Chapter 2 End of Chapter Problem Solutions

2.1

Assume Ideal Gas Behavior
$\frac{d P}{d y}=-\rho g=-\frac{P g}{R T}$
For $\mathrm{T}=\mathrm{a}+\mathrm{by}$
$\Rightarrow \mathrm{T}=530-24 \mathrm{y} / \mathrm{n}$
$\frac{d P}{P}=-\frac{g}{R}-\frac{d y}{530-24\left(\frac{\mathrm{~V}}{\mathrm{n}}\right)}$
$\int_{\mathrm{P}_{\mathrm{o}}}^{\mathrm{P}} \frac{\mathrm{dP}}{\mathrm{P}}=\frac{\mathrm{gh}}{24 \mathrm{R}} \int_{0}^{1} \frac{-24 \mathrm{~d}\left(\frac{\mathrm{y}}{\mathrm{n}}\right)}{530-24\left(\frac{\mathrm{~V}}{\mathrm{n}}\right)}$
$\ln \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{o}}}=\frac{\mathrm{gh}}{24 \mathrm{R}} \ln \frac{506}{530}$
With $\mathrm{P}=10.6$ PSIA, $\mathrm{P}_{\mathrm{o}}=30.1$ in Hg
$h=9192 \mathrm{ft}$.
2.2

(a) $\sum \mathrm{F}=0$ on tank
$\mathrm{P} \frac{\pi \mathrm{d}^{2}}{4}-\mathrm{P}_{\mathrm{atm}} \frac{\pi \mathrm{d}^{2}}{4}-250=0$
At $\mathrm{H}_{2} 0$ Level in Tank: $\mathrm{P}=\mathrm{P}_{\mathrm{atm}}+\rho_{\mathrm{w}} \mathrm{g}(\mathrm{h}-\mathrm{y})$
From (1) \& (2): $\mathrm{h}-\mathrm{y}=1.275 \mathrm{ft}$.
For Isothermal Compression of Air
$\mathrm{P}_{\mathrm{atm}} \mathrm{V}_{\text {tank }}=\mathrm{P}\left(\mathrm{V}_{\text {air }}\right)$
$P=\frac{3}{3-y} P_{a t m}$
Combing (1) \& (4): $\mathrm{y}=0.12 \mathrm{ft}$. and $\mathrm{h}=1.395 \mathrm{ft}$.
(b) For Top of Tank Flush with $\mathrm{H}_{2} 0$ Level
$\sum \mathrm{F}=0$
$\mathrm{P}=\mathrm{P}_{\mathrm{atm}}+\frac{250+\mathrm{F}}{\pi \mathrm{d}^{2} / 4}$
At $\mathrm{H}_{2} 0$ Level in Tank: $\mathrm{P}=\mathrm{P}_{\mathrm{atm}}+\rho_{\mathrm{w}} \mathrm{g}(3-\mathrm{y})$
Combining Equations:
$\mathrm{F}=196(3-\mathrm{y})-250$
For Isothermal Compression of Air:
(As in Part (a))
$3-\mathrm{y}=2.8 \mathrm{ft}$.
$\mathrm{F}=196(2.8)-250=293.6 \mathrm{LB}_{\mathrm{f}}$
2.3

When New Force on Tank $=0$
Wt. $=$ Buoyant Force $=250 \mathrm{Lb}_{\mathrm{f}}$
V_{w} Displaced $=250 / \rho_{\mathrm{w}} \mathrm{g}=4.01 \mathrm{ft}^{3}$
Assuming Isothermal Compression
$\mathrm{P}_{\text {atm }} \mathrm{A}(3 \mathrm{ft})=.\mathrm{P}\left(4.01 \mathrm{ft}^{3}\right)=\left(\mathrm{P}_{\mathrm{atm}}+\rho g \mathrm{y}\right)(4.01)$
$\mathrm{y}=45.88 \mathrm{ft}$.
Top is at Level: $y-\frac{4.01}{\pi d^{2} / 4}$
or at 44.6 ft . Below Surface
2.4
$\frac{\mathrm{dP}}{\mathrm{dy}}=\rho \mathrm{g}=\rho_{\mathrm{o}} \mathrm{e}^{\mathrm{AP} / \beta}$
$\int_{0}^{\Delta \mathrm{P}} \frac{-\Delta \mathrm{P} / \beta}{\mathrm{e}^{\Delta \mathrm{P} / \beta}}=\int_{0}^{\mathrm{y}} \frac{-\rho_{\mathrm{o}} \mathrm{g} \Delta \mathrm{y}}{\beta}$
$\mathrm{e}^{-\Delta \mathrm{P} / \beta}=1-\frac{\rho_{0} g y}{\beta g}$
$\Delta \mathrm{P}=-\beta \ln \left(1-\frac{\rho_{\mathrm{o}} \mathrm{y}}{\beta}\right)=300,000 \ln (1-0.0462)=14190 \mathrm{Psi}$
Density Ratio:

$$
\frac{\rho}{\rho_{\mathrm{o}}}=\mathrm{e}^{-\Delta \mathrm{P} / \beta}=1.0484
$$

so $\mathrm{P}=1.0484 \rho_{o}$

Buoyant Force:
$F_{B}=\rho V=\frac{P V}{R T}$
For constant volume: F varies inversely with T

Sea $\mathrm{H}_{2} 0:$ S.G. $=1.025$
At Depth $\mathrm{y}=185 \mathrm{~m}$
$\mathrm{P}_{\mathrm{g}}=1.025 \rho_{\mathrm{w}} \mathrm{gy}=1.025(1000)(9.81)(185)=1.86 \times 10^{6} \mathrm{~Pa}=1.86 \mathrm{MPa}$
2.7
$\mathrm{r}=$ Measured from Earth's Surface
R = Radius of Earth
$\frac{\mathrm{dP}}{\mathrm{dr}}=\rho \mathrm{g}=\rho \mathrm{g}_{0} \frac{\mathrm{r}}{\mathrm{R}}$
$\mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\frac{\rho_{\mathrm{o}} \mathrm{r}^{2}}{2 \mathrm{R}}$
At Center of Earth: $r=R$
$\mathrm{P}_{\mathrm{Ctr}}-\mathrm{P}_{\mathrm{atm}}=\frac{\rho \mathrm{g}_{0} \mathrm{R}}{2}$
Since $\mathrm{P}_{\mathrm{Crr}} \gg \mathrm{P}_{\mathrm{atm}}$
$\mathrm{P}_{\mathrm{Ctr}} \cong \frac{\rho_{\mathrm{o}} \mathrm{R}}{2}=\frac{(5.67)(1000)(9.81)\left(6330 \times 10^{3}\right)}{2}=176 \times 10^{9} \mathrm{~Pa}=176 \mathrm{MPa}$
2.8
$\frac{d P}{d y}=-\rho g$
$\int_{\mathrm{P}_{\text {atm }}}^{\mathrm{P}} \mathrm{dP}=-\rho \mathrm{g} \int_{0}^{-\mathrm{h}} \mathrm{dy}$
$\mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\rho \mathrm{g}(+\mathrm{h})=(1050)(9.81)(11034)=113.7 \mathrm{MPa} \cong 1122$ Atmospheres

2.9

As in Previous Problem
$\mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\rho \mathrm{gh}$
For $\mathrm{P}_{-\mathrm{P}_{\mathrm{atm}}}=101.33 \mathrm{kPa}$
$\mathrm{h}=101.33 / \mathrm{gg}$
for $\mathrm{H}_{2} \mathrm{O}: \mathrm{h}=\frac{101.33}{(1000)(9.81)}=10.33 \mathrm{~m}$
Sea $\mathrm{H}_{2} \mathrm{O}: \quad \mathrm{h}=\frac{101.33}{(1.025)(1000)(9.81)}=10.08 \mathrm{~m}$
$\mathrm{Hg}: \mathrm{h}=\frac{101.33}{(13.6)(1000)(9.81)}=0.80 \mathrm{~m}$
2.10

$$
\begin{array}{ll}
\mathrm{P}_{1}=\mathrm{P}_{\mathrm{atm}}+\rho_{\mathrm{Hg}} \mathrm{~g}\left(12^{\prime \prime}\right) & \mathrm{P}_{1}=\mathrm{P}_{2} \\
\mathrm{P}_{2}=\mathrm{P}_{3}+\rho_{\mathrm{K}} \mathrm{~g}\left(5^{\prime \prime}\right) & \mathrm{P}_{3}=\mathrm{P}_{4} \\
\mathrm{P}_{4}=\mathrm{P}_{\mathrm{A}}+\rho_{\mathrm{w}} \mathrm{~g}\left(2^{\prime \prime}\right) & \mathrm{P}_{4}=\mathrm{P}_{5} \\
\mathrm{P}_{\mathrm{atm}}+\rho_{\mathrm{Hg}} \mathrm{~g}\left(12^{\prime \prime}\right)=\mathrm{P}_{\mathrm{A}}+\rho_{\mathrm{w}} \mathrm{~g}\left(2^{\prime \prime}\right)+\rho_{\mathrm{K}} \mathrm{~g}\left(5^{\prime}\right) \\
\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho_{\mathrm{w}} \mathrm{~g}[(13.6)(12)-2-0.75(5)]=\mathrm{P}_{\mathrm{atm}}+5.81 \\
\mathrm{P}_{\mathrm{A}}=5.81 \text { PSIG }
\end{array}
$$

2.11

Force Balance on Liquid Column: A=Area of Tube

$$
\begin{aligned}
& -3 \mathrm{~A}+14.7 \mathrm{~A}-\rho \mathrm{gh} \mathrm{~A}=0 \\
& \mathrm{~h}=\frac{11.7(144)}{62.4(12.2)}=26.6 \mathrm{in} .
\end{aligned}
$$

2.12

$P_{A}=P_{B}-\rho_{o} g(10 \mathrm{ft}$.
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}+\rho_{\mathrm{w}} \mathrm{g}(5 \mathrm{ft}$.
$P_{D}=P_{C}-\rho_{\mathrm{Hg}} g(1 \mathrm{ft}$.
$P_{A}-P_{D}=\rho_{H g} g(1)-\rho_{w} g(5)-\rho_{o} g(10)$
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{Atm}}=\rho_{\mathrm{w}} \mathrm{g}(13.6 \times 1-5-0.8 \times 10 \times 1)=37.4 \mathrm{LB}_{\mathrm{f}} / \mathrm{ft}^{2}$
2.13

$$
\begin{aligned}
& \mathrm{P}_{3}=\mathrm{P}_{\mathrm{A}}-\mathrm{d}_{1} \mathrm{~g} \rho_{\mathrm{w}}=\mathrm{P}_{\mathrm{B}}+\left(\rho_{\mathrm{Hg}} \mathrm{~g}\right) \mathrm{x}\left(\mathrm{~d}_{3}+\mathrm{d}_{4} \sin 45\right) \\
& \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\frac{(62.4)(32.2)}{32.2}\left[\frac{(2.4+4 \sin 45)}{12} 13.6-2\right] \\
& \quad=245 \mathrm{LB}_{\mathrm{f}} / \mathrm{ft}^{2}=1.70 \mathrm{Psi}
\end{aligned}
$$

2.14

$\mathrm{P}_{3}=\mathrm{P}_{\mathrm{A}}-\rho_{\mathrm{w}} \mathrm{gd}_{1}$
$P_{3}=P_{B}-\rho_{w} g\left(d_{1}+d_{2}+d_{3}\right)+\rho_{H g}{g d_{2}}^{2}$
Equating:
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\rho_{\mathrm{Hg}} \mathrm{gd}_{2}-\rho_{\mathrm{w}} \mathrm{g}\left(\mathrm{d}_{2}+\mathrm{d}_{3}\right)=\rho_{\mathrm{w}} \mathrm{g}[(13.6)(1 / 12)-7.3 / 12]=32.8 \mathrm{LB}_{\mathrm{f}} / \mathrm{ft}^{2}=0.227 \mathrm{Psi}$
2.15

$P_{I}=P_{A}+\rho_{w} g\left(10^{\prime \prime}\right)$
$\mathrm{P}_{\mathrm{II}}=\mathrm{P}_{\mathrm{B}}+\rho_{\mathrm{w}} \mathrm{g}\left(4^{\prime \prime}\right)+\rho_{\mathrm{Hg}} \mathrm{g}\left(10^{\prime \prime}\right)$
$\mathrm{P}_{\mathrm{I}}=\mathrm{P}_{\text {II }}$
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\rho_{\mathrm{w}} \mathrm{g}[-6+13.6(10)]=56.3 \mathrm{psi}$
2.16

Pressure Gradient is in direction of $\overrightarrow{\mathrm{g}}$ - $\overrightarrow{\mathrm{a}} \&$ isobars are perpendicular to ($\overrightarrow{\mathrm{g}}-\overrightarrow{\mathrm{a}}$)

String will assume the ($\stackrel{\mathrm{g}}{\mathrm{g}} \mathrm{a}$) direction \& Balloon will move forward.
2.17

At Rest: $\mathrm{P}=\rho \mathrm{gy}{ }_{\mathrm{o}}$
Accelerating: $P=\rho|(\vec{g}-\overrightarrow{\mathrm{a}})|=\rho(\mathrm{g}+\mathrm{a}) \mathrm{y}_{\mathrm{a}}$
Equating: $y_{\mathrm{a}}=\frac{\mathrm{g}}{\mathrm{g}-\mathrm{a}}$ which $<\mathrm{y}_{\mathrm{o}}$
Level goes down.
2.18
$\mathrm{F}=\mathrm{P}_{6.6} \mathrm{~A}-\mathrm{P}_{\mathrm{atm}} \mathrm{A}=\rho \mathrm{gh}\left(\pi \mathrm{r}^{2}\right)$
$\mathrm{h}=2 \mathrm{~m}$
$\mathrm{r}=0.3 \mathrm{~m}$

$\mathrm{F}=5546 \mathrm{~N}$

$y_{C . P .}=\bar{y}+\mathrm{I}_{\mathrm{bb}} / \mathrm{A} \overline{\mathrm{y}}$
For a circle: $\mathrm{I}_{\mathrm{bb}}=\pi \mathrm{r}^{4} / 4$
УC.P. $=2 \mathrm{~m}+\frac{\pi(0.3 \mathrm{~m})^{4}}{4 \pi(0.3 \mathrm{~m})^{2}(2 \mathrm{~m})}=2.011 \mathrm{~m}$
2.19

Height of $\mathrm{H}_{2} \mathrm{O}$ column above differential element $=h-4+y$

(a)

(b)

For (a) - Rectangular gate- $\mathrm{dA}=4 \mathrm{dy}$
$d F_{w}=\left[\rho_{\mathrm{w}} \mathrm{g}(\mathrm{h}-4+\mathrm{y})+\mathrm{P}_{\mathrm{atm}}\right] \mathrm{dA}$
$\mathrm{dF}_{\mathrm{A}}=\left[\mathrm{P}_{\mathrm{atm}}+(6 \mathrm{Psig})(144)\right] \mathrm{dA}$
$\sum \mathrm{M}_{\mathrm{o}}=\int_{\mathrm{A}}^{0} \mathrm{y}\left(\mathrm{dF}_{\mathrm{w}}-\mathrm{dF}_{\mathrm{A}}\right)=0$
$\int_{0}^{4} y[\rho g(h-4+y)-864](4 d y)=0$
$\underline{\mathrm{h}=15.18 \mathrm{ft}}$.
For (b): dA=(4-y)dy
$\int_{0}^{4} y[\rho g(h-4+y)-864](4-y) d y=0$
$\underline{\mathrm{h}=15.85 \mathrm{ft}}$.

Per unit depth: $\sum \mathrm{F}_{\mathrm{y}}=0$
$\left.\mathrm{F}_{\mathrm{y}}\right|_{\text {up }}=\rho_{\mathrm{w}} \mathrm{g} \pi \mathrm{r}^{2} / 2 \quad$ \{buoyancy $\}$
$\left.\mathrm{F}_{\mathrm{y}}\right|_{\text {down }}=\rho \mathrm{g} \pi \mathrm{r}^{2}+\rho_{\mathrm{w}} \mathrm{g}\left(\mathrm{r}^{2}-\pi \mathrm{r}^{2} / 4\right)$

Equating: $\frac{\rho_{\mathrm{w}} \mathrm{g} \pi \mathrm{r}^{2}}{2}=\rho \mathrm{g} \pi \mathrm{r}^{2}+\rho_{\mathrm{w}} \operatorname{gr}^{2}(1-\pi / 4)$
$\rho=\rho_{\mathrm{w}}\left(\frac{\pi}{2}-1+\frac{\pi}{4}\right) / \pi=\rho_{\mathrm{w}}\left(\frac{3}{4}-\frac{1}{\pi}\right)=0.432 \rho_{\mathrm{w}}=432 \mathrm{~kg} / \mathrm{m}^{3}$
a) To lift block from bottom

$$
\begin{aligned}
\mathrm{F} & =\{\text { wt. of concrete }\}+\left\{\text { wt. of } \mathrm{H}_{2} 0\right\} \\
& =\rho_{\mathrm{c}} \mathrm{gV}+\left[\rho_{\mathrm{w}} g\left(22.75^{\prime}\right)+\mathrm{P}_{\mathrm{atm}}\right] \mathrm{A} \\
& =(150) \mathrm{g}(3 \times 3 \times 0.5)+[62.4 \mathrm{~g}(22.75)+14.7(144)] \times(3 \times 3) \\
& =675+31828=32503 \mathrm{lb}_{\mathrm{f}}
\end{aligned}
$$

b) To maintain block in free position

$$
\begin{aligned}
\mathrm{F} & \left.=\{\text { wt. of concrete }\}-\left\{\text { Buoyant force of } \mathrm{H}_{2} 0\right)\right\} \\
& =675-\rho_{\mathrm{w}} \mathrm{gV}=675-[62.4 \mathrm{~g}(3 \times 3 \times 0.5)]=675-281=394 \mathrm{lb}_{\mathrm{f}}
\end{aligned}
$$

Distance z measured along gate surface from bottom

$\sum M_{A}=500(15)-\int_{0}^{h / \sin 60} \mathrm{z} \rho g(\mathrm{~h}-\mathrm{z} \sin 60) \mathrm{dz}=0$
$\rho g \int_{0}^{h / \sin 60}\left(z h-z^{2} \sin 60\right) d z=7500$
$\rho g\left[\mathrm{~h} \frac{\mathrm{z}^{2}}{2}-\frac{\mathrm{z}^{3}}{3} \sin 60\right]_{0}^{\mathrm{h} / \sin 60}=7500$
(62.4) $g\left[\frac{\mathrm{~h}^{3}}{(\sin 60)^{2}}\left(\frac{1}{2}-\frac{1}{3}\right)\right]=7500$
$\mathrm{h}^{3}=\frac{7500(6)(\sin 60)^{2}}{62.4 \mathrm{~g}}=541$
$\mathrm{h}=8.15 \mathrm{ft}$.

Using spherical coordinates for a ring At $y=$ constant
$\mathrm{dA}=2 \pi r^{2} \sin \theta \mathrm{~d} \theta$
$\mathrm{P}=\rho \mathrm{g}[\mathrm{h}-\mathrm{r} \cos \alpha+\mathrm{r} \cos \theta]$
$\mathrm{dF}_{\mathrm{y}}=\mathrm{dF} \cos \theta$
$\mathrm{F}_{\mathrm{y}}=\int \rho \mathrm{g}(\mathrm{h}-\mathrm{r} \cos \alpha+\mathrm{r} \cos \theta)\left(2 \pi r^{2} \sin \theta \cos \theta \mathrm{~d} \theta\right)$
$=2 \pi \rho \mathrm{gr}^{2} \int_{\mathrm{x}}^{\pi}(\mathrm{h}-\mathrm{r} \cos \alpha+\mathrm{r} \cos \theta)(\sin \theta \cos \theta \mathrm{d} \theta)$
Let: $\mathrm{c}=2 \pi \rho \mathrm{gr}^{2}$

$=c\left[\int_{\alpha}^{\pi}(h-r \cos \alpha) \sin \theta \cos \theta d \theta+r \int_{\alpha}^{\pi} \sin \theta \cos ^{2} \theta d \theta\right]$
$=\mathrm{c}\left[\left.(\mathrm{h}-\mathrm{r} \cos \alpha) \sin ^{2} \theta\right|_{\alpha} ^{\pi}+\left.\mathrm{r}\left(-\frac{1}{3} \cos ^{3} \theta\right)\right|_{\alpha} ^{\pi}\right]$
$=\mathrm{c}\left[(\mathrm{h}-\mathrm{r} \cos \alpha)\left(1-\sin ^{2} \alpha\right)-\frac{\mathrm{r}}{3}\left(0-\cos ^{3} \alpha\right)\right]$
Now for $\mathrm{F}_{\mathrm{y}}=0$
$\sin \alpha=\frac{D}{d} \cos \alpha=\left[1-\left(\frac{D}{d}\right)^{2}\right]^{1 / 2} \quad \& r=d / 2$

$0=\left(\mathrm{h}-\frac{\mathrm{d}}{2} \cos \alpha\right)\left(\cos ^{2} \alpha\right)+\frac{\mathrm{d}}{6}\left(\cos ^{3} \alpha\right)=\mathrm{h}-\frac{\mathrm{d}}{2} \cos \alpha+\frac{\mathrm{d}}{6} \cos \alpha$
Giving $\mathrm{h}=\frac{\mathrm{d}}{3} \cos \alpha$
$\frac{\mathrm{h}}{\mathrm{d}}=\frac{\cos \alpha}{3}=\frac{1}{3}\left[1-\left(\frac{\mathrm{D}}{\mathrm{d}}\right)^{2}\right]^{1 / 2}$
For $\mathrm{d}=0.6 \mathrm{~m}$
$\mathrm{h}=\frac{0.6}{3}=\frac{1}{3}\left[1-\left(\frac{5 \mathrm{D}}{3}\right)^{2}\right]^{1 / 2}=\frac{1}{5}\left[1-\left(\frac{5 \mathrm{D}}{3}\right)^{2}\right]^{1 / 2}$
2.24

$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{atm}}=\rho_{\mathrm{w}} \mathrm{g}(12)=24 \mathrm{~g}$
$\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{atm}}=24 \mathrm{~g}+40 \mathrm{~g}=64 \mathrm{~g}$
Between 0 \& A: $\mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\rho_{\mathrm{w}} \mathrm{gy}$
Between A \& B: $\mathrm{P}=\rho_{\mathrm{w}} \mathrm{g}(12)+\rho_{\mathrm{m}} \mathrm{g}(\mathrm{y}-12)$
Per unit depth:
$\mathrm{F}=\int_{12}^{0}\left(\mathrm{P}-\mathrm{P}_{\mathrm{atm}}\right) \mathrm{dA}$
$=\int_{0}^{12} \rho_{\mathrm{w}} \mathrm{gydy}+\int_{12}^{22}\left[\rho_{\mathrm{w}} \mathrm{g}(12)+\rho_{\mathrm{m}} \mathrm{g}(\mathrm{y}-12)\right] \mathrm{dy}$
$=\rho_{\mathrm{w}} \mathrm{g}(192)+\rho_{\mathrm{m}} \mathrm{g}(50)$
$=18790 \mathrm{lb}_{\mathrm{f}}$
Force Location:
$F x y=\int_{0}^{22} y\left(P-P_{a t m}\right) d A$
$=\int_{0}^{12} \rho_{\mathrm{w}} \mathrm{gy}{ }^{2} \mathrm{dy}+\int_{12}^{22} \rho_{\mathrm{w}} \mathrm{g} 12 \mathrm{ydy}+\int_{12}^{22} \rho_{\mathrm{m}} \mathrm{g}\left(\mathrm{y}^{2}-12 \mathrm{y}\right) \mathrm{dy}$
$=\rho_{\mathrm{w}} \mathrm{g}(576+2040)+\rho_{\mathrm{m}} \mathrm{g}(2973-2040)$
$=288,400 \mathrm{ft} . \mathrm{LB}_{\mathrm{f}}$
$\overline{\bar{y}}=\frac{288,400}{18,790}=15.35 \mathrm{ft}$.
2.25

Force on gate $=\rho g \bar{y} A=(1000)(9.81)(12) \frac{\pi}{4}(2)^{2}=369.8 \mathrm{kN}$
$y_{\text {C.P. }}=\frac{\mathrm{I}_{\infty}}{\overline{\mathrm{y} A}}=\frac{\frac{\pi}{4}(1)^{4}}{(12) \frac{\pi}{4}(2)^{2}}=0.0208 \mathrm{~m}$ (Below axis B)
$\sum \mathrm{M}_{\mathrm{B}}=0$
$\mathrm{P}(1)=\left(369.8 \times 10^{3}\right)(0.0208)=7.70 \mathrm{kN}$

$\mathrm{F}_{\mathrm{w}}=\rho_{\mathrm{g}} \mathrm{g} \overline{\bar{y}} \mathrm{~A}=(1000)(9.81)(4)(10)(1)=392 \mathrm{kN}$
y_{cp} is $2 / 3$ distance form water line to A
~ 6.66 m down form $\mathrm{H}_{2} 0$ line
$\sim 3.33 \mathrm{~m}$ up from A
$\sum \mathrm{M}_{\mathrm{A}}=\mathrm{F}_{\mathrm{c}}(9)=392(3.33)$
$\mathrm{F}_{\mathrm{c}}=145.2 \mathrm{kN}$
2.27

Width $=100 \mathrm{~m}$
$\mathrm{H}_{2} 0 @ 27^{\circ} \mathrm{C} \quad \rho=997 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{F}=\rho_{\mathrm{g}} \mathrm{g} \overline{\mathrm{y}} \mathrm{A}=(997)(9.81)(64) \times(160)(100)=10.016 \times 10^{9} \mathrm{~N}=10.02 \times 10^{3} \mathrm{MN}$
For a free $\mathrm{H}_{2} 0$ surface
$y_{c p}=\frac{2}{3}(128 \mathrm{~m})=85.3 \mathrm{~m}$ \{below $\mathrm{H}_{2} 0$ surface $\}=106.7 \mathrm{~m}\{$ measured along dam surface $\}$

2.28 Spherical Float

Upward forces $\sim \mathrm{F}+\mathrm{F}_{\text {Buoyant }}$
Downward forces $\sim \mathrm{W}_{\mathrm{T}}$
$\mathrm{W}=\rho \mathrm{gV}=\rho \mathrm{g}\left(\frac{4}{3} \pi \mathrm{R}^{3}\right)$
$F_{b}=\rho_{w} g V z=\rho_{w} g\left(\frac{4}{3} \pi R^{3}\right) z$
$\mathrm{z}=$ fraction submerged
$\mathrm{F}=\rho \mathrm{g}\left(\frac{4}{3} \pi \mathrm{R}^{3}\right)-\rho_{\mathrm{w}} \mathrm{gz}\left(\frac{4}{3} \pi \mathrm{R}^{3}\right)$
$\mathrm{z}=\frac{\rho \mathrm{g}\left(\frac{4}{3} \pi \mathrm{R}^{3}\right)-\mathrm{F}}{\rho_{\mathrm{w}} \mathrm{g}\left(\frac{4}{3} \pi R^{3}\right)}$

$\theta=\tan ^{-1}\left(\frac{0.1}{0.5}\right)$
G is center of mass of solid
$\sum M_{G}=2\left[1 / 2(\mathrm{~L} / 2)(0.1 \mathrm{~L})(\mathrm{L}) \rho g\left(\frac{2}{3} \frac{\mathrm{~L}}{2} \sin \theta\right)-(0.9 \mathrm{~L})(\mathrm{L})(\mathrm{L}) \rho g(0.05 \mathrm{~L} \sin \theta)\right]+\mathrm{M}$
\{Part of original submerged volume is now out of $\mathrm{H}_{2} 0$ \}
(Part that was originally out is now submerged \}
$\mathrm{M}=\rho \mathrm{g} \mathrm{L}^{4} \sin \theta\left[-\frac{1}{60}+0.045\right]=\rho g \mathrm{~L}^{4} \sin \theta(0.02833)=0.00556 \rho g \mathrm{~L}^{4}$

(a) the pressure at the butyl alcohol/benzene interface
$\Delta \mathrm{P}=\rho \mathrm{gh}$
$P_{\text {top }}-P_{\text {Air-ButylAlcohol Interface }}=-\rho_{\text {air }} g(17$ feet $)$
$P_{\text {Air-ButylAlcohol Interface }}-P_{\text {ButylAlcohol-Benzene Interface }}=-\rho_{\text {ButylAlcohol }} g($ (19feet)
$P_{\text {ButylAlcohol-Benzene Interface }}=P_{\text {top }}+\rho_{\text {air }} g(17$ feet $)+\rho_{\text {ButylAlcohol }} g(19 f e e t)$

$$
\begin{aligned}
& =2116 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}+\frac{\left(0.0735 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(17 \mathrm{ft})}{32.174 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~S}^{2}}}+\frac{\left(50.0 \frac{\mathrm{lb}}{\mathrm{ft}} \mathrm{ft}^{3}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(19 \mathrm{ft})}{32.174 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~s}^{2}}} \\
& =3068.0 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}=21.3 \mathrm{psi}
\end{aligned}
$$

(b) the pressure at the benzene/water interface

$$
\begin{aligned}
& \mathrm{P}_{\text {ButylAlcohol-Benzene Interface }}-\mathrm{P}_{\text {Benzene-Water Interface }}=-\rho_{\text {Benzene }} \mathrm{g}(34 \mathrm{feet}) \\
& \mathrm{P}_{\text {Benzene-Water Interface }}=\mathrm{P}_{\text {ButylAlcohol-Benzene Interface }}+\rho_{\text {Benzene }} \mathrm{g}(34 \text { feet }) \\
& \\
& =3068.0 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}+\frac{\left(54.6 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(34 \mathrm{ft})}{32.174 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~s}^{2}}}=4925.9 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}=34.2 \mathrm{psi}
\end{aligned}
$$

(c) the pressure at the bottom of the tank

$$
\begin{gathered}
\mathrm{P}_{\text {ButylAlcohol-Benzene Interface }}-\mathrm{P}_{\text {Bottom of Tank }}=-\rho_{\text {Water }} \mathrm{g}(25 \mathrm{feet}) \\
\mathrm{P}_{\text {Benzene-Water Interface }}=\mathrm{P}_{\text {ButylAlcohol-Benzene Interface }}+\rho_{\text {Benzene }} \mathrm{g}(25 \mathrm{feet}) \\
=4925.9 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}+\frac{\left(62.2 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(25 \mathrm{ft})}{32.174 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~S}^{2}}}=6482.16 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{3}}=45 \mathrm{psi}
\end{gathered}
$$

2.31
$\Delta \mathrm{P}=\rho \mathrm{gh}$
For Blood: $\quad \mathrm{P}=\rho_{\mathrm{B}} \mathrm{gh}_{\mathrm{B}}$
For Mercury: $P=\rho_{M} g h_{M}$
So,
$\Delta \mathrm{P}=\rho_{\mathrm{B}} \mathrm{gh}_{\mathrm{B}}=\rho_{\mathrm{M}} \mathrm{gh}_{\mathrm{M}}$
Solve for the height of the blood,
$\rho_{\mathrm{B}} \mathrm{gh}_{\mathrm{B}}=\rho_{\mathrm{M}} \mathrm{gh}_{\mathrm{M}}$
Eliminate the gravity terms,
$\rho_{\mathrm{B}} \mathrm{h}_{\mathrm{B}}=\rho_{\mathrm{M}} \mathrm{h}_{\mathrm{M}}$
$\mathrm{h}_{\mathrm{B}}=\frac{\rho_{\mathrm{M}}}{\rho_{\mathrm{B}}} \mathrm{h}_{\mathrm{M}}$
We take 120 mm Hg as the height here, and $120 \mathrm{~mm}=0.12 \mathrm{~m}$, and the density of mercury is $845 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}=13535.6 \mathrm{~kg} / \mathrm{m}^{3}$:
$\mathrm{h}_{\mathrm{B}}=\frac{\left(13535.6 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(1060 \mathrm{~kg} / \mathrm{m}^{3}\right)}(0.12 \mathrm{~m})=1.55 \mathrm{~m}$

$P_{N}-P_{1}=-\rho_{\text {Nitrogen }} g(5 \mathrm{ft})$ so $P_{1}=P_{N}+\rho_{\text {Nitrogen }} g(5 \mathrm{ft})$
$P_{2}-P_{1}=-\rho_{\mathrm{H} 2 \mathrm{O}} g(8-5 \mathrm{ft})$ so $\mathrm{P}_{2}=\mathrm{P}_{1}-\rho_{\mathrm{H} 2 \mathrm{O}} \mathrm{g}(8-5 \mathrm{ft})$
$P_{2}-P_{3}=-\rho_{\text {Freon }} g(7-4 \mathrm{ft})$ so $\mathrm{P}_{3}=\mathrm{P}_{2}+\rho_{\text {Freon }} g(7-4 \mathrm{ft})$
$P_{3}-P_{4}=-\rho_{\text {Mercury }} g(10-7 \mathrm{ft})$ so $\mathrm{P}_{4}=P_{3}+\rho_{\text {Mercury }} g(10-7 \mathrm{ft})$
$P_{5}-P_{4}=-\rho_{\text {Benzene }} g(10-7.5 \mathrm{ft})$ so $\mathrm{P}_{5}=\mathrm{P}_{4}-\rho_{\text {Benzene }} g(10-7.5 \mathrm{ft})$
$P_{5}-P_{A}=-\rho_{A} g(11 \mathrm{ft})$ so $P_{A}=P_{6}+\rho_{A} g(11 \mathrm{ft})$
$P_{A}=\rho_{A} g(11 \mathrm{ft})-\rho_{\text {Benzene }} g(10-7.5 \mathrm{ft})+\rho_{\text {Mercury }} g(10-7 \mathrm{ft})++\rho_{\text {Freon }} g(7-4 \mathrm{ft})$

$$
-\rho_{\mathrm{H} 2 \mathrm{O}} \mathrm{~g}(8-5 \mathrm{ft})+\rho_{\text {Nitrogen }} \mathrm{g}(5 \mathrm{ft})+\mathrm{P}_{\mathrm{N}}
$$

$P_{A}=\frac{\left(78.2 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)}{\left(32.174 \mathrm{lb}_{\mathrm{m}} \mathrm{ft} / \mathrm{lb}_{\mathrm{f}^{2}}\right)}\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(11 \mathrm{ft})-\frac{\left(53.6 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)}{\left(32.174 \mathrm{lb}_{\mathrm{m}} \mathrm{ft} / \mathrm{lb}_{\mathrm{f}} \mathrm{s}^{2}\right)}\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(10-7.5 \mathrm{ft})+$
$\frac{\left(843 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)}{\left(32.174 \mathrm{lb}_{\mathrm{m}} \mathrm{ft} / \mathrm{lb}_{\mathrm{f}} \mathrm{s}^{2}\right)}\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(10-7 \mathrm{ft})+\frac{\left(78.7 \frac{1 \mathrm{lbm}_{\mathrm{t}}}{\mathrm{ft}}\right)}{\left(32.17 \frac{4 \mathrm{~b}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{s}^{2}}\right)}\left(32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)(7-4 \mathrm{ft})-$
$\frac{\left(62.1 \frac{1 \mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right)}{\left(32.17 \frac{\mathrm{~b}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}^{2}}{ }^{2}}\right)}\left(32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)(8-5 \mathrm{ft})+\frac{\left(0.0685 \frac{\mathrm{lb} \mathrm{b}}{\mathrm{ft}^{3}}\right)}{\left(32.174 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{s}^{2}}\right)}\left(32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)(5 \mathrm{ft})+4500 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}}=7808.0 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}$

