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A JOHN WILEY & SONS, INC., PUBLICATION



1. Methods of Proof and Some Notation

1.1

A B not A not B A⇒B (not B)⇒(not A)

F F T T T T

F T T F T T

T F F T F F

T T F F T T

1.2

A B not A not B A⇒B not (A and (not B))

F F T T T T

F T T F T T

T F F T F F

T T F F T T

1.3

A B not (A and B) not A not B (not A) or (not B))

F F T T T T

F T T T F T

T F T F T T

T T F F F F

1.4

A B A and B A and (not B) (A and B) or (A and (not B))

F F F F F

F T F F F

T F F T T

T T T F T

1.5
The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the
truth or falsity of the rule. The card with S is irrelevant because S is not a vowel. The card with 8 is not
relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on
the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1
We show this by contradiction. Suppose n < m. Then, the number of columns of A is n. Since rank A is
the maximum number of linearly independent columns of A, then rank A cannot be greater than n < m,
which contradicts the assumption that rank A = m.

2.2

⇒: Since there exists a solution, then by Theorem 2.1, rank A = rank[A
...b]. So, it remains to prove that

rank A = n. For this, suppose that rank A < n (note that it is impossible for rankA > n since A has
only n columns). Hence, there exists y ∈ Rn, y 6= 0, such that Ay = 0 (this is because the columns of
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A are linearly dependent, and Ay is a linear combination of the columns of A). Let x be a solution to
Ax = b. Then clearly x + y 6= x is also a solution. This contradicts the uniqueness of the solution. Hence,
rank A = n.
⇐: By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let x and y be

solutions, i.e., Ax = b and Ay = b. Subtracting, we get A(x − y) = 0. Since rank A = n and A has n
columns, then x− y = 0 and hence x = y, which shows that the solution is unique.

2.3
Consider the vectors āi = [1,a>i ]> ∈ Rn+1, i = 1, . . . , k. Since k ≥ n + 2, then the vectors ā1, . . . , āk must
be linearly independent in Rn+1. Hence, there exist α1, . . . αk, not all zero, such that

k∑
i=1

αiai = 0.

The first component of the above vector equation is
∑k

i=1 αi = 0, while the last n components have the form∑k
i=1 αiai = 0, completing the proof.

2.4
a. We first postmultiply M by the matrix [

Ik O

−Mm−k,k Im−k

]
to obtain [

Mm−k,k Im−k

Mk,k O

][
Ik O

−Mm−k,k Im−k

]
=

[
O Im−k

Mk,k O

]
.

Note that the determinant of the postmultiplying matrix is 1. Next we postmultiply the resulting product
by [

O Ik

Im−k O

]
to obtain [

O Im−k

Mk,k O

][
O Ik

Im−k O

]
=

[
Ik O

O Mk,k

]
.

Notice that

det M = det

([
Ik O

O Mk,k

])
det

([
O Ik

Im−k O

])
,

where

det

([
O Ik

Im−k O

])
= ±1.

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as
discussed in Section 2.2. Moreover,

det

([
Ik O

O Mk,k

])
= det(Ik) det(Mk,k) = det(Mk,k).

Hence,
det M = ±det Mk,k.

b. We can see this on the following examples. We assume, without loss of generality that Mm−k,k = O and
let Mk,k = 2. Thus k = 1. First consider the case when m = 2. Then we have

M =

[
O Im−k

Mk,k O

]
=

[
0 1
2 0

]
.
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Thus,
det M = −2 = det (−Mk,k) .

Next consider the case when m = 3. Then

det

[
O Im−k

Mk,k O

]
= det


0

... 1 0

0
... 0 1

· · · · · · · · · · · ·

2
... 0 0

 = 2 6= det (−Mk,k) .

Therefore, in general,
det M 6= det (−Mk,k)

However, when k = m/2, that is, when all sub-matrices are square and of the same dimension, then it is
true that

det M = det (−Mk,k) .

See [121].

2.5
Let

M =

[
A B

C D

]
and suppose that each block is k × k. John R. Silvester [121] showed that if at least one of the blocks is
equal to O (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the
determinant is equal to zero as follows from the determinant’s properties discussed Section 2.2. That is, if
A = B = O, or A = C = O, and so on, then obviously det M = 0. This includes the case when any three
or all four block matrices are zero matrices.

If B = O or C = O then

det M = det

[
A B

C D

]
= det (AD) .

The only case left to analyze is when A = O or D = O. We will show that in either case,

det M = det (−BC) .

Without loss of generality suppose that D = O. Following arguments of John R. Silvester [121], we premul-
tiply M by the product of three matrices whose determinants are unity:[

Ik −Ik

O Ik

][
Ik O

Ik Ik

][
Ik −Ik

O Ik

][
A B

C O

]
=

[
−C O

A B

]
.

Hence,

det

[
A B

C O

]
=

[
−C O

A B

]
= det (−C) detB

= det (−Ik) detC det B.

Thus we have

det

[
A B

C O

]
= det (−BC) = det (−CB) .
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2.6
We represent the given system of equations in the form Ax = b, where

A =

[
1 1 2 1
1 −2 0 −1

]
, x =


x1

x2

x3

x4

 , and b =

[
1
−2

]
.

Using elementary row operations yields

A =

[
1 1 2 1
1 −2 0 −1

]
→

[
1 1 2 1
0 −3 −2 −2

]
, and

[A, b] =

[
1 1 2 1 1
1 −2 0 −1 −2

]
→

[
1 1 2 1 1
0 −3 −2 −2 −3

]
,

from which rank A = 2 and rank[A, b] = 2. Therefore, by Theorem 2.1, the system has a solution.
We next represent the system of equations as[

1 1
1 −2

][
x1

x2

]
=

[
1− 2x3 − x4

−2 + x4

]
Assigning arbitrary values to x3 and x4 (x3 = d3, x4 = d4), we get[

x1

x2

]
=

[
1 1
1 −2

]−1 [
1− 2x3 − x4

−2 + x4

]

= −1
3

[
−2 −1
−1 1

][
1− 2x3 − x4

−2 + x4

]

=

[
− 4

3d3 − 1
3d4

1− 2
3d3 − 2

3d4

]
.

Therefore, a general solution is
x1

x2

x3

x4

 =


− 4

3d3 − 1
3d4

1− 2
3d3 − 2

3d4

d3

d4

 =


− 4

3

− 2
3

1
0

 d3 +


− 1

3

− 2
3

0
1

 d4 +


0
1
0
0

 ,

where d3 and d4 are arbitrary values.

2.7
1. Apply the definition of | − a|:

| − a| =


−a if −a > 0
0 if −a = 0
−(−a) if −a < 0

=


−a if a < 0
0 if a = 0
a if a > 0

= |a|.

2. If a ≥ 0, then |a| = a. If a < 0, then |a| = −a > 0 > a. Hence |a| ≥ a. On the other hand, | − a| ≥ −a
(by the above). Hence, a ≥ −| − a| = −|a| (by property 1).
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3. We have four cases to consider. First, if a, b ≥ 0, then a + b ≥ 0. Hence, |a + b| = a + b = |a|+ |b|.
Second, if a, b ≥ 0, then a + b ≤ 0. Hence |a + b| = −(a + b) = −a− b = |a|+ |b|.
Third, if a ≥ 0 and b ≤ 0, then we have two further subcases:

1. If a + b ≥ 0, then |a + b| = a + b ≤ |a|+ |b|.

2. If a + b ≤ 0, then |a + b| = −a− b ≤ |a|+ |b|.

The fourth case, a ≤ 0 and b ≥ 0, is identical to the third case, with a and b interchanged.
4. We first show |a− b| ≤ |a|+ |b|. We have

|a− b| = |a + (−b)|
≤ |a|+ | − b| by property 3
= |a|+ |b| by property 1.

To show ||a|−|b|| ≤ |a−b|, we note that |a| = |a−b+b| ≤ |a−b|+ |b|, which implies |a|−|b| ≤ |a−b|. On the
other hand, from the above we have |b| − |a| ≤ |b− a| = |a− b| by property 1. Therefore, ||a| − |b|| ≤ |a− b|.

5. We have four cases. First, if a, b ≥ 0, we have ab ≥ 0 and hence |ab| = ab = |a||b|. Second, if a, b ≤ 0,
we have ab ≥ 0 and hence |ab| = ab = (−a)(−b) = |a||b|. Third, if a ≤ 0, b ≤ 0, we have ab ≤ 0 and hence
|ab| = −ab = a(−b) = |a||b|. The fourth case, a ≤ 0 and b ≥ 0, is identical to the third case, with a and b
interchanged.

6. We have

|a + b| ≤ |a|+ |b| by property 3
≤ c + d.

7. ⇒: By property 2, −a ≤ |a| and a ≤ |a. Therefore, |a| < b implies −a ≤ |a| < b and a ≤ |a| < b.
⇐: If a ≥ 0, then |a| = a < b. If a < 0, then |a| = −a < b.
For the case when “<” is replaced by “≤”, we simply repeat the above proof with “<” replaced by “≤”.
8. This is simply the negation of property 7 (apply DeMorgan’s Law).

2.8
Observe that we can represent 〈x,y〉2 as

〈x,y〉2 = x>

[
2 3
3 5

]
y = (Qx)>(Qy) = x>Q2y,

where

Q =

[
1 1
1 2

]
.

Note that the matrix Q = Q> is nonsingular.
1. Now, 〈x,x〉2 = (Qx)>(Qx) = ‖Qx‖2 ≥ 0, and

〈x,x〉2 = 0 ⇔ ‖Qx‖2 = 0
⇔ Qx = 0

⇔ x = 0

since Q is nonsingular.
2. 〈x,y〉2 = (Qx)>(Qy) = (Qy)>(Qx) = 〈y,x〉2.
3. We have

〈x + y,z〉2 = (x + y)>Q2z

= x>Q2z + y>Q2z

= 〈x,z〉2 + 〈y,z〉2.
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4. 〈rx,y〉2 = (rx)>Q2y = rx>Q2y = r〈x,y〉2.
2.9
We have ‖x‖ = ‖(x−y)+y‖ ≤ ‖x−y‖+ ‖y‖ by the Triangle Inequality. Hence, ‖x‖−‖y‖ ≤ ‖x−y‖. On
the other hand, from the above we have ‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖. Combining the two inequalities,
we obtain |‖x‖ − ‖y‖| ≤ ‖x− y‖.
2.10
Let ε > 0 be given. Set δ = ε. Hence, if ‖x− y‖ < δ, then by Exercise 2.9, |‖x‖ − ‖y‖| ≤ ‖x− y‖ < δ = ε.

3. Transformations

3.1
Let v be the vector such that x are the coordinates of v with respect to {e1, e2, . . . , en}, and x′ are the
coordinates of v with respect to {e′1, e′2, . . . , e′n}. Then,

v = x1e1 + · · ·+ xnen = [e1, . . . , en]x,

and
v = x′1e

′
1 + · · ·+ x′ne′n = [e′1, . . . , e

′
n]x′.

Hence,
[e1, . . . , en]x = [e′1, . . . , e

′
n]x′

which implies
x′ = [e′1, . . . , e

′
n]−1[e1, . . . , en]x = Tx.

3.2
a. We have

[e′1, e
′
2, e

′
3] = [e1, e2, e3]

 1 2 4
3 −1 5
−4 5 3

 .

Therefore,

T = [e′1, e
′
2, e

′
3]
−1[e1, e2, e3] =

 1 2 4
3 −1 5
−4 5 3


−1

=
1
42

 28 −14 −14
29 −19 −7
−11 13 7

 .

b. We have

[e1, e2, e3] = [e′1, e
′
2, e

′
3]

1 2 3
1 −1 0
3 4 5

 .

Therefore,

T =

1 2 3
1 −1 0
3 4 5

 .

3.3
We have

[e1, e2, e3] = [e′1, e
′
2, e

′
3]

 2 2 3
1 −1 0
−1 2 1

 .
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Therefore, the transformation matrix from {e′1, e′2, e′3} to {e1, e2, e3} is

T =

 2 2 3
1 −1 0
−1 2 1

 ,

Now, consider a linear transformation L : R3 → R3, and let A be its representation with respect to
{e1, e2, e3}, and B its representation with respect to {e′1, e′2, e′3}. Let y = Ax and y′ = Bx′. Then,

y′ = Ty = T (Ax) = TA(T−1x′) = (TAT−1)x′.

Hence, the representation of the linear transformation with respect to {e′1, e′2, e′3} is

B = TAT−1 =

 3 −10 −8
−1 8 4
2 −13 −7

 .

3.4
We have

[e′1, e
′
2, e

′
3, e

′
4] = [e1, e2, e3, e4]


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

Therefore, the transformation matrix from {e1, e2, e3, e4} to {e′1, e′2, e′3, e′4} is

T =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


−1

=


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

 .

Now, consider a linear transformation L : R4 → R4, and let A be its representation with respect to
{e1, e2, e3, e4}, and B its representation with respect to {e′1, e′2, e′3, e′4}. Let y = Ax and y′ = Bx′.
Then,

y′ = Ty = T (Ax) = TA(T−1x′) = (TAT−1)x′.

Therefore,

B = TAT−1 =


5 3 4 3
−3 −2 −1 −2
−1 0 −1 −2
1 1 1 4

 .

3.5
Let {v1,v2,v3,v4} be a set of linearly independent eigenvectors of A corresponding to the eigenvalues λ1,
λ2, λ3, and λ4. Let T = [v1,v2,v3,v4]. Then,

AT = A[v1,v2,v3,v4] = [Av1,Av2,Av3,Av4]

= [λ1v1, λ2v2, λ3v3, λ4v4] = [v1,v2,v3,v4]


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 .

Hence,

AT = T

λ1 0 0
0 λ2 0
0 0 λ3

 ,
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or

T−1AT =

λ1 0 0
0 λ2 0
0 0 λ3

 .

Therefore, the linear transformation has a diagonal matrix form with respect to the basis formed by a linearly
independent set of eigenvectors.

Because
det(A) = (λ− 2)(λ− 3)(λ− 1)(λ + 1),

the eigenvalues are λ1 = 2, λ2 = 3, λ3 = 1, and λ4 = −1.
From Avi = λivi, where vi 6= 0 (i = 1, 2, 3), the corresponding eigenvectors are

v1 =


0
0
1
0

 , v2 =


0
0
1
1

 , v3 =


0
2
−9
1

 , and v4 =


24
−12
1
9

 .

Therefore, the basis we are interested in is

{v1,v2,v3} =




0
0
1
1

 ,


0
0
1
1

 ,


0
2
−9
1

 ,


24
−12
1
9


 .

3.6
Suppose v1, . . . ,vn are eigenvectors of A corresponding to λ1, . . . , λn, respectively. Then, for each i =
1, . . . , n, we have

(In −A)vi = vi −Avi = vi − λivi = (1− λi)vi

which shows that 1− λ1, . . . , 1− λn are the eigenvalues of In −A.
Alternatively, we may write the characteristic polynomial of In −A as

πIn−A(1− λ) = det((1− λ)In − (In −A)) = det(−[λIn −A]) = (−1)nπA(λ),

which shows the desired result.

3.7
Let x,y ∈ V⊥, and α, β ∈ R. To show that V⊥ is a subspace, we need to show that αx+βy ∈ V⊥. For this,
let v be any vector in V. Then,

v>(αx + βy) = αv>x + βv>y = 0,

since v>x = v>y = 0 by definition.

3.8
The null space of A is N (A) =

{
x ∈ R3 : Ax = 0

}
. Using elementary row operations and back-substitution,

we can solve the system of equations:4 −2 0
2 1 −1
2 −3 1

→
4 −2 0

0 2 −1
0 −2 1

→
4 −2 0

0 2 −1
0 0 0

 ⇒ 4x1 − 2x2 = 0
2x2 − x3 = 0

⇒ x2 =
1
2
x3, x1 =

1
2
x2 =

1
4
x3 ⇒ x =

x1

x2

x3

 =

 1
4
1
2

1

x3.
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Therefore,

N (A) =


1

2
4

 c : c ∈ R

 .

3.9
Let x,y ∈ R(A), and α, β ∈ R. Then, there exists v,u such that x = Av and y = Au. Thus,

αx + βy = αAv + βAu = A(αv + βu).

Hence, αx + βy ∈ R(A), which shows that R(A) is a subspace.
Let x,y ∈ N (A), and α, β ∈ R. Then, Ax = 0 and Ay = 0. Thus,

A(αx + βy) = αAx + βAy = 0.

Hence, αx + βy ∈ N (A), which shows that N (A) is a subspace.

3.10
Let v ∈ R(B), i.e., v = Bx for some x. Consider the matrix [A v]. Then, N (A>) = N ([A v]>), since if
u ∈ N (A>), then u ∈ N (B>) by assumption, and hence u>v = u>Bx = x>B>u = 0. Now,

dimR(A) + dimN (A>) = m

and
dimR([A v]) + dimN ([A v]>) = m.

Since dimN (A>) = dimN ([A v]>), then we have dimR(A) = dimR([A v]). Hence, v is a linear combi-
nation of the columns of A, i.e., v ∈ R(A), which completes the proof.

3.11
We first show V ⊂ (V ⊥)⊥. Let v ∈ V , and u any element of V ⊥. Then u>v = v>u = 0. Therefore,
v ∈ (V ⊥)⊥.

We now show (V ⊥)⊥ ⊂ V . Let {a1, . . . ,ak} be a basis for V , and {b1, . . . , bl} a basis for (V ⊥)⊥. Define
A = [a1 · · ·ak] and B = [b1 · · · bl], so that V = R(A) and (V ⊥)⊥ = R(B). Hence, it remains to show
that R(B) ⊂ R(A). Using the result of Exercise 3.10, it suffices to show that N (A>) ⊂ N (B>). So let
x ∈ N (A>), which implies that x ∈ R(A)⊥ = V ⊥, since R(A)⊥ = N (A>). Hence, for all y, we have
(By)>x = 0 = y>B>x, which implies that B>x = 0. Therefore, x ∈ N (B>), which completes the proof.

3.12
Let w ∈ W⊥, and y be any element of V. Since V ⊂ W, then y ∈ W. Therefore, by definition of w, we have
w>y = 0. Therefore, w ∈ V⊥.

3.13
Let r = dimV. Let v1, . . . ,vr be a basis for V, and V the matrix whose ith column is vi. Then, clearly
V = R(V ).

Let u1, . . . ,un−r be a basis for V⊥, and U the matrix whose ith row is u>i . Then, V⊥ = R(U>), and
V = (V⊥)⊥ = R(U>)⊥ = N (U) (by Exercise 3.11 and Theorem 3.4).

3.14
a. Let x ∈ V. Then, x = Px + (I − P )x. Note that Px ∈ V, and (I − P )x ∈ V⊥. Therefore,
x = Px + (I − P )x is an orthogonal decomposition of x with respect to V. However, x = x + 0 is also an
orthogonal decomposition of x with respect to V. Since the orthogonal decomposition is unique, we must
have x = Px.

b. Suppose P is an orthogonal projector onto V. Clearly, R(P ) ⊂ V by definition. However, from part a,
x = Px for all x ∈ V, and hence V ⊂ R(P ). Therefore, R(P ) = V.

3.15
To answer the question, we have to represent the quadratic form with a symmetric matrix as

x>

(
1
2

[
1 −8
1 1

]
+

1
2

[
1 1
−8 1

])
x = x>

[
1 −7/2

−7/2 1

]
x.
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The leading principal minors are ∆1 = 1 and ∆2 = −45/4. Therefore, the quadratic form is indefinite.

3.16
The leading principal minors are ∆1 = 2, ∆2 = 0, ∆3 = 0, which are all nonnegative. However, the
eigenvalues of A are 0,−1.4641, 5.4641 (for example, use Matlab to quickly check this). This implies that
the matrix A is indefinite (by Theorem 3.7). An alternative way to show that A is not positive semidefinite
is to find a vector x such that x>Ax < 0. So, let x be an eigenvector of A corresponding to its negative
eigenvalue λ = −1.4641. Then, x>Ax = x>(λx) = λx>x = λ‖x‖2 < 0. For this example, we can take
x = [0.3251, 0.3251,−0.8881]>, for which we can verify that x>Ax = −1.4643.

3.17
a. The matrix Q is indefinite, since ∆2 = −1 and ∆3 = 2.

b. Let x ∈M. Then, x2 + x3 = −x1, x1 + x3 = −x2, and x1 + x2 = −x3. Therefore,

x>Qx = x1(x2 + x3) + x2(x1 + x3) + x3(x1 + x2) = −(x2
1 + x2

2 + x2
3).

This implies that the matrix Q is negative definite on the subspace M.

3.18
a. We have

f(x1, x2, x3) = x2
2 = [x1, x2, x3]

0 0 0
0 1 0
0 0 0


x1

x2

x3

 .

Then,

Q =

0 0 0
0 1 0
0 0 0


and the eigenvalues of Q are λ1 = 0, λ2 = 1, and λ3 = 0. Therefore, the quadratic form is positive
semidefinite.

b. We have

f(x1, x2, x3) = x2
1 + 2x2

2 − x1x3 = [x1, x2, x3]

 1 0 − 1
2

0 2 0
− 1

2 0 0


x1

x2

x3

 .

Then,

Q =

 1 0 − 1
2

0 2 0
− 1

2 0 0


and the eigenvalues of Q are λ1 = 2, λ2 = (1−

√
2)/2, and λ3 = (1 +

√
2)/2. Therefore, the quadratic form

is indefinite.

c. We have

f(x1, x2, x3) = x2
1 + x2

3 + 2x1x2 + 2x1x3 + 2x2x3 = [x1, x2, x3]

1 1 1
1 0 1
1 1 1


x1

x2

x3

 .

Then,

Q =

1 1 1
1 0 1
1 1 1


and the eigenvalues of Q are λ1 = 0, λ2 = 1 −

√
3, and λ3 = 1 +

√
3. Therefore, the quadratic form is

indefinite.
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3.19
We have

f(x1, x2, x3) = 4x2
1 + x2

2 + 9x2
3 − 4x1x2 − 6x2x3 + 12x1x3

= [x1, x2, x3]

 4 −2 6
−2 1 −3
6 −3 9


x1

x2

x3

 .

Let

Q =

 4 −2 6
−2 1 −3
6 −3 9

 , x =

x1

x2

x3

 = x1e1 + x2e2 + x3e3,

where e1, e2, and e3 form the natural basis for R3.
Let v1, v2, and v3 be another basis for R3. Then, the vector x is represented in the new basis as x̃, where

x = [v1,v2,v3]x̃ = V x̃.
Now, f(x) = x>Qx = (V x̃)>Q(V x̃) = x̃>(V >QV )x̃ = x̃>Q̃x̃, where

Q̃ =

 q̃11 q̃12 q̃13

q̃21 q̃22 q̃23

q̃31 q̃32 q̃33


and q̃ij = viQvj for i, j = 1, 2, 3.

We will find a basis {v1,v2,v3} such that q̃ij = 0 for i 6= j, and is of the form

v1 = α11e1

v2 = α21e1 + α22e2

v3 = α31e1 + α32e2 + α33e3

Because
q̃ij = viQvj = viQ(αj1e1 + . . . + αjjej) = αj1(viQe1) + . . . + αjj(viQej),

we deduce that if viQej = 0 for j < i, then viQvj = 0. In this case,

q̃ii = viQvi = viQ(αi1e1 + . . . + αiiei) = αi1(viQe1) + . . . + αii(viQei) = αii(viQei).

Our task therefore is to find vi (i = 1, 2, 3) such that

viQej = 0, j < i

viQei = 1,

and, in this case, we get

Q̃ =

α11 0 0
0 α22 0
0 0 α33

 .

Case of i = 1.

From v>1 Qe1 = 1,
(α11e1)>Qe1 = α11(e>1 Qe1) = α11q11 = 1.

Therefore,

α11 =
1

q11
=

1
∆1

=
1
4

⇒ v1 = α11e1 =


1
4

0
0
0

 .
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Case of i = 2.

From v>2 Qe1 = 0,

(α21e1 + α22e2)>Qe1 = α21(e>1 Qe1) + α22(e>2 Qe1) = α21q11 + α22q21 = 0.

From v>2 Qe2 = 1,

(α21e1 + α22e2)>Qe2 = α21(e>1 Qe2) + α22(e>2 Qe2) = α21q12 + α22q22 = 1.

Therefore, [
q11 q21

q12 q22

][
α21

α22

]
=

[
0
1

]
.

But, since ∆2 = 0, this system of equations is inconsistent. Hence, in this problem v>2 Qe2 = 0 should
be satisfied instead of v>2 Qe2 = 1 so that the system can have a solution. In this case, the diagonal
matrix becomes

Q̃ =

α11 0 0
0 0 0
0 0 α33

 ,

and the system of equations become[
q11 q21

q12 q22

][
α21

α22

]
=

[
0
0

]
⇒

[
α21

α22

]
=

[
1
2

1

]
α22,

where α22 is an arbitrary real number. Thus,

v2 = α21e1 + α22e2 =

 1
2

1
0

 a,

where a is an arbitrary real number.

Case of i = 3.

Since in this case ∆3 = det(Q) = 0, we will have to apply the same reasoning of the previous case and
use the condition v>3 Qe3 = 0 instead of v>3 Qe3 = 1. In this way the diagonal matrix becomes

Q̃ =

α11 0 0
0 0 0
0 0 0

 .

Thus, from v>3 Qe1 = 0, v>3 Qe2 = 0 and v>3 Qe3 = 0,q11 q21 q31

q12 q22 q32

q13 q23 q33


α31

α32

α33

 = Q>

α31

α32

α33

 = Q

α31

α32

α33


=

 4 −2 6
−2 1 −3
6 −3 9


α31

α32

α33

 =

0
0
0

 .

Therefore, α31

α32

α33

 =

 α31

2α31 + 3α33

α33

 ,
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where α31 and α33 are arbitrary real numbers. Thus,

v3 = α31e1 + α32e2 + α33e3 =

 b

2b + 3c

c

 ,

where b and c are arbitrary real numbers.

Finally,

V = [x1, x2, x3] =

 1
4

a
2 b

0 a 2b + 3c

0 0 c

 ,

where a, b, and c are arbitrary real numbers.

3.20
We represent this quadratic form as f(x) = x>Qx, where

Q =

 1 ξ −1
ξ 1 2
−1 2 5

 .

The leading principal minors of Q are ∆1 = 1, ∆2 = 1 − ξ2, ∆3 = −5ξ2 − 4ξ. For the quadratic form to
be positive definite, all the leading principal minors of Q must be positive. This is the case if and only if
ξ ∈ (−4/5, 0).

3.21
The matrix Q = Q> > 0 can be represented as Q = Q1/2Q1/2, where Q1/2 = (Q1/2)> > 0.

1. Now, 〈x,x〉Q = (Q1/2x)>(Q1/2x) = ‖Q1/2x‖2 ≥ 0, and

〈x,x〉Q = 0 ⇔ ‖Q1/2x‖2 = 0

⇔ Q1/2x = 0

⇔ x = 0

since Q1/2 is nonsingular.
2. 〈x,y〉Q = x>Qy = y>Q>x = y>Qx = 〈y,x〉Q.
3. We have

〈x + y,z〉Q = (x + y)>Qz

= x>Qz + y>Qz

= 〈x,z〉Q + 〈y,z〉Q.

4. 〈rx,y〉Q = (rx)>Qy = rx>Qy = r〈x,y〉Q.

3.22
We have

‖A‖∞ = max{‖Ax‖∞ : ‖x‖∞ = 1}.
We first show that ‖A‖∞ ≤ maxi

∑n
k=1 |aik|. For this, note that for each x such that ‖x‖∞ = 1, we have

‖Ax‖∞ = max
i

∣∣∣∣∣
n∑

k=1

aikxk

∣∣∣∣∣
≤ max

i

n∑
k=1

|aik||xk|

≤ max
i

n∑
k=1

|aik|,
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since |xk| ≤ maxk |xk| = ‖x‖∞ = 1. Therefore,

‖A‖∞ ≤ max
i

n∑
k=1

|aik|.

To show that ‖A‖∞ = maxi

∑n
k=1 |aik|, it remains to find a x̃ ∈ Rn, ‖x̃‖∞ = 1, such that ‖Ax̃‖∞ =

maxi

∑n
k=1 |aik|. So, let j be such that

n∑
k=1

|ajk| = max
i

n∑
k=1

|aik|.

Define x̃ by

x̃k =

{
|ajk|/ajk if ajk 6= 0
1 otherwise

.

Clearly ‖x̃‖∞ = 1. Furthermore, for i 6= j,∣∣∣∣∣
n∑

k=1

aikx̃k

∣∣∣∣∣ ≤
n∑

k=1

|aik| ≤ max
i

n∑
k=1

|aik| =
n∑

k=1

|ajk|

and ∣∣∣∣∣
n∑

k=1

ajkx̃k

∣∣∣∣∣ =
n∑

k=1

|ajk|.

Therefore,

‖Ax̃‖∞ = max
i

∣∣∣∣∣
n∑

k=1

aikx̃k

∣∣∣∣∣ =
n∑

k=1

|ajk| = max
i

n∑
k=1

|aik|.

3.23
We have

‖A‖1 = max{‖Ax‖1 : ‖x‖1 = 1}.

We first show that ‖A‖1 ≤ maxk

∑m
i=1 |aik|. For this, note that for each x such that ‖x‖1 = 1, we have

‖Ax‖1 =
m∑

i=1

∣∣∣∣∣
n∑

k=1

aikxk

∣∣∣∣∣
≤

m∑
i=1

n∑
k=1

|aik||xk|

≤
n∑

k=1

|xk|
m∑

i=1

|aik|

≤

(
max

k

m∑
i=1

|aik|

)
n∑

k=1

|xk|

≤ max
k

m∑
i=1

|aik|,

since
∑n

k=1 |xk| = ‖x‖1 = 1. Therefore,

‖A‖1 ≤ max
k

m∑
i=1

|aik|.
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To show that ‖A‖1 = maxk

∑m
i=1 |aik|, it remains to find a x̃ ∈ Rm, ‖x̃‖1 = 1, such that ‖Ax̃‖1 =

maxk

∑m
i=1 |aik|. So, let j be such that

m∑
i=1

|aij | = max
k

m∑
i=1

|aik|.

Define x̃ by

x̃k =

{
1 if k = j

0 otherwise
.

Clearly ‖x̃‖1 = 1. Furthermore,

‖Ax̃‖1 =
m∑

i=1

∣∣∣∣∣
n∑

k=1

aikx̃k

∣∣∣∣∣ =
m∑

i=1

|aij | = max
k

m∑
i=1

|aik|.

4. Concepts from Geometry

4.1
⇒: Let S = {x : Ax = b} be a linear variety. Let x,y ∈ S and α ∈ R. Then,

A(αx + (1− α)y) = αAx + (1− α)Ay = αb + (1− α)b = b.

Therefore, αx + (1− α)y ∈ S.
⇐: If S is empty, we are done. So, suppose x0 ∈ S. Consider the set S0 = S − x0 = {x − x0 : x ∈ S}.

Clearly, for all x,y ∈ S0 and α ∈ R, we have αx + (1 − α)y ∈ S0. Note that 0 ∈ S0. We claim that S0

is a subspace. To see this, let x,y ∈ S0, and α ∈ R. Then, αx = αx + (1 − α)0 ∈ S0. Furthermore,
1
2x + 1

2y ∈ S0, and therefore x + y ∈ S0 by the previous argument. Hence, S0 is a subspace. Therefore, by
Exercise 3.13, there exists A such that S0 = N (A) = {x : Ax = 0}. Define b = Ax0. Then,

S = S0 + x0 = {y + x0 : y ∈ N (A)}
= {y + x0 : Ay = 0}
= {y + x0 : A(y + x0) = b}
= {x : Ax = b}.

4.2
Let u,v ∈ Θ = {x ∈ Rn : ‖x‖ ≤ r}, and α ∈ [0, 1]. Suppose z = αu + (1− α)v. To show that Θ is convex,
we need to show that z ∈ Θ, i.e., ‖z‖ ≤ r. To this end,

‖z‖2 = (αu> + (1− α)v>)(αu + (1− α)v)
= α2‖u‖2 + 2α(1− α)u>v + (1− α)2‖v‖2.

Since u,v ∈ Θ, then ‖u‖2 ≤ r2 and ‖v‖2 ≤ r2. Furthermore, by the Cauchy-Schwarz Inequality, we have
u>v ≤ ‖u‖‖v‖ ≤ r2. Therefore,

‖z‖2 ≤ α2r2 + 2α(1− α)r2 + (1− α)2r2 = r2.

Hence, z ∈ Θ, which implies that Θ is a convex set, i.e., the any point on the line segment joining u and v
is also in Θ.

4.3
Let u,v ∈ Θ = {x ∈ Rn : Ax = b}, and α ∈ [0, 1]. Suppose z = αu + (1− α)v. To show that Θ is convex,
we need to show that z ∈ Θ, i.e., Az = b. To this end,

Az = A(αu + (1− α)v)
= αAu + (1− α)Av.
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Since u,v ∈ Θ, then Au = b and Av = b. Therefore,

Az = αb + (1− α)b = b,

and hence z ∈ Θ.

4.4
Let u,v ∈ Θ = {x ∈ Rn : x ≥ 0}, and α ∈ [0, 1]. Suppose z = αu + (1 − α)v. To show that Θ is convex,
we need to show that z ∈ Θ, i.e., z ≥ 0. To this end, write x = [x1, . . . , xn]>, y = [y1, . . . , yn]>, and
z = [z1, . . . , zn]>. Then, zi = αxi +(1−α)yi, i = 1, . . . , n. Since xi, yi ≥ 0, and α, 1−α ≥ 0, we have zi ≥ 0.
Therefore, z ≥ 0, and hence z ∈ Θ.

5. Elements of Calculus

5.1
Observe that

‖Ak‖ ≤ ‖Ak−1‖‖A‖ ≤ ‖Ak−2‖‖A‖2 ≤ · · · ≤ ‖A‖k.

Therefore, if ‖A‖ < 1, then limk→∞ ‖Ak‖ = O which implies that limk→∞Ak = O.

5.2
For the case when A has all real eigenvalues, the proof is simple. Let λ be the eigenvalue of A with largest
absolute value, and x the corresponding (normalized) eigenvector, i.e., Ax = λx and ‖x‖ = 1. Then,

‖A‖ ≥ ‖Ax‖ = ‖λx‖ = |λ|‖x‖ = |λ|,

which completes the proof for this case.
In general, the eigenvalues of A and the corresponding eigenvectors may be complex. In this case, we

proceed as follows (see [41]). Consider the matrix

B =
A

‖A‖+ ε
,

where ε is a positive real number. We have

‖B‖ =
‖A‖

‖A‖+ ε
< 1.

By Exercise 5.1, Bk → O as k →∞, and thus by Lemma 5.1, |λi(B)| < 1, i = 1, . . . , n. On the other hand,
for each i = 1, . . . , n,

λi(B) =
λi(A)
‖A‖+ ε

,

and thus

|λi(B)| = |λi(A)|
‖A‖+ ε

< 1.

which gives
|λi(A)| < ‖A‖+ ε.

Since the above arguments hold for any ε > 0, we have |λi(A)| ≤ ‖A‖.
5.3

a. ∇f(x) = (ab> + ba>)x.

b. F (x) = ab> + ba>.

16



5.4
We have

Df(x) = [x1/3, x2/2],

and
dg

dt
(t) =

[
3
2

]
.

By the chain rule,

d

dt
F (t) = Df(g(t))

dg

dt
(t)

= [(3t + 5)/3, (2t− 6)/2]

[
3
2

]
= 5t− 1.

5.5
We have

Df(x) = [x2/2, x1/2],

and
∂g

∂s
(s, t) =

[
4
2

]
,

∂g

∂t
(s, t) =

[
3
1

]
.

By the chain rule,

∂

∂s
f(g(s, t)) = Df(g(t))

∂g

∂s
(s, t)

=
1
2
[2s + t, 4s + 3t]

[
4
2

]
= 8s + 5t,

and

∂

∂t
f(g(s, t)) = Df(g(t))

∂g

∂t
(s, t)

=
1
2
[2s + t, 4s + 3t]

[
3
1

]
= 5s + 3t.

5.6
We have

Df(x) = [3x2
1x2x

2
3 + x2, x3

1x
2
3 + x1, 2x3

1x2x3 + 1]

and

dx

dt
(t) =

et + 3t2

2t

1

 .
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