AN INTRODUCTION TO OPTIMIZATION

Edwin K. P. Chong and Stanislaw H. Żak

A JOHN WILEY \& SONS, INC., PUBLICATION

1. Methods of Proof and Some Notation

1.1 \qquad

A	B	$\operatorname{not} \mathrm{A}$	$\operatorname{not} \mathrm{B}$	$\mathrm{A} \Rightarrow \mathrm{B}$	$(\operatorname{not} \mathrm{B}) \Rightarrow(\operatorname{not} \mathrm{A})$
F	F	T	T	T	T
F	T	T	F	T	T
T	F	F	T	F	F
T	T	F	F	T	T

1.2

A	B	not A	not B	$\mathrm{A} \Rightarrow \mathrm{B}$	not $(\mathrm{A}$ and (not B))
F	F	T	T	T	T
F	T	T	F	T	T
T	F	F	T	F	F
T	T	F	F	T	T

1.3 \qquad

A	B	not $(\mathrm{A}$ and B)	not A	not B	$($ not A) or (not B))
F	F	T	T	T	T
F	T	T	T	F	T
T	F	T	F	T	T
T	T	F	F	F	F

1.4

A	B	A and B	A and $($ not B)	$(\mathrm{A}$ and B) or $(\mathrm{A}$ and $($ not B))
F	F	F	F	F
F	T	F	F	F
T	F	F	T	T
T	T	T	F	T

1.5

The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the truth or falsity of the rule. The card with S is irrelevant because S is not a vowel. The card with 8 is not relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1

We show this by contradiction. Suppose $n<m$. Then, the number of columns of \boldsymbol{A} is n. Since rank \boldsymbol{A} is the maximum number of linearly independent columns of \boldsymbol{A}, then rank \boldsymbol{A} cannot be greater than $n<m$, which contradicts the assumption that $\operatorname{rank} \boldsymbol{A}=m$.
2.2
\Rightarrow : Since there exists a solution, then by Theorem 2.1, $\operatorname{rank} \boldsymbol{A}=\operatorname{rank}[\boldsymbol{A}: \boldsymbol{b}]$. So, it remains to prove that $\operatorname{rank} \boldsymbol{A}=n$. For this, suppose that $\operatorname{rank} \boldsymbol{A}<n$ (note that it is impossible for rank $\boldsymbol{A}>n$ since \boldsymbol{A} has only n columns). Hence, there exists $\boldsymbol{y} \in \mathbb{R}^{n}, \boldsymbol{y} \neq \mathbf{0}$, such that $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$ (this is because the columns of
\boldsymbol{A} are linearly dependent, and $\boldsymbol{A} \boldsymbol{y}$ is a linear combination of the columns of $\boldsymbol{A})$. Let \boldsymbol{x} be a solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Then clearly $\boldsymbol{x}+\boldsymbol{y} \neq \boldsymbol{x}$ is also a solution. This contradicts the uniqueness of the solution. Hence, $\operatorname{rank} \boldsymbol{A}=n$.
\Leftarrow : By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let \boldsymbol{x} and \boldsymbol{y} be solutions, i.e., $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$. Subtracting, we get $\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{y})=\mathbf{0}$. Since rank $\boldsymbol{A}=n$ and \boldsymbol{A} has n columns, then $\boldsymbol{x}-\boldsymbol{y}=\mathbf{0}$ and hence $\boldsymbol{x}=\boldsymbol{y}$, which shows that the solution is unique.

2.3

Consider the vectors $\overline{\boldsymbol{a}}_{i}=\left[1, \boldsymbol{a}_{i}^{\top}\right]^{\top} \in \mathbb{R}^{n+1}, i=1, \ldots, k$. Since $k \geq n+2$, then the vectors $\overline{\boldsymbol{a}}_{1}, \ldots, \overline{\boldsymbol{a}}_{k}$ must be linearly independent in \mathbb{R}^{n+1}. Hence, there exist $\alpha_{1}, \ldots \alpha_{k}$, not all zero, such that

$$
\sum_{i=1}^{k} \alpha_{i} \boldsymbol{a}_{i}=\mathbf{0}
$$

The first component of the above vector equation is $\sum_{i=1}^{k} \alpha_{i}=0$, while the last n components have the form $\sum_{i=1}^{k} \alpha_{i} \boldsymbol{a}_{i}=\mathbf{0}$, completing the proof.
2.4
a. We first postmultiply \boldsymbol{M} by the matrix

$$
\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
-\boldsymbol{M}_{m-k, k} & \boldsymbol{I}_{m-k}
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{cc}
\boldsymbol{M}_{m-k, k} & \boldsymbol{I}_{m-k} \\
\boldsymbol{M}_{k, k} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
-\boldsymbol{M}_{m-k, k} & \boldsymbol{I}_{m-k}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{m-k} \\
\boldsymbol{M}_{k, k} & \boldsymbol{O}
\end{array}\right]
$$

Note that the determinant of the postmultiplying matrix is 1 . Next we postmultiply the resulting product by

$$
\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{k} \\
\boldsymbol{I}_{m-k} & \boldsymbol{O}
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{m-k} \\
\boldsymbol{M}_{k, k} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{k} \\
\boldsymbol{I}_{m-k} & \boldsymbol{O}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{M}_{k, k}
\end{array}\right]
$$

Notice that

$$
\operatorname{det} \boldsymbol{M}=\operatorname{det}\left(\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{M}_{k, k}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{k} \\
\boldsymbol{I}_{m-k} & \boldsymbol{O}
\end{array}\right]\right)
$$

where

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{k} \\
\boldsymbol{I}_{m-k} & \boldsymbol{O}
\end{array}\right]\right)= \pm 1
$$

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as discussed in Section 2.2. Moreover,

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{M}_{k, k}
\end{array}\right]\right)=\operatorname{det}\left(\boldsymbol{I}_{k}\right) \operatorname{det}\left(\boldsymbol{M}_{k, k}\right)=\operatorname{det}\left(\boldsymbol{M}_{k, k}\right)
$$

Hence,

$$
\operatorname{det} \boldsymbol{M}= \pm \operatorname{det} \boldsymbol{M}_{k, k}
$$

b. We can see this on the following examples. We assume, without loss of generality that $\boldsymbol{M}_{m-k, k}=\boldsymbol{O}$ and let $\boldsymbol{M}_{k, k}=2$. Thus $k=1$. First consider the case when $m=2$. Then we have

$$
\boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{m-k} \\
\boldsymbol{M}_{k, k} & \boldsymbol{O}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
2 & 0
\end{array}\right] .
$$

Thus,

$$
\operatorname{det} \boldsymbol{M}=-2=\operatorname{det}\left(-\boldsymbol{M}_{k, k}\right)
$$

Next consider the case when $m=3$. Then

$$
\operatorname{det}\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{I}_{m-k} \\
\boldsymbol{M}_{k, k} & \boldsymbol{O}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}
0 & \vdots & 1 & 0 \\
0 & \vdots & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
2 & \vdots & 0 & 0
\end{array}\right]=2 \neq \operatorname{det}\left(-\boldsymbol{M}_{k, k}\right)
$$

Therefore, in general,

$$
\operatorname{det} \boldsymbol{M} \neq \operatorname{det}\left(-\boldsymbol{M}_{k, k}\right)
$$

However, when $k=m / 2$, that is, when all sub-matrices are square and of the same dimension, then it is true that

$$
\operatorname{det} \boldsymbol{M}=\operatorname{det}\left(-\boldsymbol{M}_{k, k}\right)
$$

See [121].
2.5

Let

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

and suppose that each block is $k \times k$. John R. Silvester [121] showed that if at least one of the blocks is equal to \boldsymbol{O} (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the determinant is equal to zero as follows from the determinant's properties discussed Section 2.2. That is, if $\boldsymbol{A}=\boldsymbol{B}=\boldsymbol{O}$, or $\boldsymbol{A}=\boldsymbol{C}=\boldsymbol{O}$, and so on, then obviously $\operatorname{det} \boldsymbol{M}=0$. This includes the case when any three or all four block matrices are zero matrices.

If $\boldsymbol{B}=\boldsymbol{O}$ or $\boldsymbol{C}=\boldsymbol{O}$ then

$$
\operatorname{det} \boldsymbol{M}=\operatorname{det}\left[\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right]=\operatorname{det}(\boldsymbol{A} \boldsymbol{D})
$$

The only case left to analyze is when $\boldsymbol{A}=\boldsymbol{O}$ or $\boldsymbol{D}=\boldsymbol{O}$. We will show that in either case,

$$
\operatorname{det} \boldsymbol{M}=\operatorname{det}(-\boldsymbol{B C})
$$

Without loss of generality suppose that $\boldsymbol{D}=\boldsymbol{O}$. Following arguments of John R. Silvester [121], we premultiply \boldsymbol{M} by the product of three matrices whose determinants are unity:

$$
\left[\begin{array}{cc}
\boldsymbol{I}_{k} & -\boldsymbol{I}_{k} \\
\boldsymbol{O} & \boldsymbol{I}_{k}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \boldsymbol{O} \\
\boldsymbol{I}_{k} & \boldsymbol{I}_{k}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{k} & -\boldsymbol{I}_{k} \\
\boldsymbol{O} & \boldsymbol{I}_{k}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{C} & \boldsymbol{O}
\end{array}\right]=\left[\begin{array}{cc}
-\boldsymbol{C} & \boldsymbol{O} \\
\boldsymbol{A} & \boldsymbol{B}
\end{array}\right] .
$$

Hence,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{C} & \boldsymbol{O}
\end{array}\right] & =\left[\begin{array}{cc}
-\boldsymbol{C} & \boldsymbol{O} \\
\boldsymbol{A} & \boldsymbol{B}
\end{array}\right] \\
& =\operatorname{det}(-\boldsymbol{C}) \operatorname{det} \boldsymbol{B} \\
& =\operatorname{det}\left(-\boldsymbol{I}_{k}\right) \operatorname{det} \boldsymbol{C} \operatorname{det} \boldsymbol{B} .
\end{aligned}
$$

Thus we have

$$
\operatorname{det}\left[\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{C} & \boldsymbol{O}
\end{array}\right]=\operatorname{det}(-\boldsymbol{B} \boldsymbol{C})=\operatorname{det}(-\boldsymbol{C} \boldsymbol{B})
$$

2.6

We represent the given system of equations in the form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -2 & 0 & -1
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad \text { and } \quad \boldsymbol{b}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Using elementary row operations yields

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -2 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -3 & -2 & -2
\end{array}\right], \quad \text { and } \\
{[\boldsymbol{A}, \boldsymbol{b}] } & =\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 1 \\
1 & -2 & 0 & -1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 1 \\
0 & -3 & -2 & -2 & -3
\end{array}\right],
\end{aligned}
$$

from which $\operatorname{rank} \boldsymbol{A}=2$ and $\operatorname{rank}[\boldsymbol{A}, \boldsymbol{b}]=2$. Therefore, by Theorem 2.1, the system has a solution.
We next represent the system of equations as

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1-2 x_{3}-x_{4} \\
-2+x_{4}
\end{array}\right]
$$

Assigning arbitrary values to x_{3} and $x_{4}\left(x_{3}=d_{3}, x_{4}=d_{4}\right)$, we get

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]^{-1}\left[\begin{array}{c}
1-2 x_{3}-x_{4} \\
-2+x_{4}
\end{array}\right] \\
& =-\frac{1}{3}\left[\begin{array}{cc}
-2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1-2 x_{3}-x_{4} \\
-2+x_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{4}{3} d_{3}-\frac{1}{3} d_{4} \\
1-\frac{2}{3} d_{3}-\frac{2}{3} d_{4}
\end{array}\right] .
\end{aligned}
$$

Therefore, a general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{3} d_{3}-\frac{1}{3} d_{4} \\
1-\frac{2}{3} d_{3}-\frac{2}{3} d_{4} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{3} \\
-\frac{2}{3} \\
1 \\
0
\end{array}\right] d_{3}+\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{2}{3} \\
0 \\
1
\end{array}\right] d_{4}+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],
$$

where d_{3} and d_{4} are arbitrary values.
2.7

1. Apply the definition of $|-a|$:

$$
\begin{aligned}
|-a| & = \begin{cases}-a & \text { if }-a>0 \\
0 & \text { if }-a=0 \\
-(-a) & \text { if }-a<0\end{cases} \\
& = \begin{cases}-a & \text { if } a<0 \\
0 & \text { if } a=0 \\
a & \text { if } a>0\end{cases} \\
& =|a| .
\end{aligned}
$$

2. If $a \geq 0$, then $|a|=a$. If $a<0$, then $|a|=-a>0>a$. Hence $|a| \geq a$. On the other hand, $|-a| \geq-a$ (by the above). Hence, $a \geq-|-a|=-|a|$ (by property 1).
3. We have four cases to consider. First, if $a, b \geq 0$, then $a+b \geq 0$. Hence, $|a+b|=a+b=|a|+|b|$.

Second, if $a, b \geq 0$, then $a+b \leq 0$. Hence $|a+b|=-(a+b)=-a-b=|a|+|b|$.
Third, if $a \geq 0$ and $b \leq 0$, then we have two further subcases:

1. If $a+b \geq 0$, then $|a+b|=a+b \leq|a|+|b|$.
2. If $a+b \leq 0$, then $|a+b|=-a-b \leq|a|+|b|$.

The fourth case, $a \leq 0$ and $b \geq 0$, is identical to the third case, with a and b interchanged.
4. We first show $|a-b| \leq|a|+|b|$. We have

$$
\begin{aligned}
|a-b| & =|a+(-b)| \\
& \leq|a|+|-b| \quad \text { by property } 3 \\
& =|a|+|b| \quad \text { by property } 1
\end{aligned}
$$

To show $||a|-|b|| \leq|a-b|$, we note that $|a|=|a-b+b| \leq|a-b|+|b|$, which implies $|a|-|b| \leq|a-b|$. On the other hand, from the above we have $|b|-|a| \leq|b-a|=|a-b|$ by property 1. Therefore, $||a|-|b|| \leq|a-b|$.
5. We have four cases. First, if $a, b \geq 0$, we have $a b \geq 0$ and hence $|a b|=a b=|a||b|$. Second, if $a, b \leq 0$, we have $a b \geq 0$ and hence $|a b|=a b=(-a)(-b)=|a||b|$. Third, if $a \leq 0, b \leq 0$, we have $a b \leq 0$ and hence $|a b|=-a b=a(-b)=|a||b|$. The fourth case, $a \leq 0$ and $b \geq 0$, is identical to the third case, with a and b interchanged.
6. We have

$$
\begin{aligned}
|a+b| & \leq|a|+|b| \quad \text { by property } 3 \\
& \leq c+d .
\end{aligned}
$$

7. \Rightarrow : By property $2,-a \leq|a|$ and $a \leq \mid a$. Therefore, $|a|<b$ implies $-a \leq|a|<b$ and $a \leq|a|<b$.
\Leftarrow : If $a \geq 0$, then $|a|=a<b$. If $a<0$, then $|a|=-a<b$.
For the case when " $<$ " is replaced by " \leq ", we simply repeat the above proof with " $<$ " replaced by " \leq ".
8. This is simply the negation of property 7 (apply DeMorgan's Law).
2.8

Observe that we can represent $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{2}$ as

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{2}=\boldsymbol{x}^{\top}\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right] \boldsymbol{y}=(\boldsymbol{Q} \boldsymbol{x})^{\top}(\boldsymbol{Q} \boldsymbol{y})=\boldsymbol{x}^{\top} \boldsymbol{Q}^{2} \boldsymbol{y}
$$

where

$$
\boldsymbol{Q}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Note that the matrix $\boldsymbol{Q}=\boldsymbol{Q}^{\top}$ is nonsingular.

1. Now, $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{2}=(\boldsymbol{Q} \boldsymbol{x})^{\top}(\boldsymbol{Q} \boldsymbol{x})=\|\boldsymbol{Q} \boldsymbol{x}\|^{2} \geq 0$, and

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{2}=0 & \Leftrightarrow\|\boldsymbol{Q} \boldsymbol{x}\|^{2}=0 \\
& \Leftrightarrow \boldsymbol{Q} \boldsymbol{x}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

since \boldsymbol{Q} is nonsingular.
2. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{2}=(\boldsymbol{Q} \boldsymbol{x})^{\top}(\boldsymbol{Q y})=(\boldsymbol{Q y})^{\top}(\boldsymbol{Q} \boldsymbol{x})=\langle\boldsymbol{y}, \boldsymbol{x}\rangle_{2}$.
3. We have

$$
\begin{aligned}
\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle_{2} & =(\boldsymbol{x}+\boldsymbol{y})^{\top} \boldsymbol{Q}^{2} \boldsymbol{z} \\
& =\boldsymbol{x}^{\top} \boldsymbol{Q}^{2} \boldsymbol{z}+\boldsymbol{y}^{\top} \boldsymbol{Q}^{2} \boldsymbol{z} \\
& =\langle\boldsymbol{x}, \boldsymbol{z}\rangle_{2}+\langle\boldsymbol{y}, \boldsymbol{z}\rangle_{2} .
\end{aligned}
$$

4. $\langle r \boldsymbol{x}, \boldsymbol{y}\rangle_{2}=(r \boldsymbol{x})^{\top} \boldsymbol{Q}^{2} \boldsymbol{y}=r \boldsymbol{x}^{\top} \boldsymbol{Q}^{2} \boldsymbol{y}=r\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{2}$.
2.9

We have $\|\boldsymbol{x}\|=\|(\boldsymbol{x}-\boldsymbol{y})+\boldsymbol{y}\| \leq\|\boldsymbol{x}-\boldsymbol{y}\|+\|\boldsymbol{y}\|$ by the Triangle Inequality. Hence, $\|\boldsymbol{x}\|-\|\boldsymbol{y}\| \leq\|\boldsymbol{x}-\boldsymbol{y}\|$. On the other hand, from the above we have $\|\boldsymbol{y}\|-\|\boldsymbol{x}\| \leq\|\boldsymbol{y}-\boldsymbol{x}\|=\|\boldsymbol{x}-\boldsymbol{y}\|$. Combining the two inequalities, we obtain $|\|\boldsymbol{x}\|-\|\boldsymbol{y}\|| \leq\|\boldsymbol{x}-\boldsymbol{y}\|$.
2.10

Let $\epsilon>0$ be given. Set $\delta=\epsilon$. Hence, if $\|\boldsymbol{x}-\boldsymbol{y}\|<\delta$, then by Exercise 2.9, $\|\|\boldsymbol{x}\|-\| \boldsymbol{y}\|\mid \leq\| \boldsymbol{x}-\boldsymbol{y} \|<\delta=\epsilon$.

3. Transformations

3.1

Let \boldsymbol{v} be the vector such that \boldsymbol{x} are the coordinates of \boldsymbol{v} with respect to $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$, and \boldsymbol{x}^{\prime} are the coordinates of \boldsymbol{v} with respect to $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \ldots, \boldsymbol{e}_{n}^{\prime}\right\}$. Then,

$$
\boldsymbol{v}=x_{1} \boldsymbol{e}_{1}+\cdots+x_{n} \boldsymbol{e}_{n}=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \boldsymbol{x}
$$

and

$$
\boldsymbol{v}=x_{1}^{\prime} \boldsymbol{e}_{1}^{\prime}+\cdots+x_{n}^{\prime} \boldsymbol{e}_{n}^{\prime}=\left[\boldsymbol{e}_{1}^{\prime}, \ldots, \boldsymbol{e}_{n}^{\prime}\right] \boldsymbol{x}^{\prime}
$$

Hence,

$$
\left[e_{1}, \ldots, e_{n}\right] \boldsymbol{x}=\left[e_{1}^{\prime}, \ldots, \boldsymbol{e}_{n}^{\prime}\right] \boldsymbol{x}^{\prime}
$$

which implies

$$
\boldsymbol{x}^{\prime}=\left[\boldsymbol{e}_{1}^{\prime}, \ldots, \boldsymbol{e}_{n}^{\prime}\right]^{-1}\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}
$$

3.2

a. We have

$$
\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]\left[\begin{array}{ccc}
1 & 2 & 4 \\
3 & -1 & 5 \\
-4 & 5 & 3
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{T}=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]^{-1}\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]=\left[\begin{array}{ccc}
1 & 2 & 4 \\
3 & -1 & 5 \\
-4 & 5 & 3
\end{array}\right]^{-1}=\frac{1}{42}\left[\begin{array}{ccc}
28 & -14 & -14 \\
29 & -19 & -7 \\
-11 & 13 & 7
\end{array}\right]
$$

b. We have

$$
\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & 0 \\
3 & 4 & 5
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{T}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & 0 \\
3 & 4 & 5
\end{array}\right]
$$

3.3

We have

$$
\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]\left[\begin{array}{ccc}
2 & 2 & 3 \\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right]
$$

Therefore, the transformation matrix from $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right\}$ to $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is

$$
\boldsymbol{T}=\left[\begin{array}{ccc}
2 & 2 & 3 \\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right]
$$

Now, consider a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, and let \boldsymbol{A} be its representation with respect to $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$, and \boldsymbol{B} its representation with respect to $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right\}$. Let $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{y}^{\prime}=\boldsymbol{B} \boldsymbol{x}^{\prime}$. Then,

$$
\boldsymbol{y}^{\prime}=\boldsymbol{T} \boldsymbol{y}=\boldsymbol{T}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{T} \boldsymbol{A}\left(\boldsymbol{T}^{-1} \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}\right) \boldsymbol{x}^{\prime}
$$

Hence, the representation of the linear transformation with respect to $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right\}$ is

$$
\boldsymbol{B}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}=\left[\begin{array}{ccc}
3 & -10 & -8 \\
-1 & 8 & 4 \\
2 & -13 & -7
\end{array}\right]
$$

3.4

We have

$$
\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}, \boldsymbol{e}_{4}^{\prime}\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Therefore, the transformation matrix from $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$ to $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}, \boldsymbol{e}_{4}^{\prime}\right\}$ is

$$
\boldsymbol{T}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now, consider a linear transformation $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, and let \boldsymbol{A} be its representation with respect to $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$, and \boldsymbol{B} its representation with respect to $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}, \boldsymbol{e}_{4}^{\prime}\right\}$. Let $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{y}^{\prime}=\boldsymbol{B} \boldsymbol{x}^{\prime}$. Then,

$$
\boldsymbol{y}^{\prime}=\boldsymbol{T} \boldsymbol{y}=\boldsymbol{T}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{T} \boldsymbol{A}\left(\boldsymbol{T}^{-1} \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}\right) \boldsymbol{x}^{\prime}
$$

Therefore,

$$
\boldsymbol{B}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}=\left[\begin{array}{cccc}
5 & 3 & 4 & 3 \\
-3 & -2 & -1 & -2 \\
-1 & 0 & -1 & -2 \\
1 & 1 & 1 & 4
\end{array}\right]
$$

3.5

Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ be a set of linearly independent eigenvectors of \boldsymbol{A} corresponding to the eigenvalues λ_{1}, λ_{2}, λ_{3}, and λ_{4}. Let $\boldsymbol{T}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]$. Then,

$$
\begin{aligned}
\boldsymbol{A T} & =\boldsymbol{A}\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]=\left[\boldsymbol{A} \boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{2}, \boldsymbol{A} \boldsymbol{v}_{3}, \boldsymbol{A} \boldsymbol{v}_{4}\right] \\
& =\left[\lambda_{1} \boldsymbol{v}_{1}, \lambda_{2} \boldsymbol{v}_{2}, \lambda_{3} \boldsymbol{v}_{3}, \lambda_{4} \boldsymbol{v}_{4}\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right] .
\end{aligned}
$$

Hence,

$$
\boldsymbol{A} \boldsymbol{T}=\boldsymbol{T}\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

or

$$
\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] .
$$

Therefore, the linear transformation has a diagonal matrix form with respect to the basis formed by a linearly independent set of eigenvectors.

Because

$$
\operatorname{det}(\boldsymbol{A})=(\lambda-2)(\lambda-3)(\lambda-1)(\lambda+1),
$$

the eigenvalues are $\lambda_{1}=2, \lambda_{2}=3, \lambda_{3}=1$, and $\lambda_{4}=-1$.
From $\boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}$, where $\boldsymbol{v}_{i} \neq 0(i=1,2,3)$, the corresponding eigenvectors are

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
0 \\
2 \\
-9 \\
1
\end{array}\right], \text { and } \quad \boldsymbol{v}_{4}=\left[\begin{array}{c}
24 \\
-12 \\
1 \\
9
\end{array}\right] .
$$

Therefore, the basis we are interested in is

$$
\left.\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
-9 \\
1
\end{array}\right],\left[\begin{array}{c}
24 \\
-12 \\
1 \\
9
\end{array}\right]\right\} .
$$

3.6

Suppose $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are eigenvectors of \boldsymbol{A} corresponding to $\lambda_{1}, \ldots, \lambda_{n}$, respectively. Then, for each $i=$ $1, \ldots, n$, we have

$$
\left(\boldsymbol{I}_{n}-\boldsymbol{A}\right) \boldsymbol{v}_{i}=\boldsymbol{v}_{i}-\boldsymbol{A} \boldsymbol{v}_{i}=\boldsymbol{v}_{i}-\lambda_{i} \boldsymbol{v}_{i}=\left(1-\lambda_{i}\right) \boldsymbol{v}_{i}
$$

which shows that $1-\lambda_{1}, \ldots, 1-\lambda_{n}$ are the eigenvalues of $\boldsymbol{I}_{n}-\boldsymbol{A}$.
Alternatively, we may write the characteristic polynomial of $\boldsymbol{I}_{n}-\boldsymbol{A}$ as

$$
\pi_{\boldsymbol{I}_{n}-\boldsymbol{A}}(1-\lambda)=\operatorname{det}\left((1-\lambda) \boldsymbol{I}_{n}-\left(\boldsymbol{I}_{n}-\boldsymbol{A}\right)\right)=\operatorname{det}\left(-\left[\lambda \boldsymbol{I}_{n}-\boldsymbol{A}\right]\right)=(-1)^{n} \pi_{\boldsymbol{A}}(\lambda),
$$

which shows the desired result.
3.7

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^{\perp}$, and $\alpha, \beta \in \mathbb{R}$. To show that \mathcal{V}^{\perp} is a subspace, we need to show that $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in \mathcal{V}^{\perp}$. For this, let \boldsymbol{v} be any vector in \mathcal{V}. Then,

$$
\boldsymbol{v}^{\top}(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha \boldsymbol{v}^{\top} \boldsymbol{x}+\beta \boldsymbol{v}^{\top} \boldsymbol{y}=0,
$$

since $\boldsymbol{v}^{\top} \boldsymbol{x}=\boldsymbol{v}^{\top} \boldsymbol{y}=0$ by definition.
3.8

The null space of \boldsymbol{A} is $\mathcal{N}(\boldsymbol{A})=\left\{\boldsymbol{x} \in \mathbb{R}^{3}: \boldsymbol{A} \boldsymbol{x}=0\right\}$. Using elementary row operations and back-substitution, we can solve the system of equations:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc}
4 & -2 & 0 \\
2 & 1 & -1 \\
2 & -3 & 1
\end{array}\right]} & \rightarrow\left[\begin{array}{ccc}
4 & -2 & 0 \\
0 & 2 & -1 \\
0 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
4 & -2 & 0 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{array} \quad \Rightarrow \begin{array}{r}
4 x_{1}-2 x_{2}=0 \\
2 x_{2}-x_{3}=0
\end{array}\right]=\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right] x_{3} .
$$

Therefore,

$$
\mathcal{N}(\boldsymbol{A})=\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] c: c \in \mathbb{R}\right\} .
$$

3.9

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{R}(\boldsymbol{A})$, and $\alpha, \beta \in \mathbb{R}$. Then, there exists $\boldsymbol{v}, \boldsymbol{u}$ such that $\boldsymbol{x}=\boldsymbol{A} \boldsymbol{v}$ and $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{u}$. Thus,

$$
\alpha \boldsymbol{x}+\beta \boldsymbol{y}=\alpha \boldsymbol{A} \boldsymbol{v}+\beta \boldsymbol{A} \boldsymbol{u}=\boldsymbol{A}(\alpha \boldsymbol{v}+\beta \boldsymbol{u}) .
$$

Hence, $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in \mathcal{R}(\boldsymbol{A})$, which shows that $\mathcal{R}(\boldsymbol{A})$ is a subspace.
Let $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{N}(\boldsymbol{A})$, and $\alpha, \beta \in \mathbb{R}$. Then, $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$. Thus,

$$
\boldsymbol{A}(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha \boldsymbol{A} \boldsymbol{x}+\beta \boldsymbol{A} \boldsymbol{y}=\mathbf{0} .
$$

Hence, $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in \mathcal{N}(\boldsymbol{A})$, which shows that $\mathcal{N}(\boldsymbol{A})$ is a subspace.
3.10

Let $\boldsymbol{v} \in \mathcal{R}(\boldsymbol{B})$, i.e., $\boldsymbol{v}=\boldsymbol{B} \boldsymbol{x}$ for some \boldsymbol{x}. Consider the matrix $[\boldsymbol{A} \boldsymbol{v}]$. Then, $\mathcal{N}\left(\boldsymbol{A}^{\top}\right)=\mathcal{N}\left([\boldsymbol{A} \boldsymbol{v}]^{\top}\right)$, since if $\boldsymbol{u} \in \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$, then $\boldsymbol{u} \in \mathcal{N}\left(\boldsymbol{B}^{\top}\right)$ by assumption, and hence $\boldsymbol{u}^{\top} \boldsymbol{v}=\boldsymbol{u}^{\top} \boldsymbol{B} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{B}^{\top} \boldsymbol{u}=\mathbf{0}$. Now,

$$
\operatorname{dim} \mathcal{R}(\boldsymbol{A})+\operatorname{dim} \mathcal{N}\left(\boldsymbol{A}^{\top}\right)=m
$$

and

$$
\operatorname{dim} \mathcal{R}([\boldsymbol{A} \boldsymbol{v}])+\operatorname{dim} \mathcal{N}\left([\boldsymbol{A} \boldsymbol{v}]^{\top}\right)=m
$$

Since $\operatorname{dim} \mathcal{N}\left(\boldsymbol{A}^{\top}\right)=\operatorname{dim} \mathcal{N}\left([\boldsymbol{A} \boldsymbol{v}]^{\top}\right)$, then we have $\operatorname{dim} \mathcal{R}(\boldsymbol{A})=\operatorname{dim} \mathcal{R}([\boldsymbol{A} \boldsymbol{v}])$. Hence, \boldsymbol{v} is a linear combination of the columns of \boldsymbol{A}, i.e., $\boldsymbol{v} \in \mathcal{R}(\boldsymbol{A})$, which completes the proof.
3.11

We first show $\boldsymbol{V} \subset\left(\boldsymbol{V}^{\perp}\right)^{\perp}$. Let $\boldsymbol{v} \in \boldsymbol{V}$, and \boldsymbol{u} any element of \boldsymbol{V}^{\perp}. Then $\boldsymbol{u}^{\top} \boldsymbol{v}=\boldsymbol{v}^{\top} \boldsymbol{u}=0$. Therefore, $\boldsymbol{v} \in\left(\boldsymbol{V}^{\perp}\right)^{\perp}$.

We now show $\left(\boldsymbol{V}^{\perp}\right)^{\perp} \subset \boldsymbol{V}$. Let $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}$ be a basis for \boldsymbol{V}, and $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{l}}\right\}$ a basis for $\left(\boldsymbol{V}^{\perp}\right)^{\perp}$. Define $\boldsymbol{A}=\left[\boldsymbol{a}_{1} \cdots \boldsymbol{a}_{k}\right]$ and $\boldsymbol{B}=\left[\boldsymbol{b}_{1} \cdots \boldsymbol{b}_{l}\right]$, so that $\boldsymbol{V}=\mathcal{R}(\boldsymbol{A})$ and $\left(\boldsymbol{V}^{\perp}\right)^{\perp}=\mathcal{R}(\boldsymbol{B})$. Hence, it remains to show that $\mathcal{R}(\boldsymbol{B}) \subset \mathcal{R}(\boldsymbol{A})$. Using the result of Exercise 3.10, it suffices to show that $\mathcal{N}\left(\boldsymbol{A}^{\top}\right) \subset \mathcal{N}\left(\boldsymbol{B}^{\top}\right)$. So let $\boldsymbol{x} \in \mathcal{N}\left(\boldsymbol{A}^{\top}\right)$, which implies that $\boldsymbol{x} \in \mathcal{R}(\boldsymbol{A})^{\perp}=\boldsymbol{V}^{\perp}$, since $\mathcal{R}(\boldsymbol{A})^{\perp}=\mathcal{N}\left(\boldsymbol{A}^{\top}\right)$. Hence, for all \boldsymbol{y}, we have $(\boldsymbol{B} \boldsymbol{y})^{\top} \boldsymbol{x}=\mathbf{0}=\boldsymbol{y}^{\top} \boldsymbol{B}^{\top} \boldsymbol{x}$, which implies that $\boldsymbol{B}^{\top} \boldsymbol{x}=\mathbf{0}$. Therefore, $\boldsymbol{x} \in \mathcal{N}\left(\boldsymbol{B}^{\top}\right)$, which completes the proof.
3.12

Let $\boldsymbol{w} \in \mathcal{W}^{\perp}$, and \boldsymbol{y} be any element of \mathcal{V}. Since $\mathcal{V} \subset \mathcal{W}$, then $\boldsymbol{y} \in \mathcal{W}$. Therefore, by definition of \boldsymbol{w}, we have $\boldsymbol{w}^{\top} \boldsymbol{y}=0$. Therefore, $\boldsymbol{w} \in \mathcal{V}^{\perp}$.
3.13

Let $r=\operatorname{dim} \mathcal{V}$. Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}$ be a basis for \mathcal{V}, and \boldsymbol{V} the matrix whose i th column is \boldsymbol{v}_{i}. Then, clearly $\mathcal{V}=\mathcal{R}(\boldsymbol{V})$.

Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-r}$ be a basis for \mathcal{V}^{\perp}, and \boldsymbol{U} the matrix whose i th row is $\boldsymbol{u}_{i}^{\top}$. Then, $\mathcal{V}^{\perp}=\mathcal{R}\left(\boldsymbol{U}^{\top}\right)$, and $\mathcal{V}=\left(\mathcal{V}^{\perp}\right)^{\perp}=\mathcal{R}\left(\boldsymbol{U}^{\top}\right)^{\perp}=\mathcal{N}(\boldsymbol{U})$ (by Exercise 3.11 and Theorem 3.4).
3.14
a. Let $\boldsymbol{x} \in \mathcal{V}$. Then, $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{x}+(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x}$. Note that $\boldsymbol{P} \boldsymbol{x} \in \mathcal{V}$, and $(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x} \in \mathcal{V}^{\perp}$. Therefore, $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{x}+(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{x}$ is an orthogonal decomposition of \boldsymbol{x} with respect to \mathcal{V}. However, $\boldsymbol{x}=\boldsymbol{x}+\mathbf{0}$ is also an orthogonal decomposition of \boldsymbol{x} with respect to \mathcal{V}. Since the orthogonal decomposition is unique, we must have $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{x}$.
b. Suppose \boldsymbol{P} is an orthogonal projector onto \mathcal{V}. Clearly, $\mathcal{R}(\boldsymbol{P}) \subset \mathcal{V}$ by definition. However, from part a, $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathcal{V}$, and hence $\mathcal{V} \subset \mathcal{R}(\boldsymbol{P})$. Therefore, $\mathcal{R}(\boldsymbol{P})=\mathcal{V}$.
3.15

To answer the question, we have to represent the quadratic form with a symmetric matrix as

$$
\boldsymbol{x}^{\top}\left(\frac{1}{2}\left[\begin{array}{cc}
1 & -8 \\
1 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-8 & 1
\end{array}\right]\right) \boldsymbol{x}=\boldsymbol{x}^{\top}\left[\begin{array}{cc}
1 & -7 / 2 \\
-7 / 2 & 1
\end{array}\right] \boldsymbol{x}
$$

The leading principal minors are $\Delta_{1}=1$ and $\Delta_{2}=-45 / 4$. Therefore, the quadratic form is indefinite.
3.16

The leading principal minors are $\Delta_{1}=2, \Delta_{2}=0, \Delta_{3}=0$, which are all nonnegative. However, the eigenvalues of \boldsymbol{A} are $0,-1.4641,5.4641$ (for example, use Matlab to quickly check this). This implies that the matrix \boldsymbol{A} is indefinite (by Theorem 3.7). An alternative way to show that \boldsymbol{A} is not positive semidefinite is to find a vector \boldsymbol{x} such that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}<0$. So, let \boldsymbol{x} be an eigenvector of \boldsymbol{A} corresponding to its negative eigenvalue $\lambda=-1.4641$. Then, $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{\top}(\lambda \boldsymbol{x})=\lambda \boldsymbol{x}^{\top} \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}<0$. For this example, we can take $\boldsymbol{x}=[0.3251,0.3251,-0.8881]^{\top}$, for which we can verify that $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=-1.4643$.
3.17
a. The matrix \boldsymbol{Q} is indefinite, since $\Delta_{2}=-1$ and $\Delta_{3}=2$.
b. Let $\boldsymbol{x} \in \mathcal{M}$. Then, $x_{2}+x_{3}=-x_{1}, x_{1}+x_{3}=-x_{2}$, and $x_{1}+x_{2}=-x_{3}$. Therefore,

$$
\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}=x_{1}\left(x_{2}+x_{3}\right)+x_{2}\left(x_{1}+x_{3}\right)+x_{3}\left(x_{1}+x_{2}\right)=-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

This implies that the matrix \boldsymbol{Q} is negative definite on the subspace \mathcal{M}.

3.18

a. We have

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2}=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Then,

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and the eigenvalues of Q are $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=0$. Therefore, the quadratic form is positive semidefinite.
b. We have

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{3}=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 2 & 0 \\
-\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Then,

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 2 & 0 \\
-\frac{1}{2} & 0 & 0
\end{array}\right]
$$

and the eigenvalues of \boldsymbol{Q} are $\lambda_{1}=2, \lambda_{2}=(1-\sqrt{2}) / 2$, and $\lambda_{3}=(1+\sqrt{2}) / 2$. Therefore, the quadratic form is indefinite.
c. We have

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Then,

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

and the eigenvalues of \boldsymbol{Q} are $\lambda_{1}=0, \lambda_{2}=1-\sqrt{3}$, and $\lambda_{3}=1+\sqrt{3}$. Therefore, the quadratic form is indefinite.
3.19

We have

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =4 x_{1}^{2}+x_{2}^{2}+9 x_{3}^{2}-4 x_{1} x_{2}-6 x_{2} x_{3}+12 x_{1} x_{3} \\
& =\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc}
4 & -2 & 6 \\
-2 & 1 & -3 \\
6 & -3 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Let

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
4 & -2 & 6 \\
-2 & 1 & -3 \\
6 & -3 & 9
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}+x_{3} \boldsymbol{e}_{3}
$$

where $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3} form the natural basis for \mathbb{R}^{3}.
Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} be another basis for \mathbb{R}^{3}. Then, the vector \boldsymbol{x} is represented in the new basis as $\tilde{\boldsymbol{x}}$, where $\boldsymbol{x}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right] \tilde{\boldsymbol{x}}=\boldsymbol{V} \tilde{\boldsymbol{x}}$.

Now, $f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}=(\boldsymbol{V} \tilde{\boldsymbol{x}})^{\top} \boldsymbol{Q}(\boldsymbol{V} \tilde{\boldsymbol{x}})=\tilde{\boldsymbol{x}}^{\top}\left(\boldsymbol{V}^{\top} \boldsymbol{Q} \boldsymbol{V}\right) \tilde{\boldsymbol{x}}=\tilde{\boldsymbol{x}}^{\top} \tilde{\boldsymbol{Q}} \tilde{\boldsymbol{x}}$, where

$$
\tilde{\boldsymbol{Q}}=\left[\begin{array}{lll}
\tilde{q}_{11} & \tilde{q}_{12} & \tilde{q}_{13} \\
\tilde{q}_{21} & \tilde{q}_{22} & \tilde{q}_{23} \\
\tilde{q}_{31} & \tilde{q}_{32} & \tilde{q}_{33}
\end{array}\right]
$$

and $\tilde{q}_{i j}=\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{v}_{j}$ for $i, j=1,2,3$.
We will find a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ such that $\tilde{q}_{i j}=0$ for $i \neq j$, and is of the form

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\alpha_{11} \boldsymbol{e}_{1} \\
& \boldsymbol{v}_{2}=\alpha_{21} \boldsymbol{e}_{1}+\alpha_{22} \boldsymbol{e}_{2} \\
& \boldsymbol{v}_{3}=\alpha_{31} \boldsymbol{e}_{1}+\alpha_{32} \boldsymbol{e}_{2}+\alpha_{33} \boldsymbol{e}_{3}
\end{aligned}
$$

Because

$$
\tilde{q}_{i j}=\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{v}_{j}=\boldsymbol{v}_{i} \boldsymbol{Q}\left(\alpha_{j 1} \boldsymbol{e}_{1}+\ldots+\alpha_{j j} \boldsymbol{e}_{j}\right)=\alpha_{j 1}\left(\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{1}\right)+\ldots+\alpha_{j j}\left(\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{j}\right)
$$

we deduce that if $\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{j}=0$ for $j<i$, then $\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{v}_{j}=0$. In this case,

$$
\tilde{q}_{i i}=\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{v}_{i}=\boldsymbol{v}_{i} \boldsymbol{Q}\left(\alpha_{i 1} \boldsymbol{e}_{1}+\ldots+\alpha_{i i} \boldsymbol{e}_{i}\right)=\alpha_{i 1}\left(\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{1}\right)+\ldots+\alpha_{i i}\left(\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{i}\right)=\alpha_{i i}\left(\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{i}\right)
$$

Our task therefore is to find $\boldsymbol{v}_{i}(i=1,2,3)$ such that

$$
\begin{aligned}
\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{j} & =0, \quad j<i \\
\boldsymbol{v}_{i} \boldsymbol{Q} \boldsymbol{e}_{i} & =1
\end{aligned}
$$

and, in this case, we get

$$
\tilde{\boldsymbol{Q}}=\left[\begin{array}{ccc}
\alpha_{11} & 0 & 0 \\
0 & \alpha_{22} & 0 \\
0 & 0 & \alpha_{33}
\end{array}\right]
$$

- Case of $i=1$.

From $\boldsymbol{v}_{1}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}=1$,

$$
\left(\alpha_{11} \boldsymbol{e}_{1}\right)^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}=\alpha_{11}\left(\boldsymbol{e}_{1}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}\right)=\alpha_{11} q_{11}=1
$$

Therefore,

$$
\alpha_{11}=\frac{1}{q_{11}}=\frac{1}{\Delta_{1}}=\frac{1}{4} \quad \Rightarrow \quad \boldsymbol{v}_{1}=\alpha_{11} \boldsymbol{e}_{1}=\left[\begin{array}{c}
\frac{1}{4} \\
0 \\
0 \\
0
\end{array}\right]
$$

- Case of $i=2$.

From $\boldsymbol{v}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}=0$,

$$
\left(\alpha_{21} \boldsymbol{e}_{1}+\alpha_{22} \boldsymbol{e}_{2}\right)^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}=\alpha_{21}\left(\boldsymbol{e}_{1}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}\right)+\alpha_{22}\left(\boldsymbol{e}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}\right)=\alpha_{21} q_{11}+\alpha_{22} q_{21}=0
$$

From $\boldsymbol{v}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}=1$,

$$
\left(\alpha_{21} \boldsymbol{e}_{1}+\alpha_{22} \boldsymbol{e}_{2}\right)^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}=\alpha_{21}\left(\boldsymbol{e}_{1}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}\right)+\alpha_{22}\left(\boldsymbol{e}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}\right)=\alpha_{21} q_{12}+\alpha_{22} q_{22}=1
$$

Therefore,

$$
\left[\begin{array}{ll}
q_{11} & q_{21} \\
q_{12} & q_{22}
\end{array}\right]\left[\begin{array}{l}
\alpha_{21} \\
\alpha_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

But, since $\Delta_{2}=0$, this system of equations is inconsistent. Hence, in this problem $\boldsymbol{v}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}=0$ should be satisfied instead of $\boldsymbol{v}_{2}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}=1$ so that the system can have a solution. In this case, the diagonal matrix becomes

$$
\tilde{\boldsymbol{Q}}=\left[\begin{array}{ccc}
\alpha_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \alpha_{33}
\end{array}\right]
$$

and the system of equations become

$$
\left[\begin{array}{ll}
q_{11} & q_{21} \\
q_{12} & q_{22}
\end{array}\right]\left[\begin{array}{l}
\alpha_{21} \\
\alpha_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\alpha_{21} \\
\alpha_{22}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] \alpha_{22}
$$

where α_{22} is an arbitrary real number. Thus,

$$
\boldsymbol{v}_{2}=\alpha_{21} \boldsymbol{e}_{1}+\alpha_{22} \boldsymbol{e}_{2}=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] a
$$

where a is an arbitrary real number.

- Case of $i=3$.

Since in this case $\Delta_{3}=\operatorname{det}(\boldsymbol{Q})=0$, we will have to apply the same reasoning of the previous case and use the condition $\boldsymbol{v}_{3}^{\top} \boldsymbol{Q} \boldsymbol{e}_{3}=0$ instead of $\boldsymbol{v}_{3}^{\top} \boldsymbol{Q} \boldsymbol{e}_{3}=1$. In this way the diagonal matrix becomes

$$
\tilde{\boldsymbol{Q}}=\left[\begin{array}{ccc}
\alpha_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, from $\boldsymbol{v}_{3}^{\top} \boldsymbol{Q} \boldsymbol{e}_{1}=0, \boldsymbol{v}_{3}^{\top} \boldsymbol{Q} \boldsymbol{e}_{2}=0$ and $\boldsymbol{v}_{3}^{\top} \boldsymbol{Q} \boldsymbol{e}_{3}=0$,

$$
\begin{aligned}
{\left[\begin{array}{lll}
q_{11} & q_{21} & q_{31} \\
q_{12} & q_{22} & q_{32} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{l}
\alpha_{31} \\
\alpha_{32} \\
\alpha_{33}
\end{array}\right] } & =\boldsymbol{Q}^{\top}\left[\begin{array}{l}
\alpha_{31} \\
\alpha_{32} \\
\alpha_{33}
\end{array}\right]=\boldsymbol{Q}\left[\begin{array}{l}
\alpha_{31} \\
\alpha_{32} \\
\alpha_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & -2 & 6 \\
-2 & 1 & -3 \\
6 & -3 & 9
\end{array}\right]\left[\begin{array}{l}
\alpha_{31} \\
\alpha_{32} \\
\alpha_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\left[\begin{array}{l}
\alpha_{31} \\
\alpha_{32} \\
\alpha_{33}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{31} \\
2 \alpha_{31}+3 \alpha_{33} \\
\alpha_{33}
\end{array}\right]
$$

where α_{31} and α_{33} are arbitrary real numbers. Thus,

$$
\boldsymbol{v}_{3}=\alpha_{31} \boldsymbol{e}_{1}+\alpha_{32} \boldsymbol{e}_{2}+\alpha_{33} \boldsymbol{e}_{3}=\left[\begin{array}{c}
b \\
2 b+3 c \\
c
\end{array}\right]
$$

where b and c are arbitrary real numbers.
Finally,

$$
\boldsymbol{V}=\left[x_{1}, x_{2}, x_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{a}{2} & b \\
0 & a & 2 b+3 c \\
0 & 0 & c
\end{array}\right]
$$

where a, b, and c are arbitrary real numbers.

3.20

We represent this quadratic form as $f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}$, where

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
1 & \xi & -1 \\
\xi & 1 & 2 \\
-1 & 2 & 5
\end{array}\right]
$$

The leading principal minors of \boldsymbol{Q} are $\Delta_{1}=1, \Delta_{2}=1-\xi^{2}, \Delta_{3}=-5 \xi^{2}-4 \xi$. For the quadratic form to be positive definite, all the leading principal minors of \boldsymbol{Q} must be positive. This is the case if and only if $\xi \in(-4 / 5,0)$.

3.21

The matrix $\boldsymbol{Q}=\boldsymbol{Q}^{\top}>0$ can be represented as $\boldsymbol{Q}=\boldsymbol{Q}^{1 / 2} \boldsymbol{Q}^{1 / 2}$, where $\boldsymbol{Q}^{1 / 2}=\left(\boldsymbol{Q}^{1 / 2}\right)^{\top}>0$.

1. Now, $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{Q}=\left(\boldsymbol{Q}^{1 / 2} \boldsymbol{x}\right)^{\top}\left(\boldsymbol{Q}^{1 / 2} \boldsymbol{x}\right)=\left\|\boldsymbol{Q}^{1 / 2} \boldsymbol{x}\right\|^{2} \geq 0$, and

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{Q}=0 & \Leftrightarrow\left\|\boldsymbol{Q}^{1 / 2} \boldsymbol{x}\right\|^{2}=0 \\
& \Leftrightarrow \boldsymbol{Q}^{1 / 2} \boldsymbol{x}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

since $\boldsymbol{Q}^{1 / 2}$ is nonsingular.
2. $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{Q}=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{y}=\boldsymbol{y}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{Q} \boldsymbol{x}=\langle\boldsymbol{y}, \boldsymbol{x}\rangle_{Q}$.
3. We have

$$
\begin{aligned}
\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle_{Q} & =(\boldsymbol{x}+\boldsymbol{y})^{\top} \boldsymbol{Q} \boldsymbol{z} \\
& =\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{z}+\boldsymbol{y}^{\top} \boldsymbol{Q} \boldsymbol{z} \\
& =\langle\boldsymbol{x}, \boldsymbol{z}\rangle_{Q}+\langle\boldsymbol{y}, \boldsymbol{z}\rangle_{Q} .
\end{aligned}
$$

4. $\langle r \boldsymbol{x}, \boldsymbol{y}\rangle_{Q}=(r \boldsymbol{x})^{\top} \boldsymbol{Q} \boldsymbol{y}=r \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{y}=r\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{Q}$.

3.22

We have

$$
\|\boldsymbol{A}\|_{\infty}=\max \left\{\|\boldsymbol{A} \boldsymbol{x}\|_{\infty}:\|\boldsymbol{x}\|_{\infty}=1\right\}
$$

We first show that $\|\boldsymbol{A}\|_{\infty} \leq \max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|$. For this, note that for each \boldsymbol{x} such that $\|\boldsymbol{x}\|_{\infty}=1$, we have

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{x}\|_{\infty} & =\max _{i}\left|\sum_{k=1}^{n} a_{i k} x_{k}\right| \\
\leq & \max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|\left|x_{k}\right| \\
\leq & \max _{i} \sum_{k=1}^{n}\left|a_{i k}\right| \\
& 13
\end{aligned}
$$

since $\left|x_{k}\right| \leq \max _{k}\left|x_{k}\right|=\|\boldsymbol{x}\|_{\infty}=1$. Therefore,

$$
\|\boldsymbol{A}\|_{\infty} \leq \max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|
$$

To show that $\|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|$, it remains to find a $\tilde{\boldsymbol{x}} \in \mathbb{R}^{n},\|\tilde{\boldsymbol{x}}\|_{\infty}=1$, such that $\|\boldsymbol{A} \tilde{\boldsymbol{x}}\|_{\infty}=$ $\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|$. So, let j be such that

$$
\sum_{k=1}^{n}\left|a_{j k}\right|=\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|
$$

Define $\tilde{\boldsymbol{x}}$ by

$$
\tilde{x}_{k}= \begin{cases}\left|a_{j k}\right| / a_{j k} & \text { if } a_{j k} \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Clearly $\|\tilde{\boldsymbol{x}}\|_{\infty}=1$. Furthermore, for $i \neq j$,

$$
\left|\sum_{k=1}^{n} a_{i k} \tilde{x}_{k}\right| \leq \sum_{k=1}^{n}\left|a_{i k}\right| \leq \max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|=\sum_{k=1}^{n}\left|a_{j k}\right|
$$

and

$$
\left|\sum_{k=1}^{n} a_{j k} \tilde{x}_{k}\right|=\sum_{k=1}^{n}\left|a_{j k}\right|
$$

Therefore,

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}\|_{\infty}=\max _{i}\left|\sum_{k=1}^{n} a_{i k} \tilde{x}_{k}\right|=\sum_{k=1}^{n}\left|a_{j k}\right|=\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right| .
$$

3.23

We have

$$
\|\boldsymbol{A}\|_{1}=\max \left\{\|\boldsymbol{A} \boldsymbol{x}\|_{1}:\|\boldsymbol{x}\|_{1}=1\right\}
$$

We first show that $\|\boldsymbol{A}\|_{1} \leq \max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$. For this, note that for each \boldsymbol{x} such that $\|\boldsymbol{x}\|_{1}=1$, we have

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{x}\|_{1} & =\sum_{i=1}^{m}\left|\sum_{k=1}^{n} a_{i k} x_{k}\right| \\
& \leq \sum_{i=1}^{m} \sum_{k=1}^{n}\left|a_{i k} \| x_{k}\right| \\
& \leq \sum_{k=1}^{n}\left|x_{k}\right| \sum_{i=1}^{m}\left|a_{i k}\right| \\
& \leq\left(\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|\right) \sum_{k=1}^{n}\left|x_{k}\right| \\
& \leq \max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|
\end{aligned}
$$

since $\sum_{k=1}^{n}\left|x_{k}\right|=\|\boldsymbol{x}\|_{1}=1$. Therefore,

$$
\|\boldsymbol{A}\|_{1} \leq \max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|
$$

To show that $\|\boldsymbol{A}\|_{1}=\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$, it remains to find a $\tilde{\boldsymbol{x}} \in \mathbb{R}^{m},\|\tilde{\boldsymbol{x}}\|_{1}=1$, such that $\|\boldsymbol{A} \tilde{\boldsymbol{x}}\|_{1}=$ $\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$. So, let j be such that

$$
\sum_{i=1}^{m}\left|a_{i j}\right|=\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right| .
$$

Define $\tilde{\boldsymbol{x}}$ by

$$
\tilde{x}_{k}= \begin{cases}1 & \text { if } k=j \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\|\tilde{\boldsymbol{x}}\|_{1}=1$. Furthermore,

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}\|_{1}=\sum_{i=1}^{m}\left|\sum_{k=1}^{n} a_{i k} \tilde{x}_{k}\right|=\sum_{i=1}^{m}\left|a_{i j}\right|=\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right| .
$$

4. Concepts from Geometry

4.1
\Rightarrow : Let $S=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}$ be a linear variety. Let $\boldsymbol{x}, \boldsymbol{y} \in S$ and $\alpha \in \mathbb{R}$. Then,

$$
\boldsymbol{A}(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y})=\alpha \boldsymbol{A} \boldsymbol{x}+(1-\alpha) \boldsymbol{A} \boldsymbol{y}=\alpha \boldsymbol{b}+(1-\alpha) \boldsymbol{b}=\boldsymbol{b}
$$

Therefore, $\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in S$.
\Leftarrow : If S is empty, we are done. So, suppose $\boldsymbol{x}_{0} \in S$. Consider the set $S_{0}=S-\boldsymbol{x}_{0}=\left\{\boldsymbol{x}-\boldsymbol{x}_{0}: \boldsymbol{x} \in S\right\}$. Clearly, for all $\boldsymbol{x}, \boldsymbol{y} \in S_{0}$ and $\alpha \in \mathbb{R}$, we have $\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in S_{0}$. Note that $\mathbf{0} \in S_{0}$. We claim that S_{0} is a subspace. To see this, let $\boldsymbol{x}, \boldsymbol{y} \in S_{0}$, and $\alpha \in \mathbb{R}$. Then, $\alpha \boldsymbol{x}=\alpha \boldsymbol{x}+(1-\alpha) \mathbf{0} \in S_{0}$. Furthermore, $\frac{1}{2} \boldsymbol{x}+\frac{1}{2} \boldsymbol{y} \in S_{0}$, and therefore $\boldsymbol{x}+\boldsymbol{y} \in S_{0}$ by the previous argument. Hence, S_{0} is a subspace. Therefore, by Exercise 3.13, there exists \boldsymbol{A} such that $S_{0}=\mathcal{N}(\boldsymbol{A})=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$. Define $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}_{0}$. Then,

$$
\begin{aligned}
S & =S_{0}+\boldsymbol{x}_{0}=\left\{\boldsymbol{y}+\boldsymbol{x}_{0}: \boldsymbol{y} \in \mathcal{N}(\boldsymbol{A})\right\} \\
& =\left\{\boldsymbol{y}+\boldsymbol{x}_{0}: \boldsymbol{A} \boldsymbol{y}=\mathbf{0}\right\} \\
& =\left\{\boldsymbol{y}+\boldsymbol{x}_{0}: \boldsymbol{A}\left(\boldsymbol{y}+\boldsymbol{x}_{0}\right)=\boldsymbol{b}\right\} \\
& =\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}
\end{aligned}
$$

4.2

Let $\boldsymbol{u}, \boldsymbol{v} \in \Theta=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\| \leq r\right\}$, and $\alpha \in[0,1]$. Suppose $\boldsymbol{z}=\alpha \boldsymbol{u}+(1-\alpha) \boldsymbol{v}$. To show that Θ is convex, we need to show that $\boldsymbol{z} \in \Theta$, i.e., $\|\boldsymbol{z}\| \leq r$. To this end,

$$
\begin{aligned}
\|\boldsymbol{z}\|^{2} & =\left(\alpha \boldsymbol{u}^{\top}+(1-\alpha) \boldsymbol{v}^{\top}\right)(\alpha \boldsymbol{u}+(1-\alpha) \boldsymbol{v}) \\
& =\alpha^{2}\|\boldsymbol{u}\|^{2}+2 \alpha(1-\alpha) \boldsymbol{u}^{\top} \boldsymbol{v}+(1-\alpha)^{2}\|\boldsymbol{v}\|^{2}
\end{aligned}
$$

Since $\boldsymbol{u}, \boldsymbol{v} \in \Theta$, then $\|\boldsymbol{u}\|^{2} \leq r^{2}$ and $\|\boldsymbol{v}\|^{2} \leq r^{2}$. Furthermore, by the Cauchy-Schwarz Inequality, we have $\boldsymbol{u}^{\top} \boldsymbol{v} \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\| \leq r^{2}$. Therefore,

$$
\|\boldsymbol{z}\|^{2} \leq \alpha^{2} r^{2}+2 \alpha(1-\alpha) r^{2}+(1-\alpha)^{2} r^{2}=r^{2}
$$

Hence, $\boldsymbol{z} \in \Theta$, which implies that Θ is a convex set, i.e., the any point on the line segment joining \boldsymbol{u} and \boldsymbol{v} is also in Θ.
4.3

Let $\boldsymbol{u}, \boldsymbol{v} \in \Theta=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A x}=\boldsymbol{b}\right\}$, and $\alpha \in[0,1]$. Suppose $\boldsymbol{z}=\alpha \boldsymbol{u}+(1-\alpha) \boldsymbol{v}$. To show that Θ is convex, we need to show that $\boldsymbol{z} \in \Theta$, i.e., $\boldsymbol{A z}=\boldsymbol{b}$. To this end,

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{z} & =\boldsymbol{A}(\alpha \boldsymbol{u}+(1-\alpha) \boldsymbol{v}) \\
& =\alpha \boldsymbol{A} \boldsymbol{u}+(1-\alpha) \boldsymbol{A} \boldsymbol{v}
\end{aligned}
$$

Since $\boldsymbol{u}, \boldsymbol{v} \in \Theta$, then $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$ and $\boldsymbol{A v}=\boldsymbol{b}$. Therefore,

$$
\boldsymbol{A} \boldsymbol{z}=\alpha \boldsymbol{b}+(1-\alpha) \boldsymbol{b}=\boldsymbol{b}
$$

and hence $\boldsymbol{z} \in \Theta$.
4.4

Let $\boldsymbol{u}, \boldsymbol{v} \in \Theta=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x} \geq \mathbf{0}\right\}$, and $\alpha \in[0,1]$. Suppose $\boldsymbol{z}=\alpha \boldsymbol{u}+(1-\alpha) \boldsymbol{v}$. To show that Θ is convex, we need to show that $\boldsymbol{z} \in \Theta$, i.e., $\boldsymbol{z} \geq \mathbf{0}$. To this end, write $\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]^{\top}, \boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right]^{\top}$, and $\boldsymbol{z}=\left[z_{1}, \ldots, z_{n}\right]^{\top}$. Then, $z_{i}=\alpha x_{i}+(1-\alpha) y_{i}, i=1, \ldots, n$. Since $x_{i}, y_{i} \geq 0$, and $\alpha, 1-\alpha \geq 0$, we have $z_{i} \geq 0$. Therefore, $\boldsymbol{z} \geq \mathbf{0}$, and hence $\boldsymbol{z} \in \Theta$.

5. Elements of Calculus

5.1

Observe that

$$
\left\|\boldsymbol{A}^{k}\right\| \leq\left\|\boldsymbol{A}^{k-1}\right\|\|\boldsymbol{A}\| \leq\left\|\boldsymbol{A}^{k-2}\right\|\|\boldsymbol{A}\|^{2} \leq \cdots \leq\|\boldsymbol{A}\|^{k} .
$$

Therefore, if $\|\boldsymbol{A}\|<1$, then $\lim _{k \rightarrow \infty}\left\|\boldsymbol{A}^{k}\right\|=\boldsymbol{O}$ which implies that $\lim _{k \rightarrow \infty} \boldsymbol{A}^{k}=\boldsymbol{O}$.
5.2

For the case when \boldsymbol{A} has all real eigenvalues, the proof is simple. Let λ be the eigenvalue of \boldsymbol{A} with largest absolute value, and \boldsymbol{x} the corresponding (normalized) eigenvector, i.e., $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ and $\|\boldsymbol{x}\|=1$. Then,

$$
\|\boldsymbol{A}\| \geq\|\boldsymbol{A} \boldsymbol{x}\|=\|\lambda \boldsymbol{x}\|=|\lambda|\|\boldsymbol{x}\|=|\lambda|
$$

which completes the proof for this case.
In general, the eigenvalues of \boldsymbol{A} and the corresponding eigenvectors may be complex. In this case, we proceed as follows (see [41]). Consider the matrix

$$
\boldsymbol{B}=\frac{\boldsymbol{A}}{\|\boldsymbol{A}\|+\varepsilon}
$$

where ε is a positive real number. We have

$$
\|\boldsymbol{B}\|=\frac{\|\boldsymbol{A}\|}{\|\boldsymbol{A}\|+\varepsilon}<1
$$

By Exercise 5.1, $\boldsymbol{B}^{k} \rightarrow \boldsymbol{O}$ as $k \rightarrow \infty$, and thus by Lemma $5.1,\left|\lambda_{i}(\boldsymbol{B})\right|<1, i=1, \ldots, n$. On the other hand, for each $i=1, \ldots, n$,

$$
\lambda_{i}(\boldsymbol{B})=\frac{\lambda_{i}(\boldsymbol{A})}{\|\boldsymbol{A}\|+\varepsilon}
$$

and thus

$$
\left|\lambda_{i}(\boldsymbol{B})\right|=\frac{\left|\lambda_{i}(\boldsymbol{A})\right|}{\|\boldsymbol{A}\|+\varepsilon}<1
$$

which gives

$$
\left|\lambda_{i}(\boldsymbol{A})\right|<\|\boldsymbol{A}\|+\varepsilon
$$

Since the above arguments hold for any $\varepsilon>0$, we have $\left|\lambda_{i}(\boldsymbol{A})\right| \leq\|\boldsymbol{A}\|$.
5.3 \qquad
a. $\nabla f(\boldsymbol{x})=\left(\boldsymbol{a} \boldsymbol{b}^{\top}+\boldsymbol{b} \boldsymbol{a}^{\top}\right) \boldsymbol{x}$.
b. $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{b}^{\top}+\boldsymbol{b} \boldsymbol{a}^{\top}$.
5.4

We have

$$
D f(\boldsymbol{x})=\left[x_{1} / 3, x_{2} / 2\right]
$$

and

$$
\frac{d \boldsymbol{g}}{d t}(t)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

By the chain rule,

$$
\begin{aligned}
\frac{d}{d t} F(t) & =D f(\boldsymbol{g}(t)) \frac{d \boldsymbol{g}}{d t}(t) \\
& =[(3 t+5) / 3,(2 t-6) / 2]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
& =5 t-1
\end{aligned}
$$

5.5

We have

$$
D f(\boldsymbol{x})=\left[x_{2} / 2, x_{1} / 2\right],
$$

and

$$
\frac{\partial \boldsymbol{g}}{\partial s}(s, t)=\left[\begin{array}{l}
4 \\
2
\end{array}\right], \quad \frac{\partial \boldsymbol{g}}{\partial t}(s, t)=\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
$$

By the chain rule,

$$
\begin{aligned}
\frac{\partial}{\partial s} f(\boldsymbol{g}(s, t)) & =D f(\boldsymbol{g}(t)) \frac{\partial \boldsymbol{g}}{\partial s}(s, t) \\
& =\frac{1}{2}[2 s+t, 4 s+3 t]\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
& =8 s+5 t
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t} f(\boldsymbol{g}(s, t)) & =D f(\boldsymbol{g}(t)) \frac{\partial \boldsymbol{g}}{\partial t}(s, t) \\
& =\frac{1}{2}[2 s+t, 4 s+3 t]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =5 s+3 t
\end{aligned}
$$

5.6

We have

$$
D f(\boldsymbol{x})=\left[3 x_{1}^{2} x_{2} x_{3}^{2}+x_{2}, x_{1}^{3} x_{3}^{2}+x_{1}, 2 x_{1}^{3} x_{2} x_{3}+1\right]
$$

and

$$
\frac{d \boldsymbol{x}}{d t}(t)=\left[\begin{array}{c}
e^{t}+3 t^{2} \\
2 t \\
1
\end{array}\right]
$$

