Draw a structured flowchart or write pseudocode that describes the
process of looking up a word in a dictionary. Pick a word at random and have a fellow student attempt to carry out your instructions.

Answer:
Answers will vary.

Pseudocode:

```
start
    open the dictionary
    while word not on page
        if word > last word on page
            turn the page forward
            else
            turn the page backward
```

```
        endif
        endwhile
stop
```


Flowchart:

7. Draw a structured flowchart or write structured pseudocode describing your preparation to go to work or school in the morning. Include at least two decisions and two loops.

Answer:
Answers will vary. An example solution is shown below.

Flowchart:

Pseudocode:

```
start
    get out of bed
    while feeling awake is not true
        drink coffee
    endwhile
    if the outside temperature < 65 is true then
        wear sweater
    else
        wear t-shirt
        endif
    if you're feeling hungry is true then
        eat breakfast
    endif
    while you have keys is not true
        search for keys
    endwhile
    drive to work
stop
```

8. Draw a structured flowchart or write structured pseudocode describing your preparation to go to bed at night. Include at least two decisions and two loops.

Answer:
Answers will vary. An example solution is shown below.

Flowchart:

Pseudocode:

```
start
    if you need to brush your teeth then
        brush teeth
    endif
    if temperature is less than 65 degrees then
        wear flannel pajamas
    else
            wear cotton pajamas
    endif
    if tomorrow is a school day then
            set alarm clock
    endif
    while thirsty
            drink water
    endwhile
    get in bed
stop
```

9. Draw a structured flowchart or write structured pseudocode describing how your paycheck is calculated. Include at least two decisions.

Answer:
Answers will vary. An example solution is shown below.
Flowchart:

Pseudocode:

start
if the employee is full-time is true then weekly pay $=40$ * pay rate if employee worked overtime is true then overtime pay $=$ (hours worked - 40) * 1.5 * pay rate weekly pay $=$ weekly pay + overtime pay endif
else weekly pay $=$ hours worked * pay rate
endif
net pay = weekly pay - taxes
stop
10. Draw a structured flowchart or write structured pseudocode describing the steps a retail store employee should follow to process a customer purchase. Include at least two decisions.

Answer:
Answers will vary. An example solution is shown below.
Flowchart:

Pseudocode:

```
start
    add item price to total
    while customer has more items is true
        add item price to total
    endwhile
    if customer has coupon is true
        subtract discount from total
    endif
    display customer total
    if customer is paying w/cash is true
            accept cash
            while customer needs change is true
                give change
            endwhile
    else
        swipe credit card
    endif
stop
```

11. Choose a very simple children's game and describe its logic, using a structured flowchart or pseudocode. For example, you might try to explain Rock, Paper, Scissors; Musical Chairs; Duck, Duck, Goose; the card game War; or the elimination game Eenie, Meenie, Minie, Moe.

Answer:
Answers will vary. The following is a possible solution for the card game War.
Flowchart:

Pseudocode:

```
gameOfWar()
    ask friend to play the card game War
    while answer is yes
        deal out myHand and yourHand
        while both players have cards
            turn over myCard and yourCard
            if myCard is equal to yourCard then
                cards stay on table
            else
                        if myCard is higher than yourCard
                            I collect all cards on table
                else
                        you collect all cards on table
                endif
            endif
        endwhile
        if myHand is empty is true
            you are the winner
        else
            I am the winner
        endif
        ask friend to play the card game War
    endwhile
return
```

12. Choose a television game show such as Deal or No Deal or Jeopardy! and describe its rules using a structured flowchart or pseudocode.

Answer:
Answers will vary. The following is a possible solution for Jeopardy!.

Flowchart:

Pseudocode:

```
jeopardy()
    while questions are available
        contestant picks category and dollar amount
        question is read
                while the timer hasn't run out
            contestant buzzes in and answers
            if answer is correct
                        contestant earns dollar amount
                        time runs out
            else
                        contestant loses dollar amount
                        time decreases
            endif
        endwhile
    endwhile
return
```

13. Choose a professional sport such as baseball or football and describe the actions in one play period using a structured flowchart or pseudocode.

Answer:

Answers will vary. The following is a very simple example solution for tennis.

Flowchart:

Pseudocode:

tennis()
player attempts serve
while ball goes over net and is in bounds opposite player returns ball
endwhile
return

REVIEW QUESTIONS

REVIEW QUESTIONS

1. Snarled program logic is called \qquad code.
a. snake
b. spaghetti
c. string
d. gnarly
2. A sequence structure can contain \qquad -
a. any number of tasks
b. exactly three tasks
c. no more than three tasks
d. only one task
3. Which of the following is not another term for a selection structure?
a. decision structure
b. if-then-else structure
c. dual-alternative if structure
d. loop structure
4. The structure in which you ask a question, and, depending on the answer, take some action and then ask the question again, can be called all of the following except \qquad .
a. iteration
b. loop
c. repetition
d. if-then-else
5. Placing a structure within another structure is called \qquad the structures.
a. stacking
b. untangling
c. building
d. nesting
6. Attaching structures end to end is called \qquad .
a. stacking
b. untangling
c. building
d. nesting
7. The action or actions that occur within a loop are known as the \qquad .
a. loop mass
b. reiterations
c. loop body
d. nested statements
8. The statement if age $>=65$ then seniorDiscount $=$ "yes" is an example of a \qquad .
a. sequence
b. loop
c. dual-alternative selection
d. single-alternative selection
9. The statement if age <13 then movieTicket $=4.00$ else movieTicket $=8.50$ is an example of
a \qquad .
a. sequence
b. loop
c. dual-alternative selection
d. single-alternative selection
10. Which of the following attributes do all three basic structures share?
a. Their flowcharts all contain exactly three processing symbols.
b. They all contain a decision.
c. They all have one entry and one exit point.
d. They all begin with a process.
11. When you read input data in a loop within a program, the input statement that precedes the loop
a. is the only part of the program allowed to be unstructured
b. cannot result in eof
c. is called a priming input
d. executes hundreds or even thousands of times in most business programs
12. A group of statements that execute as a unit is a \qquad .
a. block
b. family
c. chunk
d. cohort
13. Which of the following is acceptable in a structured program?
a. placing a sequence within the true half of a dual-alternative decision
b. placing a decision within a loop
c. placing a loop within one of the steps in a sequence
d. All of these are acceptable.
14. Which of the following is not a reason for enforcing structure rules in computer programs?
a. Structured programs are clearer to understand than unstructured ones.
b. Other professional programmers will expect programs to be structured.

c. Structured programs usually are shorter than unstructured ones.

d. Structured programs can be broken down into modules easily.
15. Which of the following is true of structured logic?
a. You can use structured logic with newer programming languages, such as Java and C\#, but not with older ones.
b. Any task can be described using some combination of the three structures.
c. Structured programs require that you break the code into modules.
d. All of these are true.

