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1. Methods of Proof and Some Notation

1.1
A B |notA notB | A=B (not B)=(not A)
F F T T T T
F T T F T T
T F F T F F
T T F F T T
1.2
A B |notA notB | A=B not (A and (not B))
F F T T T T
F T T F T T
T F F T F F
T T F F T T
1.3
A B | not (Aand B) | not A not B | (not A) or (not B))
F F T T T T
F T T T F T
T F T F T T
T T F F F F
1.4
A B | AandB A and (not B) | (A and B) or (A and (not B))
F F F F F
F T F F F
T F F T T
T T T F T
1.5

The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the
truth or falsity of the rule. The card with .S is irrelevant because S is not a vowel. The card with 8 is not
relevant because the rule does not say that if a card has an even number on one side, then it has a vowel on
the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1
We show this by contradiction. Suppose n < m. Then, the number of columns of A is n. Since rank A is
the maximum number of linearly independent columns of A, then rank A cannot be greater than n < m,
which contradicts the assumption that rank A = m.

2.2

=: Since there exists a solution, then by Theorem 2.1, rank A = rank[Afb]. So, it remains to prove that
rank A = n. For this, suppose that rank A < n (note that it is impossible for rank A > n since A has
only n columns). Hence, there exists y € R", y # 0, such that Ay = 0 (this is because the columns of
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A are linearly dependent, and Ay is a linear combination of the columns of A). Let @ be a solution to
Az = b. Then clearly = + y # x is also a solution. This contradicts the uniqueness of the solution. Hence,
rank A = n.

<: By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let  and y be
solutions, i.e., Ax = b and Ay = b. Subtracting, we get A(x —y) = 0. Since rank A = n and A has n
columns, then & — y = 0 and hence = y, which shows that the solution is unique.

2.3
Consider the vectors @; = [1,a;]" € R"1 i =1,... k. Since k > n + 2, then the vectors @, ..., a; must
be linearly independent in R™"*'. Hence, there exist o, ...y, not all zero, such that

k
E o;a; = 0.
i=1

The first component of the above vector equation is Zle a; = 0, while the last n components have the form

Zle a;a; = 0, completing the proof.

2.4
a. We first postmultiply M by the matrix

I, (0]
Mg Ik

Mok Ik I O | | O I,
My, i O M Ik My, O |’

Note that the determinant of the postmultiplying matrix is 1. Next we postmultiply the resulting product
by
0] Iy
I, O
O Im,k o Ik _ Ik o
My, O L. O] |O M|
Ik o 0 Ik:
det M = det det
o I,
det = +1.

The above easily follows from the fact that the determinant changes its sign if we interchange columns, as
discussed in Section 2.2. Moreover,

to obtain

to obtain
Notice that

where

det Qﬁ M(Z,kD — det(Iy) det (M) = det(Myp).

Hence,
det M = +det Mk,k~

b. We can see this on the following examples. We assume, without loss of generality that M,,_j , = O and
let My, = 2. Thus k = 1. First consider the case when m = 2. Then we have

v—| @ Imx|_ |0 1}
My, O 2 0
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Thus,
det M = —2 = det (_Mk,k) .

Next consider the case when m = 3. Then

0 1 0
O  In-y 0 0 1
det = det — 2 # det (—M.).
.2, ] e
2 0 0

Therefore, in general,
det M 7é det (_Mk,k)

However, when k = m/2, that is, when all sub-matrices are square and of the same dimension, then it is
true that
det M = det (_Mk,k’) .

See [121].
2.5
Let
A B
M =

and suppose that each block is k x k. John R. Silvester [121] showed that if at least one of the blocks is
equal to O (zero matrix), then the desired formula holds. Indeed, if a row or column block is zero, then the
determinant is equal to zero as follows from the determinant’s properties discussed Section 2.2. That is, if
A=B=0,0r A=C = 0, and so on, then obviously det M = 0. This includes the case when any three
or all four block matrices are zero matrices.

If B=0O or C = O then

A B
det M = det [C D]—det(AD).

The only case left to analyze is when A = O or D = O. We will show that in either case,
det M = det (—BC).

Without loss of generality suppose that D = O. Following arguments of John R. Silvester [121], we premul-
tiply M by the product of three matrices whose determinants are unity:

I, -I;||I, O||I, -I)|A B| |-C O
o I, ||I. I,||lOo I,||Cc Oo| | A B|
Hence,
dot A Bl |-C O
c o| A B
det (—C) det B
= det (—1Ij)det Cdet B.

Thus we have

A B
det [C 0] =det (—BC) = det (-CB).



2.6

We represent the given system of equations in the form Ax = b, where
Z1
11 2 1 1
A= , = "%, and b= .
1 -2 0 -1 T3 —2

Tyq

Using elementary row operations yields

A:1121—>1121,and
1 -2 0 -1 0 -3 -2 -2

1 1 2 1 1
[A’b] = —
1 -2 0 -1 -2

1 1 2 1 1
0 -3 -2 -2 -3’

from which rank A = 2 and rank[A, b] = 2. Therefore, by Theorem 2.1, the system has a solution.
We next represent the system of equations as

1 1 x| | 1—2x3 — 14
1 —2| (x| | -2+
Assigning arbitrary values to x3 and x4 (x5 = ds3, 4 = dy), we get
-1
X1 . 1 1 1— 2583 — Tq
za| |1 =2 —2 414
- 1]-2 -1 1-—- 23?3 — X4
T 30-1 1 —2 414

[t
—2d3 — 2d4

Therefore, a general solution is

T —3d3 — 3d4 -3 -3 0
2 2 2 2
v2| _ (l=gds—gda) -5 |75 g |
T3 d3 1 3 + 0 4+ 0 )
Ty dy 0 1 0
where d3 and d4 are arbitrary values.
2.7
1. Apply the definition of | — al:
—a if —a>0
|—al = <0 if —a=0
—(—a) if-a<0
—a ifa<0
= 0 ifa=0
a ifa>0
= lal.
2. If a > 0, then |a| = a. If a < 0, then |a|] = —a > 0 > a. Hence |a| > a. On the other hand, | —a| > —a
(by the above). Hence, a > —| — a| = —|a| (by property 1).
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3. We have four cases to consider. First, if a,b > 0, then a + b > 0. Hence, |a + b| = a + b = |a| + |b].
Second, if a,b > 0, then a + b < 0. Hence |a +b| = —(a +b) = —a — b= |a| + |b].
Third, if a > 0 and b < 0, then we have two further subcases:

1. If a+b >0, then |a + b] = a+ b < |a| + |b].
2. Ifa+b<0, then |a+ b = —a —b < |a] + |b].

The fourth case, a < 0 and b > 0, is identical to the third case, with a and b interchanged.
4. We first show |a — b| < |a| + |b|. We have

la—bl = la+(-b)|
la| 4+ | — b] by property 3

IN

la| + |b] by property 1.

To show [|a| —[b]| < |a—b]|, we note that |a| = |a —b+b| < |a—b|+b|, which implies |a| — |b| < |a—b|. On the
other hand, from the above we have |b| — |a| < |b — a| = |a — b| by property 1. Therefore, ||a| — [b|| < |a — b

5. We have four cases. First, if a,b > 0, we have ab > 0 and hence |ab| = ab = |al[b|. Second, if a,b < 0,
we have ab > 0 and hence |ab| = ab = (—a)(=b) = |a||b|. Third, if a <0, b < 0, we have ab < 0 and hence

|ab] = —ab = a(—b) = |a||b|. The fourth case, a < 0 and b > 0, is identical to the third case, with a and b
interchanged.
6. We have
la+b < J|a|+ b by property 3
< c+d.

7. =: By property 2, —a < |a| and a < |a. Therefore, |a| < b implies —a < |a| < b and a < |a| < b.
<: If a >0, then |a] =a < b. If a <0, then |a| = —a < b.
For the case when “<” is replaced by “<”, we simply repeat the above proof with “<” replaced by “<”.
8. This is simply the negation of property 7 (apply DeMorgan’s Law).
2.8
Observe that we can represent (x,y)s as

2 3
(@, y)s =’ [3 5] y=(Qz) (Qy) ==z'Q,
where
1 1
Note that the matrix Q = Tis nonsingular.

1. Now, (z,z)s = (Qz) T (Qz) = ||Q=||*> > 0, and

(@2)=0 & [Qz|>=0
& Qr=0
& =0
since @ is nonsingular.
2. (z,y)2 = (Qx) " (Qy) = (Qy) " (Qx) = (y,x)2.
3. We have
({@+y,z)p = (2+y) Q%

— $7Q2z+yTQ2z
= <.’E,Z>2 + <y,Z>2.
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4. (rz,y)o = (rz) Q°y =z’ Q’y = r(z,y)>.

2.9

We have ||z|| = |[(x —y) + y|| < || —y]|| + ||y|| by the Triangle Inequality. Hence, ||| — ||y| < ||z —y]||. On
the other hand, from the above we have [ly|| — [|z|| < ||y — z|| = ||z — y[|. Combining the two inequalities,
we obtain |[|z|| — [[y[[| < ||z — y||.

2.10

Let € > 0 be given. Set § = €. Hence, if || — y|| < d, then by Exercise 2.9, |||z] — |y||| < ||z —y|| < d =e.

3. Transformations

3.1
Let v be the vector such that x are the coordinates of v with respect to {ej,es,...,e,}, and @’ are the
coordinates of v with respect to {e], €5, ..., el }. Then,
v=x1€1+ -+ Tpe, = [e1,...,e]T,
and
v=2zle| +---+ale =le,... el
Hence,
[61, ceey en}m = [ella SR e{n]m/
which implies
' =e),....e | el,...,e )z =Tx.
3.2
a. We have
1 2 4
[6/1561276213] = [61762763] 3 -1 5
-4 5 3
Therefore,
-1
1 2 4 1 28 —14 -—14
T =le},ehef] e en el = | 3 —1 5| =129 -19 -7
-4 5 3 —11 13 7
b. We have
2 3
[61762783] = [8/173/2782’)] 1 -1 0
4 5
Therefore,
1 2 3
T=1]1 -1 0
3 4 5
3.3
We have
2 2 3
[e1,es,e3] = [e],eh,es] | 1T —1 0
-1 2 1



Therefore, the transformation matrix from {ef, e, e5} to {e1,eq, e3} is

2 2 3
T=|1 -1 of,
-1 2 1

Now, consider a linear transformation L : R® — R3, and let A be its representation with respect to
{e1,eq,e3}, and B its representation with respect to {e}, e}, es}. Let y = Az and y' = Bx’. Then,

y =Ty =T(Az) =TA(T 'z') = (TAT ")z’

Hence, the representation of the linear transformation with respect to {e], e}, e} is

3 —-10 -8

B=TAT '=|-1 8 4

2 =13 -7

3.4
We have i
1 1 1 1
01 1 1
/A AV E

[61?62763764] - [61762763764] 00 1 1
0 0 0 1

Therefore, the transformation matrix from {e, es, e3,es} to {€], e}, es, e} is

1 -

1 1 11 1 -1 0 0
T_ 01 1 1 _ 0 1 -1 0

00 11 0 O 1 -1

0 0 01 0 O 0 1]

Now, consider a linear transformation L : R* — R% and let A be its representation with respect to
{e1,e2,€e3,e4}, and B its representation with respect to {e}, e}, es, e}}. Let y = Az and y' = Bax'.
Then,

y =Ty =T(Az) =TA(T 'z') = (TAT ")z’

Therefore,
) 3 4 3
BerAT ‘= |3 2 71 72
-1 0 -1 =2
1 1 1 4
3.5

Let {v1,v2,v3,v4} be a set of linearly independent eigenvectors of A corresponding to the eigenvalues Ap,
A2, Az, and Ay. Let T = [vq,vq,v3,v4]. Then,

AT = Afvy,vs,vs3,v4] = [Avy, Avg, Avs, Avy]
A0 0 O
0 X 0 O
= [A A A A =
[A1v1, Aav2, A3vs, Mva] = [v1, V2, U3, V4] 0 0 X O
0 0 0 M\
Hence,

A0 0

AT =T |0 X 0],

0 0 A3



or

M 00
T'AT =10 X 0
0 0 X3

Therefore, the linear transformation has a diagonal matrix form with respect to the basis formed by a linearly
independent set of eigenvectors.
Because
det(A)=A=2)(A=3)(A—=1)(A+ 1),

the eigenvalues are \y =2, Ay =3, A3 =1, and \y = —1.
From Awv; = \v;, where v; # 0 (i = 1,2, 3), the corresponding eigenvectors are

0 0 0 24
0 0 2 d -12
U1 = ) Vg = ) v3 = , an (O
T T R ) ! 1
0 1 1 9
Therefore, the basis we are interested in is
0 0 0 24
0 0 2 —12
{01502703} - 1 ) 1 ) —9 ’ 1
1 1 1 9
3.6
Suppose vq,...,v, are eigenvectors of A corresponding to Ai,...,A,, respectively. Then, for each i =
1,...,n, we have

(In — A)’UZ =vV; — A’Ui =v; — )\{Ui = (]. — /\Z)Uz
which shows that 1 — A1,...,1 — A, are the eigenvalues of I,, — A.
Alternatively, we may write the characteristic polynomial of I,, — A as

w1, —a(l—A) = det((1 — VI, — (I, — A)) = det(—[M,, — A]) = (—=1)"7a(N),

which shows the desired result.

3.7
Let ¢,y € V*, and a, § € R. To show that V' is a subspace, we need to show that ax + Sy € V*. For this,
let v be any vector in V. Then,

vi(ax+py)=av' x+ v y=0,

Tz = vy =0 by definition.

since v
3.8
The null space of A is N (A) = {w ER?: Az = 0}. Using elementary row operations and back-substitution,

we can solve the system of equations:

4 =2 0 4 =2 0 4 -2 0
4dr1 —2x9 = 0
2 1 —-1{—=1|0 2 -—-1{—1]10 2 -1 9 I
2 -3 1 0 -2 1 0 0 0 2o =
1
1 11 o 1
= LL‘2:§CE3, $1:§1’2:Z$3 = = T2 = | 5| T3
X3 1



Therefore,

3.9
Let ¢,y € R(A), and o, 8 € R. Then, there exists v, u such that * = Av and y = Au. Thus,

ax + fy = aAv + fAu = A(av + fu).

Hence, ax + fy € R(A), which shows that R(A) is a subspace.
Let ¢,y € N(A), and a, 3 € R. Then, Az =0 and Ay = 0. Thus,

A(ax + fy) = aAx + Ay = 0.

Hence, ax + By € N(A), which shows that N'(A) is a subspace.

3.10
Let v € R(B), i.e., v = Bz for some . Consider the matrix [A v]. Then, N(A") = N([A v]T), since if
u e N(AT), then u € N(B") by assumption, and hence w'v = u' Bz = ' B'u = 0. Now,

dimR(A) + dimN(AT) =m

and
dimR([A v]) + dim N ([A v]T) =m.

Since dimAN (A ") = dim N ([A v]T), then we have dimR(A) = dim R([A v]). Hence, v is a linear combi-
nation of the columns of A, i.e., v € R(A), which completes the proof.

3.11
We first show V' C (VJ‘)J‘. Let v € V, and w any element of V. Then u'v = v'u = 0. Therefore,
ve (VHE

We now show (V*)+ c V. Let {a1,...,ax} be a basis for V', and {by,...,b;} a basis for (V*)L. Define
A =[a;---a;] and B = [b; --- by, so that V = R(A) and (V)+ = R(B). Hence, it remains to show
that R(B) C R(A). Using the result of Exercise 3.10, it suffices to show that N(A") ¢ N(B"). So let
x € N(A"), which implies that € R(A)* = V*, since R(A)L = N(AT). Hence, for all y, we have
(By)"Tx=0= y " Bz, which implies that B« = 0. Therefore, x € N(BT), which completes the proof.
3.12
Let w € W, and y be any element of V. Since V C W, then y € W. Therefore, by definition of w, we have
w 'y = 0. Therefore, w € V*.

3.13
Let r = dimV. Let vy,...,v, be a basis for V, and V' the matrix whose i¢th column is v;. Then, clearly
V=R(V).

Let wg, ..., Uy, be a basis for V1, and U the matrix whose ith row is uZT Then, V*+ = R(UT)7 and
V=WhHt=RU")L =N(U) (by Exercise 3.11 and Theorem 3.4).
3.14

a. Let £ € V. Then, £ = Px + (I — P)xz. Note that Px € V, and (I — P)x € V‘. Therefore,
x = Px + (I — P)x is an orthogonal decomposition of & with respect to V. However, x = 4 0 is also an
orthogonal decomposition of & with respect to V. Since the orthogonal decomposition is unique, we must
have x = Pz.

b. Suppose P is an orthogonal projector onto V. Clearly, R(P) C V by definition. However, from part a,
x = Px for all x € V, and hence V C R(P). Therefore, R(P) = V.

3.15
To answer the question, we have to represent the quadratic form with a symmetric matrix as

N Y I O I T ] A N S R J7
Aol T2l 1))t e 1 |T

9




The leading principal minors are A; = 1 and Ay = —45/4. Therefore, the quadratic form is indefinite.

3.16

The leading principal minors are A1 = 2, Ay = 0, As = 0, which are all nonnegative.

However, the

eigenvalues of A are 0,—1.4641,5.4641 (for example, use Matlab to quickly check this). This implies that
the matrix A is indefinite (by Theorem 3.7). An alternative way to show that A is not positive semidefinite
is to find a vector @ such that " Az < 0. So, let = be an eigenvector of A corresponding to its negative
eigenvalue A = —1.4641. Then, " Az = =" (A\x) = Az = \|z|?> < 0. For this example, we can take
x = [0.3251,0.3251, —0.8881] ", for which we can verify that " Az = —1.4643.

3.17
a. The matrix @ is indefinite, since Ay = —1 and Az = 2.
b. Let ® € M. Then, x5 + x3 = —x1, 1 + 3 = —x2, and x1 + 92 = —x3. Therefore,
' Qx = x1(x0 + 23) + w221 + 23) + 23(21 + 22) = — (2 + 23 + 23).

This implies that the matrix @ is negative definite on the subspace M.

3.18
a. We have -
0 0 0| (=1
fx1,20,73) = 23 = [x1,22,23] [0 1 0O |2
_O 0 0 I3
Then,
0 0]
Q=101 0
0 0 0]
and the eigenvalues of @Q are \y = 0, A = 1, and A3 = 0. Therefore, the quadratic form is positive
semidefinite.
b. We have
1 0 —% T
fxy, w0, 3) = 22 + 203 — 2125 = [21,20,23) | O 2 0 T
-2 0 0] |z
Then,
1 0 -1
Q=0 2 0
-2 0 0

and the eigenvalues of Q are \; = 2, Ay = (1 — /2)/2, and \3 =

is indefinite.

c. We have

f(z1,20,23) = x% + x?)) 4+ 22129 + 22123 + 2T003 =

Then,

11 1
Q=11 0 1
11 1

(1++/2)/2. Therefore, the quadratic form

T
T2

[ R
—_ = =

1
(21,22, 23] |1
1 I3

and the eigenvalues of Q are A\; = 0, Ay = 1 — /3, and A3 = 1 + /3. Therefore, the quadratic form is

indefinite.
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3.19

We have
flry,20,23) = 423 + 22+ 93:% —4x129 — 6203 + 122123
4 -2 6 T1
= [.’Ehl'z,il}g] —2 1 —3 X2
6 -3 9 T3
Let
4 -2 6 T
Q = [-2 1 -3 5 T = |x9| =T1€1 + T2€2 + X3€3,
6 -3 9 T3

where e, e, and e3 form the natural basis for R3.

Let v1, v, and v3 be another basis for R, Then, the vector x is represented in the new basis as &, where
x = [v1,v9,v3]Z = V&.

Now, f(z) =2 ' Qx = (V&) Q(Va)=z' (V' QV)z = &' Q, where

du Gz ¢i3
Q= |G Go2 Go3
431 (32 g33

and ¢;; = v;Qu; fori,j =1,2,3.
We will find a basis {v1, v2,v3} such that ¢;; = 0 for ¢ # j, and is of the form

v = aji1€;
V2 = 1e] + qxees
v3 = «31€1 + a32e2 + (33€3

Because
dij = ’UiQ’Uj = ’UiQ(Otj1€1 + ...+ ajjej) = Oéj1(’UiQ€1) + ...+ O(jj(’Uier),
we deduce that if v;Qe; = 0 for j < 7, then v;Qv; = 0. In this case,
Gii = viQu; = v;Q(a1e1 + ...+ aye;) = i (v Qer) + ...+ i (Vi Qe;) = i (v Qe;).

Our task therefore is to find v; (i = 1,2, 3) such that

’UiQEj = 0, 7 <
viQei = ]-7
and, in this case, we get
11 0 0
Q=|0 axn 0
0 0 Q33

* Case of 1 = 1.
From v{ Qe; = 1,
(ar1e1) " Qer = ar1(ef Qer) = ariqir = 1.

Therefore,

Q] = — = — = — = V1 = ane; =
a1 Ar 4

—_
—
—_

O O O kI
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* Case of 1 = 2.

From v, Qe; =0,

(a21€1 + azzez)TQq = 0421(€IQ61) + azz(engl) = an1q11 + a22q21 = 0.

T _
From v, Qes =1,

(2161 + 052262)TQ62 = 0421(€1TQ62) + 0422(6;(262) = a1q12 + Q22qo2 = 1.

di1 Q21| | Q21 _
q12 422 Q22

But, since A, = 0, this system of equations is inconsistent. Hence, in this problem v] Qe; = 0 should
be satisfied instead of v4 Qes = 1 so that the system can have a solution. In this case, the diagonal
matrix becomes

Therefore,
0
1

11 0 0
Q=0 0 0|,
0 0 Q33

and the system of equations become

Qi1 Gar| Q21| _ 0 o | Q2| % a2,
Q12 Q22| | Q22 0 Q92 1

where asgs is an arbitrary real number. Thus,

Vo = (21€1 + (ipoeo =

S =N
8

where a is an arbitrary real number.
» Case of ¢ = 3.

Since in this case Az = det(Q) = 0, we will have to apply the same reasoning of the previous case and
use the condition ’U;Q(Eg, = 0 instead of v;Qeg = 1. In this way the diagonal matrix becomes

11 0 0
Q=0 00
0 0 0

Thus, from v3 Qe; = 0, v Qes = 0 and v Qes = 0,

g1 421 431 Q31 Q31 (o%:5]
qi12 422 432 Q32 = QT azx| =Q |as
q13 423 433 Q33 Q33 Q33
4 -2 6 Qa3 0
= -2 1 -3 Q32| = 0
6 -3 9 Qas3 0
Therefore,
a3 a3
aza | = | 2a31 + 3ags |,
Q33 Q33
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where ag; and asgz are arbitrary real numbers. Thus,

b
v3 = az1e; + azges +azzez = | 2b+ 3¢,
c
where b and c¢ are arbitrary real numbers.
Finally,
1
i 2 0
V =[z1,29,23) = |0 a 20+ 3c|,
0 0 c

where a, b, and ¢ are arbitrary real numbers.

3.20
We represent this quadratic form as f(z) = T Qx, where

1 ¢ -1
Q=1¢ 1 2
-1 2 5

The leading principal minors of Q are A; =1, Ay = 1 — €2, Ay = —5£2 — 4¢. For the quadratic form to

be positive definite, all the leading principal minors of @ must be positive. This is the case if and only if

&€ (—4/5,0).

3.21

The matrix Q@ = Q" > 0 can be represented as Q = Q/2Q'/?, where Q'/? = (Ql/z)—r > 0.
1. Now, (z,z)o = (Q"*2)T(Q"*x) = |Q"/*x|*> > 0, and

(@, 2)q=0 < [Qz|*=0
= QY%*z=0
& =0
since Ql/ 2is nonsingular.
2. (z,y)o=2"Qy=y'Q x=y'Qz = (y,z)o.
3. We have
(@+y2z)o = (@+y) Q=
2 Qz+y' Q=
(w’ Z>Q + <y7 Z>Q'

4. (re,y)g = (re) Qy=rx'Qy = r{x,Y)q.
3.22
We have

[Aloo = max{[|Az||ec : [[@[lcc =1}
We first show that || Alloc < max; > ,_, |aix|. For this, note that for each @ such that ||z|~ = 1, we have

n
Z Ak Tk
k=1
n
max Y _ |ai||zx]
! k=1

n
maXZ laix],
-
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since |zx| < maxy |xgx| = ||#]l = 1. Therefore,

n
1Al < max > Jaul.
! k=1

To show that ||Aljcc = max; Y ,_, |al|, it remains to find a & € R", ||Z|« = 1, such that |AZ|. =
max; y,_, |aik|. So, let j be such that

n n
> lajel = max y " Jal.
k=1 Yok=1
Define & by

1 otherwise -

- {|ajk/aj;€ if ajp, #0
T =
Clearly ||&||cc = 1. Furthermore, for i # j,

n
E ik Tk
k=1

n n

n
<> ai| < mgxz laie] =) lajil

k=1 k=1 k=1
and
n n
> ajede| =) lajel-
k=1 k=1
Therefore,
n n n
|AZ]| oo = max | > ainds| = Y |aj] = max Y |al.
! k=1 k=1 ! k=1
3.23
We have

[Ally = max{||Az]|y : [lz[l, = 1}.

We first show that || A||; < maxy Y ;- |a;|. For this, note that for each & such that ||z|; = 1, we have

m n
sl = 3|

=1 |k=1
m n
< DDl ol
i=1 k=1
n m
< D el Y laad
k=1 i=1
m n
< mkaxz aik|> ||
i=1 k=1
<

m
mkaxz laix],
i=1

since Y p_; |zk| = ||&|1 = 1. Therefore,

m
Al < max > Jais

i=1
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To show that ||A|; = maxy > ., |ai|, it remains to find a & € R™, ||Z||; = 1, such that [[AZ|; =
maxy Y .o, |aix|. So, let j be such that

m m
Z la;;| = mgxz |aik|.
i=1

=1

Define & by

- 1 ifk=y
Ty = .
i 0 otherwise
Clearly ||Z||; = 1. Furthermore,

m

A =

i=1

n
E ik Ty

k=1

m m
= Z la;j| = m]?xz |aik]-
i=1 i=1

4. Concepts from Geometry

4.1
=: Let S = {x : Ax = b} be a linear variety. Let &,y € S and « € R. Then,

Alax+ (1 —a)y) =aAz+ (1 — o)Ay =ab+ (1 —a)b=0b.

Therefore, ax + (1 —a)y € S.

«<: If S is empty, we are done. So, suppose g € S. Consider the set So =S —xg = {x —xo : € S}.
Clearly, for all ,y € Sy and a € R, we have ax + (1 — @)y € Sy. Note that 0 € Sy. We claim that Sy
is a subspace. To see this, let ,y € Sy, and @ € R. Then, ax = axz + (1 — a)0 € Sy. Furthermore,
%:1; + %y € Sy, and therefore x + y € Sy by the previous argument. Hence, Sy is a subspace. Therefore, by
Exercise 3.13, there exists A such that So = N(A) = {x : Az = 0}. Define b = Axy. Then,

S = So+a:0:{y+a:0:y€/\/(A)}
= {y+zo: Ay =0}
= {y+xo: Ay +x) = b}
= {x:Az=>b}.

4.2
Let u,v € © = {x € R" : ||| < r}, and « € [0,1]. Suppose z = au + (1 — a)v. To show that O is convex,
we need to show that z € ©, i.e., ||z| < r. To this end,

Iz = (0w + (1 - a)oT)(au+ (1-a))
o|u + 2a(1 — a)uTv + (1 - a)? o]

Since u,v € O, then |lu||?> < r? and |Jv||? < r2. Furthermore, by the Cauchy-Schwarz Inequality, we have
u'v < |Jul||lv| < r?. Therefore,

||ZH2 <a’r?+ 2a(1 — 04)7"2 + (1 - a)2r2 — 2
Hence, z € ©, which implies that © is a convex set, i.e., the any point on the line segment joining w and v

is also in ©.

4.3
Let u,v € © = {& € R": Ax = b}, and « € [0, 1]. Suppose z = au + (1 — a)v. To show that © is convex,
we need to show that z € O, i.e., Az = b. To this end,

Az = A(cu+ (1-a)v)
= aAu+ (1 - a)Av.
15



Since u,v € ©, then Au = b and Av = b. Therefore,
Az =ab+ (1 —a)b=0b,

and hence z € ©.

4.4

Let u,v € © = {x € R" : & > 0}, and « € [0,1]. Suppose z = au + (1 — a)v. To show that © is convex,
we need to show that z € ©, i.e., z > 0. To this end, write * = [1,...,2,]", ¥ = [y1,...,yn]', and
z=1[21,...,2n] . Then, z; = ax; + (1 —a)y;, i =1,...,n. Since z;,; > 0, and o, 1 —a > 0, we have z; > 0.

Therefore, z > 0, and hence z € O.

5. Elements of Calculus

5.1
Observe that

|A*| < AR Al < [AR2Al? < - < (Al
Therefore, if ||A|| < 1, then limj_. ||A*|| = O which implies that limj_.., A* = O.

5.2
For the case when A has all real eigenvalues, the proof is simple. Let A be the eigenvalue of A with largest
absolute value, and @ the corresponding (normalized) eigenvector, i.e., Az = Ax and ||| = 1. Then,

Al = Az = [Az] = [Alll=] = [A],

which completes the proof for this case.
In general, the eigenvalues of A and the corresponding eigenvectors may be complex. In this case, we
proceed as follows (see [41]). Consider the matrix

A
B=
Al +¢

where ¢ is a positive real number. We have

1Al

1Bl = 77— —= <1
Al +e

By Exercise 5.1, B¥ — O as k — oo, and thus by Lemma 5.1, |\;(B)| < 1, i =1,...,n. On the other hand,
foreachi=1,...,n,

Xi(A)
A(B) = 282
B) = T4+ =
and thus (A
N(B)| = 20

which gives
Ai(A)] < [|All +e.

Since the above arguments hold for any € > 0, we have |\;(A)] < || A]|.
5.3

a. Vf(z)=(ab' +ba")z.
b. F(z)=ab' +ba’.

16



5.4

We have
Df(m) = [1’1/3,582/2],

dg 3
E(t) = lzl :

and

By the chain rule,

9rw) = Drtag) 2

= [(3t+5)/3,(2t —6)/2] m

= 5t—1
5.5
We have
Df(x) = [x2/2,21/2],
and
9 _ |4 9 _ |3
%( 7t)[2]7 m(vt)[ll
By the chain rule,
0 0
5:/(a(s) = Df(g(t) 5 (.1

1
= 5[25—1—15,45—!—315}

|

= &8s+ 5t,
and
0 dg
— t = D t))=(s,1
2 g(s1) = D)2 (s)
1
= 5[25+t,4s + 3t] ﬂ
= bs+ 3t
5.6
We have
Df(x) = [323wox3 + xa, 323 + 21, 203w013 + 1]
and
t t2
LT
dt "’ )
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