Package Title: Pratt \&Cornely Test Bank
Course Title: Pratt \&Cornely
Chapter Number: 2

Question type: Multiple Choice

1) In a water molecule, hydrogens are partially \qquad ; oxygens are partially \qquad -
A) negative; negative
B)negative; positive
C)positive; positive
D) positive; negative
E)none of the above

Answer: D
Difficulty: Easy
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
2) At any given moment, a single water molecule participates in \qquad strong hydrogen bond(s). The role played by the water molecule is best characterized as \qquad _.
A)two ; one H-bond donor, one H-bond acceptor
B)two ; two H-bond donor
C)two ; two H-bond acceptor
D)one; H-bond donor
E)one; H-bond acceptor

Answer: A
Difficulty: Medium
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
3) Which of the following is a physical property of water that results from hydrogen bonding?
A)high boiling point relative to molecular weight
B)a solid state that is less dense than the liquid state
C)high surface tension
D)ability to solubilize polar molecules
E) all of the above

Answer: E

Difficulty: Medium

Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
4) In a hydrogen bond between a water molecule and another biomolecule, \qquad .
A) a hydrogen ion on the water molecule forms an ionic bond with a hydride ion on the other molecule
B) the hydrogen bond will typically form between a hydrogen atom and either a nitrogen, sulfur, or oxygen atom
C) the partial charge on a hydrogen of the water interacts with the partial charge on a hydrogen of the other molecule
D) a hydrogen on the water molecule forms a covalent bond to an oxygen or nitrogen atom on the other molecule
E) the hydrogen atom is located between an oxygen atom of the water and a carbon atom of the other molecule

Answer: B

Difficulty: Medium
Section Reference:2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
5) The strongest non-covalent interactions are \qquad _.
A) van der Waals interactions
B) London dispersion forces
C)hydrogen bonds
D) dipole-dipole interactions
E)ionic interactions

Answer: E

Difficulty: Easy
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
6)Hydrogen bonds are approximately \qquad \% of the bond strength of covalent C-C or C-H bonds.
A) 1
B) 5
C) 20
D) 50
E) 95

Answer: B
Difficulty: Easy
Section Reference:2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
7) Due to the formation of hydrogen bonds, \qquad is highly soluble in water.
A)carbon dioxide
B) sodium chloride
C)methanol
D)octane
E)cholesterol

Answer: C
Difficulty: Medium
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
8) Which of the following explains the interactions that occur between the atoms of water molecules and the ions that form when sodium chloride dissolves in water?
A)hydrogens interact with the sodium ion, oxygens interact with the chloride ion B)hydrogens interact with the chloride ion, oxygens interact with the sodium ion C)hydrogens interact with the sodium ion and the chloride ion
D)oxygens interact with the sodium ion and the chloride ion
E)none of the above

Answer: B
Difficulty: Medium
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
9) Which of the following functional groups has two hydrogen bond donors and one hydrogen
bond acceptor?
A)alcohol
B)ester
C)thiol
D)amine
E)amide

Answer: D
Difficulty: Hard
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
10) Hydrogen bonds within liquid water are \qquad .
A)attractions between the protons of the oxygen nuclei
B) ion-induced dipole interactions
C) dipole-dipole interactions
D)attractions between two oxygen atoms
E)attractions between the H^{+}and ${ }^{-} \mathrm{OH}$ ions of the liquid

Answer: C
Difficulty: Medium
Section Reference: 2-1
Learning Objective: Explain water's properties in terms of its ability to form hydrogen bonds
11) When a non-polar substance is added to water, how do the molecules of water behave?
A)the regular hydrogen bond pattern is disrupted resulting in a decrease of entropy B)the regular hydrogen bond pattern is disrupted resulting in an increase of entropy C)the regular hydrogen bond pattern is disrupted resulting in a decrease of enthalpy D)the regular hydrogen bond pattern is disrupted resulting in an increase of enthalpy E)none of the above

Answer: A
Difficulty: Medium
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
12) What term is used to describe the exclusion of nonpolar substances from an aqueous
solution?
A)nonpolar effect
B)lipid effect
C)hydrophobic effect
D)oil droplet effect
E)amphiphilic effect

Answer: C
Difficulty: Easy
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
13) Which of the following is an example of the hydrophobic effect?
A)the lipid membrane of cells and organelles
B)protein folding that places hydrophobic amino acids in the interior of the protein
C)the separation of salad dressing
D)oil sheens seen on the ocean following an oil spill
E) all of the above

Answer: E
Difficulty: Easy
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
14) Which of the following explains the attractive forces between hydrophobic molecules in an aqueous solution?
A)in an aqueous environment, London dispersion forces between hydrophobic molecules become stronger
B)in an aqueous environment, London dispersion forces between hydrophobic molecules and water become stronger
C)since nonpolar molecules do not form hydrogen bonds with hydrogen bonds with water, they can form hydrogen bonds with other nonpolar molecules
D)there is no increase in attractive forces between nonpolar molecules in an aqueous environment
E)none of the above

Answer: D
Difficulty: Hard

Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
15) Considering the energetics of transferring nonpolar molecules from water to a nonpolar solvent, the factor $T \Delta S$ is generally \qquad , causing ΔG to be \qquad .
A) positive; negative
B)negative; negative
C)positive; positive
D)positive; positive
E)negligible; either positive or negative

Answer: A
Difficulty: Hard
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
16) A molecule that has both a polar and nonpolar region is called \qquad .
A)micelleic
B) amphiphilic
C)endergonic
D) a membrane
E)none of the above

Answer: B
Difficulty: Easy
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
17) Which of the following is an example of an amphipathic molecule?
A)adenine, a base found in nucleic acids
B)glucose, a monosaccharide
C)serine, an amino acid
D)palmitic acid, a fatty acid
E)none of the above

Answer: D
Difficulty: Medium

Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
18) In aqueous solution, globules of up to several thousand amphiphilic molecules arranged with the hydrophilic groups on the surface and the hydrophobic groups buried in the center are called \qquad _.
A)micelles
B) vacuoles
C)liposomes
D)bilayers
E)none of the above

Answer: A
Difficulty: Easy
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
19) Fatty acid anions most commonly assemble into \qquad in aqueous solution.
A)lipid bilayers
B) solvent-filled vesicles
C)micelles
D)liposomes
E)none of the above

Answer: C
Difficulty: Easy
Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
20) Which of the following molecules would be prevented from readily crossing a lipid bilayer?
A)glucose
B) sodium ions
C) potassium ions
D)water
E) all of the above

Answer: E

Difficulty: Medium

Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
21) Which of the following is true regarding hydrophobic interactions between nonpolar molecules or groups?
A)they result from the tendency to maximize water's contact with nonpolar molecules B)they require the presence of surrounding water molecules
C)they are the result of strong attractions between nonpolar regions
D)they are the result of strong repulsion between water and nonpolar regions
E)they depend on strong permanent dipoles in the nonpolar molecules

Answer: B

Difficulty: Medium

Section Reference: 2-2
Learning Objective: Relate the solubility of substances to the hydrophobic effect
22) In an aqueous solution, if the $\left[\mathrm{OH}^{-}\right]$is $3.0 \times 10^{-5} \mathrm{M}$, what is the $\left[\mathrm{H}^{+}\right]$?
A) 7.0×10^{-9}
B) 7.0×10^{-2}
C) 3.3×10^{-3}
D) 3.3×10^{-10}
E)none of the above

Answer: D
Difficulty: Medium
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
23) What is the $\left[\mathrm{H}^{+}\right]$of an aqueous solution with a pH of 6.2 ?
A) 6.2×10^{-6}
B) 1.6×10^{-8}
C) 6.3×10^{-7}
D) 3.3×10^{-5}
E)none of the above

Answer: C

Difficulty: Medium

Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
24) What would be the resulting pH if one drop $(0.05 \mathrm{ml})$ of 1.0 M HCl was added to one liter of pure water (assume pH 7.0)?
A) 2.7
B) 4.3
C) 5.0
D) 7.0 (there would be no significant change)
E) 9.7

Answer: B
Difficulty: Hard
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
25) What would be the resulting pH if one mlof 1.0 M NaOH was added to one liter of pure water (assume pH 7.0)?
A) 1
B) 3
C) 7.3
D) 11
E) 13

Answer: D
Difficulty: Medium
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
26) Which of the following would be the strongest acid?
A)formic acid, $\mathrm{pK}=3.75$
B) succinic acid, a diprotic acid with $\mathrm{p} K=4.21$ and 5.64
C) acetic acid, $\mathrm{pK}=4.76$
D)ammonium ion, $\mathrm{p} K=9.25$
E)cannot be determined from the given information

Answer: A

Difficulty: Easy
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
27) What is the pH of a solution that contains three parts of acetic acid and one part sodium acetate? The $\mathrm{p} K$ for acetic acid is 4.76 .
A) 5.24
B) 5.06
C) 4.46
D) 4.28
E)cannot be determined from the given information

Answer: D
Difficulty: Medium
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
28) If the $\mathrm{p} K$ values for phosphoric acid are $2.15,6.82$ and 12.38 , at what pH would one observe equal amounts of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$?
A) 2.15
B) 4.49
C) 6.82
D) 9.60
E) 12.38

Answer: C
Difficulty: Medium
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
29) If 1.0 mL of 1.0 M acetic acid $\left(\mathrm{p} K=4.76, K=1.74 \times 10^{-5}\right)$ was added to one liter of pure water, what is the resulting pH ?
A) 1.0
B) 1.3
C) 3.0
D) 3.9
E) 10.1

Answer: D
Difficulty: Hard
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
30) If the $\mathrm{p} K$ values for phosphoric acid are $2.15,6.82$ and 12.38 , \qquad would predominate at pH 5 while \qquad would predominate at pH 10 .
A) $\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
B) $\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{HPO}_{4}{ }^{2-}$
C) $\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{PO}_{4}{ }^{3-}$
D) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} ; \mathrm{PO}_{4}{ }^{3-}$
E) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} ; \mathrm{HPO}_{4}{ }^{2-}$

Answer: E
Difficulty: Medium
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
31) What is the conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$?
A) $\mathrm{HPO}_{4}{ }^{2-}$
B) $\mathrm{H}_{2} \mathrm{PO}_{4}$
C) $\mathrm{H}_{3} \mathrm{PO}_{4}$
D) $\mathrm{PO}_{4}{ }^{3-}$
E) none of the above

Answer: C
Difficulty: Easy
Section Reference: 2-3
Learning Objective:Calculate the effect of acids and bases on a solution's pH
32) Considering a 0.1 M formic acid buffer, what is the concentration of formic acid present in a solution of pH 4.25 if the pK of formic acid is 3.75 ?
A) 0.024 M
B) 0.033 M
C) 0.067 M
D) 0.076 M
E)none of the above

Answer: A
Difficulty: Hard
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
33) Which of the following shows the buffer that is found in the blood stream?
A) $\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}+\mathrm{H}^{+}$
B) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}$
C) $\mathrm{HPO}_{4}{ }^{2-} \rightleftharpoons \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}^{+}$
D) $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}$
E) $\mathrm{HCO}_{3}{ }^{-} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+}$

Answer: D
Difficulty: Medium
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
34) Which of the following shows the intracellular buffer?
A) $\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}+\mathrm{H}^{+}$
B) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}$
C) $\mathrm{HPO}_{4}{ }^{2-} \rightleftharpoons \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}^{+}$
D) $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}$
E) $\mathrm{HCO}_{3}{ }^{-} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+}$

Answer: B
Difficulty: Medium
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
35) If a phosphate buffer ($\mathrm{p} K=6.82$) was formulated such that its pH was 7.3 , it would be best suited to buffer against \qquad . If instead, it was formulated such that its pH was 6.3 , it would be best suited to buffer against \qquad .
A)acid; base
B)acid; acid
C)base; acid
D)base; base
E)a buffer with a pH that far from the $\mathrm{p} K$ would not be an effective buffer

Answer: A

Difficulty: Hard
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
36) Which of the following could be used to formulate 100 mls of a 0.10 M acetate buffer ($\mathrm{p} K=4.76$) at pH 5 if you start with 64 mls of 0.10 M sodium acetate?
A) 3.6 mls of 1 M HCl
B) 3.6 mls of 1 M NaOH
C) 34 mls of 0.10 M HCl
D) 34 mls of 0.10 M NaOH
E) 34 mls of 0.10 M acetic acid

Answer: E

Difficulty: Hard
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
37) Which of the following could be used to formulate 100 mls of a 0.10 M phosphate buffer ($\mathrm{p} K=6.82$) at pH 7.2 ?
A) 2.9 mmoles of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 7.1 mmoles of NaHPO_{4}
B) 10 mmoles of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 7.1 mmoles of NaOH
C) 10 mmoles of NaHPO_{4} and 7.1 mmoles of HCl
D) 10 mmoles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and 17.1 mmoles of NaOH
E) all of the above

Answer: E
Difficulty: Hard
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
38) Metabolic acidosis often causes increased respiratory rates. What portion of the bloodstream buffer is lost through increased respiration?
A) H^{+}
B) HCO_{3}^{-}
C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
D) CO_{2}
E) $\mathrm{H}_{2} \mathrm{O}$

Answer: D
Difficulty: Easy
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
39) What is the resulting pH if 10 millimoles of HCl is added to 1 liter of a 0.1 M phosphate buffer at $\mathrm{pH} 7.00(\mathrm{pK}=6.82)$?
A) 6.82
B) 6.98
C) 7.01
D) 7.19
E)cannot be determined

Answer: A
Difficulty: Hard
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH
40) During vigorous exercise, hydrogen ions are produced within cells as a result of increased metabolism. What component of the intracellular buffer would increase as a result of the increased H^{+}production?
A) $\mathrm{H}_{3} \mathrm{PO}_{4}$
B) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C) $\mathrm{HPO}_{4}{ }^{2-}$
D) $\mathrm{PO}_{4}{ }^{3-}$
E) none of the above

Answer: B
Difficulty: Medium
Section Reference: 2-4
Learning Objective:Describe how buffer solutions resist changes in pH

