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CHAPTER 1

Introduction

1.1

IProb. | Calling Service Discipline Capacity No. Servers | No. Stages
Units Function
(a) Airplanes Landing run- | FCFS (PRI | Stack No. 1-landing
ways in (~ o0) runways only;
emergency) 2-landing
and
taxiing
(b) Filled Gro- | Checker(and | FCFS (with | (= c0) With 1
cery carts bagger) jockeying) jockeying

and channel
choice acts
like a
c-server
model

(c) People Clerks same as (b) same as (b) same as (b) 1

(d) Cars Paying toll FCFS 00 1 or more 1

(toll booth) (in fog, acts

like indep.
single
channels no
choice or
jockeying)

(e) Cars Gas filling FCFS Finite No. of 1
pump
islands

(similar to
(b)
although
jockeying
difficult)




1.2

1.3

1.4

1.5

(f) | Cars Car-wash FCFS Finite Generally 1 | Many,
building with no
storage
between
stages
(g) | Calls Lines in FCFS Finite No. of lines | 1
switchboard
(h) | Patients Doctor Fixed as to Finite 1, unless a Usually 1
(could be appoint- seating clinic but could
batch ments capacity be several
service) and waiting
room
(i) | Tourists Tour group FCFS (= o0) 1 or more Multiple
(j) | Components| Operations FCFS Finite 1 or more 4
and
inspection
batch service
(k) | Programs Processing FCFS (or same as (b) 1 1
Programs PRI)

One could give a variety of illustrations, e.g., people calling into a bank to find their account
status. The customers are the calls, it is generally a multi-stage process, where first an
automated message of which button to press depending on what’s desired is received, and
then, after pressing the appropriate button, getting the desired information automatically
or asking for a customer representative. We would have finite capacity - if all lines are tied
up, a busy signal results and the call must be replaced. It is multi-stage and would usually
be a multi-server queue, with a FCFS discipline. Another example might be a bakery, where
upon entering, the customer takes a number, so that we have a true, FCFS, multi-server
queue with a single waiting line (the queue being the numbers). It would be a single-stage
process, since a given server serves only one customer at a time. The capacity would be
finite, although there is usually enough space so that it is essentially infinite. As a final
example, consider a blood donor center. We have a multi-stage process (check-in, filling out
information, blood pressure and clotting-time checks, and finally giving the blood). Some
stages have a single server and others have multiple servers. It is generally an appointment
system, but if it is a drop-in center, customers can arrive completely randomly and we
would have a FCFS discipline. There is a finite capacity in that if the waiting room is
completely filled, donors might be asked to come back at another time.

The parameters are A = 40/h and 1/ = 5.5min. Using units of hours, p = 60/5.5 =
10.91/h. The utilization should be less than 1, so A/cp = 40/(10.91¢), which implies that
¢ > 40/10.91 = 3.67. At least 4 are required to achieve steady state.

Lqg = AWq = (3/ min)([75/60] min) = 3.75 or, say, 4. The 3.75 number is, of course, the
average number in the queue. We may wish to provide 5 or 6 slots to guarantee that most
callers get into the queue.

(a) The fraction of time that a server is busy is p, = 1 —.01 = .99. Now, p, = A\/cpu =1/c.
Thus, r = c-p, = 2-0.99 = 1.98. With 3 servers, p, = r/c = 1.98/3 = .66, so each
server is idle 34% of the time, which is more than enough time for breaks.

(b) The service rate is reduced to 0.8, so pp = A\/(3-0.8u) = r/2.4 = 1.98/2.4 = 0.825.
This still gives an idle percentage for each server of 17.5%, again more than enough
time for breaks.



1.6

1.7

1.8

1.9

1.10

(c) The average service time is reduced from 1/p to 0.8/u. Thus, the new service rate
is £/0.8 = 1.25p, so pp = A/(2-1.25u) = r/2.5 = 1.98/2.5 = 0.792. This gives an
idle percentage for each server of 20.8%. This is a cheaper solution giving each server
enough time for breaks.

Let T be the total waiting time. If, when you arrive, the person in service is just about
finished, then you wait on average eight service times (yours and the seven ahead of you)
or E[T] = 8(2.5min) = 20 min. If, when you arrive, the person in service is just beginning,
then you wait on average nine service times or E[T] = 9(2.5min) = 22.5min. The average
wait is somewhere in between.

Assuming the latter case, T is the sum of 9 IID normal random variables each with mean 2.5

and standard deviation 0.5. So T is a normal random variable with mean 22.5 and standard

deviation 1/(9-0.52) = 1.5. Then Pr{T > 30min} = Pr{Z > (30 — 22.5)/1.5} = Pr{Z >

5}, where Z is a standard normal random variable. From standard normal tables, Pr{Z >

5} =0.

(a) Apply Little’s law to the system of active players in the league. The average number
of active players in the league is represented by L, where L = 3267 = 2,144. The
average rate that players enter the league is represented by A, where A\ = 32 -7 = 224
per year. The average time spent in the league is represented by W. By Little’s law,
W =L/ =2144/224 = 9.57 years.

(b) Here, it is given that W = 3.5 years. As before L = 2,144 (the number of active
players in the league). The average rate that players enter the league is A = L/W =
2,144/3.5 ~ 613 per year. Since 224 players are drafted each year, an average of
613 — 224 = 389 players enter the league without being drafted. (This analysis assumes
that a player who leaves the league never returns.)

Consider the university as a system where students enter by enrolling at the university.
The average undergraduate enrollment is an estimate for L (so L = 16,800). The average
number of new students per year (the sum of the middle two columns) is an estimate for A
(so A = 4,052 per year). W is an estimate for the average time an undergraduate spends
at the university. By Little’s formula, W = L/\ = 4.1 years. (The main assumption here
is that the system is operating in steady-state. This may not be a valid assumption, for
example, if enrollment were growing. However, this particular example does not indicate a
noticeable growth trend.)

Apply Little’s law to the set of homes on the market. The average number of homes on the
market is estimated as L = 50. The rate that homes enter the market is estimated as A =5
per week. By Little’s law, a home is on the market for an average of W = L/ = 10 weeks
before it is sold. This assumes that the observed numbers are representative of long-term
averages. Furthermore, it is assumed that you have no additional information that might
change your estimate. For example, if you price your home at a very low price, you will
probably sell it more quickly than the average.

Aeff = /\(1 —pK) =9, W= L/)\eff = 5/.9 = 50/9;
W, =W —1/p=50/9 — 1 =41/9;
Peff = >\eff/,u: and pg =1 — pegr = .1.



1.11

1.12

1.13

1.14

(a) Use Little’s law where the “system” is the set of available doses. L is the average
number of available doses at a given time, and W is the length of time a dose is
available from the time of its creation until the time its shelf life ends. From Little’s
law, A = L/W = 300,000,000/(90/365) = 1,216, 667 per year, which is the yearly rate
that doses need to be made. So the yearly cost is $3 - A or $3.65 billion per year.

(b) The answer is the same as before, since Little’s law is stated in terms of averages, which
is unchanged.

(c) The value for L remains the same (300 million). The shelf life z of the vaccine is W.
Thus, A = L/z is the rate that vaccines must be made (per day). The daily cost to
make the vaccines is therefore (a + bz?)(L/x). To minimize, take the derivative and

set equal to 0:
L (_s + b) = 0.
x

This implies that a/z? = b or z = \/a/b = 223.6 days

(a) On average, there are 50 customers in the system. The arrival rate to the system is 100
per hour. By Little’s law, the average time in the system is W = L/ = 50/100 = 0.5
hour (or 30 minutes).

(b) The arrival rate to the specialist queue is 20 per hour. On average, there are 10 cus-

tomers being served or waiting to be served by a specialist. By Little’s law, the average
time at the specialist is W = L/A = 10/20 = 0.5 hour.

The arrival rate to the regular queue is 100 per hour. On average, there are 40 cus-
tomers being served or waiting to be served by a regular representative. By Little’s
law, the average time at the regular representative is W = L/ = 40/100 = 0.4 hour.

Thus, the average time in the system for a customer who needs to see a specialist
is 0.9 hour.

(a) The number of years an individual survives past 65 is a geometric random variable
with mean 1/.05 = 20 years. On average, a person receives benefits for 20 years. (The
geometric model is somewhat unrealistic since the death rate is assumed to be the same
every year, regardless of age.)

(b) Apply Little’s Law to the population of people over 65. The rate of people entering
this population group is A = 3 million per year. The average time in this population
group is W = 20 years. Thus, L = AW = 60 million people. Thus, the average yearly
payout is $2.4 trillion.

(a) A path from A to C is 80 miles. A path from A to B and A to D is 401/2 miles. Since
the results are symmetric for every entry point, the average path length is:
80 +80v2 .

1 2
g80 + g40\/5 == = 64.4 miles.

(b) The average arrival rate to the sector is A = 20 per hour. The average time in sector
is W = 64.4 miles / 400 mph = .161 hours. By Little’s law, the average number in the

sector is:
L =)W = (20)(.161) = 3.2.



1.15

1.16

(¢) Avoidance maneuvers increase the path length which increases W which increases L,
so the answer in part (b) would go up.

(a) Using Little’s Law, W = 5 years and L = 150 million. Thus,

L _ 150,000,000

W 5 = 30,000, 000 per year.

The fact that the distribution is Erlang-3 is irrelevant.

(b) Let Lyeyw and Lygeq be the average number of cars in the system that were purchased
new and used, respectively. By assumption, every new car becomes a used car and
then it is destroyed. Thus, the overall rate that new cars are purchased () is the same
rate that used cars are purchased. So,

150a 000; 000 = Lnew + Lused = )\Wnew + >\Wused = )\(5 + 7)

150,000,000

A
12

= 12,500,000 per year.
Intuitive answer: The average spacing between aircraft is 6 nm. The sector is 50 nm long.
Thus, the average number of aircraft in the sector is 50/6 = 8.33.

Answer using Little’s Law: The average spacing between aircraft in distance is 6 nm.
Since distance = velocity x time, the expected separation between aircraft in time is 6 nm
/ 400 knots = 3/200 hours. Thus, the arrival rate is A = 200/3 per hour. The time in
the sector (W) is 50 nm / 400 knots = 1/8 hours. By Little’s Law, the average number of
aircraft in the sector is: L = AW = (200/3)(50/400) = 8.33.



1.17

We use the Delay Analysis for Sample Single-Server Queue model in the Basic Model

category in QtsPlus:

DELAY ANALYSIS FOR SAMPLE
SINGLE-SERVER QUEUE

Output:

Number of Observations
Total time horizon

Mean interarrival time
Arrival rate (1)

Mean service time

Service rate (u)

Empirical traffic intensity (p)
Average line delay (Wq)
Average system wait (W)

Customer

©CoO~NOOOAWN-=03

This is a basic line waiting-time analysis for a sample G/G/1 queue
constructed from an input sequence of interarrival and service times.

(

Clear Old Data ]

Put data below into two columns of equal length.

6.2 Enter data and then press "Solve" button.

Solve

20
147
7.35
0.136054422
0.161290323
84.35%
3.95
10.15
Line Delays System Waits
Wq(n) W(n)
*N/A* *N/A*
0.0 3.0
0.0 7.0
1.0 10.0
6.0 15.0
8.0 18.0
9.0 13.0
8.0 16.0
8.0 13.0
9.0 14.0
4.0 7.0
1.0 7.0
0.0 3.0
0.0 5.0
0.0 4.0
0.0 9.0
4.0 13.0
6.0 14.0
6.0 12.0
4.0 12.0
5.0 8.0

Service Time
S(n)
*N/A*

PWROPPOOPRANWOIWNN®AGZOONW

Inter-arrival Time
T(n)

NOPNNOOOI[FPSHPNOND DO



1.18 Using QtsPlus Delay Analysis for Sample Single-Server Queue model in the Basic Model
category:

DELAY ANALYSIS FOR SAMPLE

SINGLE-SERVER QUEUE
This is a basic line waiting-time analysis for a sample G/G/1 queue
constructed from an input sequence of interarrival and service times.

Output:
Number of Observations 10 [ Clear Old Data ]
Total time horizon 60
Mean interarrival time 6
Arrival rate (1) 0.166666667 Put data below into two columns of equal length.
Mean service time 4.6 Enter data and then press "Solve" button.
Service rate (p) 0.217391304
Empirical traffic intensity (p) 76.67%
Average line delay (Wq) 1.7
Average system wait (W) 6.3
Customer Line Delays System Waits Service Time Inter-arrival Time

n Wq(n) W(n) S(n) T(n)

0 *N/A* *N/A* *N/A* 53

1 0.0 2.0 2. 5]

2 0.0 7.0 7. 5.

3 20 8.0 6. 5.

4 3.0 9.0 6. 5.

5 4.0 10.0 6. 5.

6 5.0 8.0 3. 5.

7 3.0 4.0 1. 5

8 0.0 4.0 4. 5

9 0.0 1.0 1. 5

10 0.0 10.0 10.

1.19  The following table lists various statistics associated with each customer. “# in System”
and “# in Queue” refer to the number of customers in the system and queue as seen by
the arriving customer.

Customer # / Service Start  Exit Time in # in # in

Arrival Time Time Time Queue System Queue
1 1.00 3.22 0.00 0 0
2 3.22 4.98 1.22 1 0
3 4.98 7.11 1.98 2 1
4 7.11 7.25 3.11 2 1
5 7.25 8.01 2.25 2 1
6 8.01 8.71 2.01 3 2
7 8.71 9.18 1.71 4 3
8 9.18 9.40 1.18 3 2
9 9.40 9.58 0.40 2 1
10 10.00 12.41 0.00 0 0
11 12.41 12.82 1.41 1 0
12 12.82 13.28 0.82 2 1
13 13.28 14.65 0.28 1 0
14 14.65 14.92 0.65 1 0
15 15.00 15.27 0.00 0 0

The values in the table are computed as follows:
o  The exit time is the service-start time plus the service duration.



o The service-start time is the maximum of the exit time of the previous customer
and the arrival time of the customer in question. (The first customer starts service
immediately upon arrival.)

The time in queue is the service-start time minus the arrival time.
The number in system is the number of previously arriving customers whose exit
time is after the arrival time of the customer in question.

o The number in queue is the number in system minus one, with a minimum value
of zero.

L,(JA) is the average of the last column. L((ZA) =12/15 = 0.8. L, is the total person minutes
spent in the queue (the sum of the “Time in Queue” column) divided by the total time

interval. L, = 17.02/15.27 = 1.1146. Note that L, # LY.



CHAPTER 2

Review of Stochastic Processes

2.1

2.2

The CDF and CCDF are evaluated as follows:

u=0 )

Fz)=Pr{X <z} = / e My = —e M| T =1 M
0

Fé(z) =1— F(zx) = e .

To compute E[X], use integration by parts (u = z, du = dz, dv = \e ™ ?dx, v = —e~*):
o0 =00 o0 —e*)‘f’: v=ee
E[X] :/ xhe N dr = —xe*)‘m}z_o —|—/ e Mdr =0+
0 B 0 A =0
1
)

To compute E[X?], use integration by parts (v = 22, du = 2xdz, dv = Xe Mdz, v =
-z
—e M)

E[X?] :/ 2 he ™ dr = —x%‘”’iigo +/ 2ze” M dx
0 0

2 oo _a 2 2

= — z = —F = —

0+ )\/0 xde  dx S [X] 2
2 1 1

From differential equation theory, the solution to d%—(tt)+¢(t)y(t) = (t) isy(t) = ce™ S oDt
e~ J o)t fe_f¢(t)dt‘/’(t)dt. So dpc‘l)it(t) + Apo(t) = 0;po(0) = 1.

Set ¢(t) = A and ¥(t) = 0 = po(t) = ce .

From the boundary condition: 1 = ce® = ¢ = 1. Therefore, py(t) = e~
L 4 Ay (t) = Apo(t) = Ae ™ p1(0) = 0.

Set ¢(t) = X and ¥(t) = Ae™™ = pi(t) = ce ™ + Ate M.

From the boundary condition: 0 = ce® +0 = ¢ = 0 = p1(t) = Ate .

At

9
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2.3

24

2l 4 Apa(t) = Api (1) = N2te™ 5 ps(0) = 0.

Set ¢(t) = A and ¥(t) = \2te ™M = po(t) = ce ™ + %e‘”.

From the boundary condition: ¢ = 0 = pa(t) = “F~e
230 1 Ap(t) = Apa(t) = 25~ py(0) = 0.
Set ¢(t) = X\ and ¥(t) = Lfe_/\t = p3(t) = ce M + (;%36_/\75

iti i — _ O
The boundary condition gives ¢ = 0 = p3(t) = “F-e~ "

Now assume p,_1(t) = (()‘nt) nre M. Set ¢(t) = X and ¥(t) = )(‘:Ltnl),le*” = pu(t) =

ce M + %e‘” and boundary condition gives ¢ = 0 = p,(t) = (’\;,)"
pult) = 5 7= A,n=0,12...
n!
> -7 0n > n
MN(t)(e) _ E[GGN(t)] _ Z T"e —T Z 7T6T€g _ e-r(eg_l)
n=0 n=0
dM 0
E[N()] = N (0) _ 76967(69—1)‘ -
do 0—0 0=0
d* My 4 (0)
BIN() ~ BIN@)?) = BN 0)?] ~ (EIN@) = @ 2
6=0
[Teeer(e —1) + 7_262967(69—1)]920 S . R -
0 t
| | | | | | |
| | | | | | |
At At At
— _
—
nAt

Divide the interval [0,¢] into n subintervals of length At, so that ¢ = n At. The probability
of one arrival in a subinterval is

p = Pr{one arrival in At} = AAt + o(At) =~ &
n

The probability of more than one arrival in a subinterval is o(At), which can be made
arbitrarily small. Assuming that there can be at most one arrival in a subinterval and
using the assumption of independence of non-overlapping intervals, the total number of
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arrivals in [0, ] is the sum of n Bernoulli trials. This follows a binomial distribution:

b(‘r’n7p): <;L)paj(1p)naj’ xzoﬁ]‘""’n

et D ey -y

- 1.(1_1/71)“.(1_%1)(711))1 <1_At)"(1_/\t)_z.

x!

So,
1

lim b(x;n,p) = —'()\t)“ge_’\t, x=0,1,...,
x!

n—00

which is the Poisson distribution.

Consider
since
Ns)=k N@)=k+n indep. NGs)=0 N@)=n
VY VYV VYV met | v VY|
| | | = | | |
0 K t 0 K t

Let P.{N(t) — N(s) =n} = q,(t, s).

So qn(t + At, s) = qn(t, $)[1 — AAL] + gn-1(t, $)AAL + o(At) n > 0.
qo(t + At,s) = qo(t, s)[1 — NAL] + o(At).

Rearranging & dividing by At, then taking lim At — 0 gives

W = =Aqn(t, 8) + Agn—1(t, s)
8(]0(t, 8) _
8t - )‘qo(ta S)

Solve in a similar manner to (2.5) & (2.8) by the general solution to a first order linear
differential equation was in Problem 1.2 solution. Here, however, the boundary conditions
are

(]0(5, S) =1, Qn(sv S) =0,n#0.
qo(t,s) = ce M + e M(0) = ce M

c
qo(s,s) =1=ce ?*

Therefore ¢ = e,lm = e and qo(t, s) = eMe M = e~ AE-9)

q(t,s) = ce M+ ef)‘t/e’\t)\ef)‘(tfs)dt =ce M4 ef)‘te)‘s)\/dt

= ce M+ Ne A7) L = e M 4 N MES)

As

q1(5,8) =0=ce ™ 4 As = ce™ = s = c = —\se™*
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Therefore
qu(t,s) = —Ase™e ™M f Ate M) = _\sem A7) 4 NpemAETS) = \(£ — 5)eANETS)

etc. ..

Therefore, g, (t,s) = p,(t — s). Similarly for g, (t + h,s+ h).

2.6 Let P,(t) = CDF of the arrival counting process.
Then,

P, (t) = Pr{(sum of n + 1Erlang interarrival times) > ¢}

oo

B / k)\(kAx)(nJrl)kfl

—k\z
eSS

since the sum of IID Erlang random variables is also an Erlang.

Let u =2 —t,
Pt) = / (k) (M HDE (y 4 ¢t DR —kAug—kXt g,
" [(n+ 1)k —1]!

0
_ 7 (kA) D ek (T Dk [y D= 1))
N [(n+ 1)k —1]! —~  [(n+1)k—1-1]! il

0 =

(n+1)k—1 n i — 0
_ (kX) Dkt o=kt . / ok, (nH)k—1—i g,

pard [(n+ 1k —1—4)1%! J,
_ R (RN (o DR~ 1)t _ “‘*%” (BAD)T
~ [(n+ 1)k —1—1ld! (kX)(nt1k—1 ~ 1!
The probability function of the counting process is thus,
(n+1)k—1 i nk—1 ;
_ _ (FAD)" g (FAL)" ke
Pu(t) = Po(t) — Pu_i(t) = ; et - ; e
(n+1)k—1 i
-y (RA)" ke
i
i=nk v
2.7 First, assume that n is even. Then,

Pu(t) = Pr{N(t) = n}
= Pr{n singles} + Pr{(n — 2) singles and 1 double}
+ Pr{(n — 4) singles and 2 doubles} + - - - + Pr{n/2 doubles}.
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Then,
) = SOy (M) By

(75 7) e 22”"2),;9" - p2
(M)

So,

pn(t) =e M { ()‘TZ) np” - 15()\5)71—21)!19”_2(1 )
+m;o”_4(l —p)P 4 ((?f/);)/,z (1 —p)”/Q}
= ”f k!ﬁf);zyp”%“ 2

Similarly, if n is odd,

Pu(t) = Pr{N(t) = n}
= Pr{n singles} + Pr{(n — 2) singles and 1 double}
+ Pr{(n — 4) singles and 2 doubles}
+ -+ Pr{l single and (n — 1)/2 doubles}.

Proceeding in the same manner gives

2.8 (a) Denote respective first recurrence times as 77 and T5. The joint PDF is f(t1,t2) =
Ae MBL \ge~ 22t gince the processes are independent.
T2

T,<T,




