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First-Order Differential Equations

2.1

 1.(a)

(b) All solutions seem to approach a line in the region where the negative and
positive slopes meet each other.

(c) µ(t) = e
∫
3 dt = e3t. Thus e3t(y′ + 3y) = e3t(t+ e−2t) or (ye3t)′ = te3t + et. Inte-

gration of both sides yields ye3t = te3t/3− e3t/9 + et + c, where integration by
parts is used on the right side, with u = t and dv = e3tdt. Division by e3t gives
y(t) = ce−3t + t/3− 1/9, so y approaches t/3− 1/9 as t→∞. This is the line
identified in part (b).
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 2.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.

(c) The integrating factor is µ(t) = e−2t, and hence y(t) = t3e2t/3 + c e2t. It is
evident that all solutions increase at an exponential rate.

 3.(a)

(b) All solutions seem to converge to the function y0(t) = 1 .

(c) The integrating factor is µ(t) = et, and hence y(t) = t2e−t/2 + 1 + c e−t. It is
clear that all solutions converge to the specific solution y0(t) = 1 .
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 4.(a)

(b) Based on the direction field, the solutions eventually become oscillatory.

(c) The integrating factor is µ(t) = e
∫
(1/t) dt = eln t = t , so (ty)′ = 3t cos 2t, and

integration by parts yields the general solution y(t) = (3/4t) cos 2t+ (3/2) sin 2t+
c/t, in which c is an arbitrary constant. As t becomes large, all solutions converge
to the function y1(t) = 3(sin 2t)/2.

5.(a)

(b) If y(0) > −3, solutions eventually have positive slopes, and hence increase with-
out bound. If y(0) ≤ −3, solutions have negative slopes and decrease without bound.

(c) The integrating factor is µ(t) = e−
∫
2dt = e−2t. The differential equation can

be written as e−2ty ′ − 2e−2ty = 3e−t, that is, (e−2ty)′ = 3e−t. Integration of both
sides of the equation results in the general solution y(t) = −3et + c e2t. It follows
that all solutions will increase exponentially if c > 0 and will decrease exponentially
if c ≤ 0. Letting c = 0 and then t = 0, we see that the boundary of these behaviors
is at y(0) = −3.
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6.(a)

(b) For y > 0 , the slopes are all positive, and hence the corresponding solutions
increase without bound. For y < 0 , almost all solutions have negative slopes, and
hence solutions tend to decrease without bound.

(c) First divide both sides of the equation by t (t > 0). From the resulting standard
form, the integrating factor is µ(t) = e−

∫
(1/t) dt = 1/t . The differential equation

can be written as y ′/t− y/t2 = t e−t , that is, ( y/t)′ = t e−t. Integration leads to
the general solution y(t) = −te−t + c t . For c 6= 0 , solutions diverge, as implied by
the direction field. For the case c = 0 , the specific solution is y(t) = −te−t, which
evidently approaches zero as t → ∞ .

 7.(a)

(b) The solutions appear to be oscillatory.

(c) The integrating factor is µ(t) = et, so (ety)′ = 5et sin 2t. To integrate the right
side we can integrate by parts (twice), use an integral table or use a symbolic
computational software to find y(t) = sin 2t− 2 cos 2t+ c e−t. It is evident that all
solutions converge to the specific solution y0(t) = sin 2t− 2 cos 2t.
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8.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.

(c) The integrating factor is µ(t) = et/2. The differential equation can be written
as et/2y ′ + et/2y/2 = 3t2/2 , that is, (et/2 y/2)′ = 3t2/2. Integration of both sides
of the equation results in the general solution y(t) = 3t2 − 12t+ 24 + c e−t/2. It
follows that all solutions converge to the specific solution 3t2 − 12t+ 24 .

 9. µ(t) = e−t, so (e−ty)′ = 2tet and thus e−ty = 2
∫
tet dt+ c = 2(tet −

∫
et dt) +

c = 2(tet − et) + c. Thus y(t)=2(t−1)e2t+cet, so setting t = 0 we have 1 = −2 + c,
or c=3. Hence y(t)=2(t− 1)e2t + 3et.

10. The integrating factor is µ(t) = e2t. After multiplying both sides by µ(t),
the equation can be written as (e2t y)′ = t . Integrating both sides of the equation
results in the general solution y(t) = t2e−2t/2 + c e−2t. Invoking the specified con-
dition, we require that e−2/2 + c e−2 = 0 . Hence c = −1/2 , and the solution to
the initial value problem is y(t) = (t2 − 1)e−2t/2 .

11. The integrating factor is µ(t) = e
∫
(2/t) dt = t2 . Multiplying both sides by µ(t),

the equation can be written as (t2 y)′ = cos t . Integrating both sides of the equation
results in the general solution y(t) = sin t/t2 + c t−2. Substituting t = π and setting
the value equal to zero gives c = 0 . Hence the specific solution is y(t) = sin t/t2.

 12. µ(t) = e
∫
(t+1)/t dt = e1+ln t = tet.
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 13.(a)

The solutions appear to diverge from an apparent oscillatory solution. From the
direction field, the critical value of the initial condition seems to be a0 = −1 . For
a > −1 , the solutions increase without bound. For a < −1 , solutions decrease
without bound.

(b) The integrating factor is µ(t) = e−t/2, so (e−t/2y)′ = 2e−t/2 cos t. Integrating
(see comments in Problem 7) and dividing by e−t/2 yields the general solution
y(t) = (8 sin t− 4 cos t)/5 + c et/2. Thus y(0) = −4/5 + c = a, or c = a+ 4/5 and
y(t) = −4 cos t/5 + 8 sin t/5 + (a+ 4/5)et/2.

(c) If a+ 4/5 = 0, then the solution is oscillatory for all t, while if a+ 4/5 6= 0, the
solution is unbounded as t→∞. Thus a0 = −4/5.

14.(a)

Solutions appear to grow infinitely large in absolute value, with signs depending on
the initial value y(0) = a0 . The direction field appears horizontal for a0 ≈ −1/8 .

(b) Dividing both sides of the given equation by 3, the integrating factor is
µ(t) = e−2t/3 . Multiplying both sides of the original differential equation by µ(t)
and integrating results in y(t) = (2 e2t/3 − 2 e−πt/2 + a(4 + 3π) e2t/3)/(4 + 3π). The
qualitative behavior of the solution is determined by the terms containing e2t/3 :
2 e2t/3 + a(4 + 3π) e2t/3. The nature of the solutions will change when 2 + a(4 +
3π) = 0 . Thus the critical initial value is a0 = −2/(4 + 3π) .
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(c) In addition to the behavior described in part (a), when y(0) = −2/(4 + 3π),
the solution is y(t) = (−2 e−πt/2)/(4 + 3π), and that specific solution will converge
to y = 0 .

15.(a)

As t → 0 , solutions increase without bound if y(1) = a > 0.4 , and solutions dec-
rease without bound if y(1) = a < 0.4 .

(b) The integrating factor is µ(t) = e
∫
(t+1)/t dt = t et. The general solution of the

differential equation is y(t) = t e−t + c e−t/t . Since y(1) = a, we have that 1 +
c = ae. That is, c = ae− 1. Hence the solution can also be expressed as y(t) =
t e−t + (ae− 1) e−t/t . For small values of t , the second term is dominant. Setting
ae− 1 = 0 , the critical value of the parameter is a0 = 1/e .

(c) When a = 1/e , the solution is y(t) = t e−t, which approaches 0 as t → 0 .

 16.(a)

(b) µ(t) = e
∫
cos t/ sin t dt = eln sin t = sin t and thus (y sin t)′ = et. Hence y sin t =

et + c or y = (et + c)/ sin t. Setting t = 1 and y = a we get c = a sin 1− e so y(t) =
(et − e+ a sin 1)/ sin t. If y(t) is to remain finite as t→ 0 the numerator, et − e+
a sin 1, must approach 0 as t→ 0 and hence a0 = (e− 1)/ sin 1.

(c) Using a0 we have y(t) = (et − 1)/ sin t, which approaches 1 as t→ 0, using
L’Hospital’s rule.
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17. The integrating factor is µ(t) = e
∫
(1/2) dt = et/2. Therefore the general solution

is y(t) = (4 cos t+ 8 sin t)/5 + c e−t/2. Invoking the initial condition, the specific
solution is y(t)=(4 cos t+8 sin t−9 e−t/2)/5 . Differentiating, it follows that y ′(t) =
(−4 sin t+ 8 cos t+ 4.5 e−t/2)/5 and y ′′(t) = (−4 cos t− 8 sin t− 2.25 e−t/2)/5. Set-
ting y ′(t) = 0 , the first solution is t1 = 1.3643 , which gives the location of the first
stationary point. Since y ′′(t1) < 0 , the first stationary point in a local maximum.
The coordinates of the point are (1.3643 , 0.82008).

18. The integrating factor is µ(t) = e
∫
(2/3) dt = e2t/3, and the differential equa-

tion can be written as (e2t/3 y)′ = e2t/3 − t e2t/3/2 . The general solution is y(t) =
(21− 6t)/8 + c e−2t/3. Imposing the initial condition, we have y(t) = (21− 6t)/8 +
(y0 − 21/8)e−2t/3. Since the solution is smooth, the desired intersection will be
a point of tangency. Taking the derivative, y ′(t) = −3/4− (2y0 − 21/4)e−2t/3/3.
Setting y ′(t) = 0 , the solution is t1 = (3/2) ln [(21− 8y0)/9]. Substituting into
the solution, the respective value at the stationary point is y(t1) = 3/2 + (9/4) ln
3− (9/8) ln(21− 8y0). Setting this result equal to zero, we obtain the required
initial value y0 = (21− 9 e4/3)/8 ≈ −1.643 .

19.(a) The integrating factor is µ(t) = et/4, and the differential equation can be
written as (et/4 y)′ = 3 et/4 + 2 et/4 cos 2t. After integration, we get that the general
solution is y(t) = 12 + (8 cos 2t+ 64 sin 2t)/65 + ce−t/4. Invoking the initial condi-
tion, y(0) = 0 , the specific solution is y(t)=12+(8 cos 2t+64 sin 2t−788 e−t/4)/65.
As t → ∞ , the exponential term will decay, and the solution will oscillate about
an average value of 12 , with an amplitude of 8/

√
65 .

(b) Solving y(t) = 12, we obtain the desired value t ≈ 10.0658.

 20. (e−ty)′ = e−t + 3e−t sin t so e−ty = −e−t − 3e−t(sin t+ cos t)/2 + c or y(t) =
−1− 3(sin t+ cos t)/2 + cet. Thus y(0) = −1− 3/2 + c = y0 or c = y0 + 5/2. Now,
if y(t) is to remain bounded as t→∞, we must have c = 0 so that y0 = −5/2.

21. The integrating factor is µ(t) = e−3t/2, and the differential equation can be
written as (e−3t/2 y)′ = 3t e−3t/2 + 2 e−t/2. The general solution is y(t) = −2t−
4/3− 4 et + c e3t/2. Imposing the initial condition, y(t) = −2t− 4/3− 4 et + (y0 +
16/3) e3t/2. Now as t → ∞ , the term containing e3t/2 will dominate the solution.
Its sign will determine the divergence properties. Hence the critical value of the
initial condition is y0 =−16/3. The corresponding solution, y(t)=−2t−4/3−4 et,
will also decrease without bound.

Note on Problems 24, 26, and 27:

Let g(t) be given, and consider the function y(t) = y1(t) + g(t), in which y1(t)→ 0
as t→∞ . Differentiating, y ′(t) = y ′1(t) + g ′(t) . Letting a be a constant, it follows
that y ′(t) + ay(t) = y ′1(t) + ay1(t) + g ′(t) + ag(t). Note that the hypothesis on the
function y1(t) will be satisfied, if y ′1(t) + ay1(t) = 0 . That is, y1(t) = c e−at. Hence
y(t) = c e−at + g(t), which is a solution of the equation y ′ + ay = g ′(t) + ag(t). For
convenience, choose a = 1 .
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 22. Write the first term of Eq.(47) as (
∫ t
0
es

2/4 ds)/et
2/4. In applying L’Hospital’s

rule, the derivative of the numerator term is et
2/4 by the Fundamental Theorem

of Calculus. The derivative of the denominator is (t/2)et
2/4 and thus the limit of

both terms in Eq.(47) is 0 as t→∞.

 23. µ(t) = eat so the differential equation can be written as (eaty)′ = beate−λt =

be(a−λ)t. If a 6= λ, then integration and solution for y yields y = [b/(a− λ)]e−λt +
ce−at. Then limt→∞ y is zero since both λ and a are positive numbers. If a = λ,
then the differential equation becomes (eaty)′ = b, which yields y = (bt+ c)e−λt as
the solution. L’Hospital’s rule gives

lim
t→∞

y = lim
t→∞

bt+ c

eλt
= lim
t→∞

b

λeλt
= 0.

24. Here g(t) = 3 , and we consider the linear equation y ′ + y = 3 . The integrating
factor is µ(t) = et, and the differential equation can be written as (et y)′ = 3et. The
general solution is y(t) = 3 + c e−t.

 25. There is no unique answer for this situation. One possible answer is to assume

y(t) = ce−2t + 3− t (which satisfies the given condition), then y′(t) = −2ce−2t − 1.
Eliminating ce−2t between the two equations yields y′ + 2y = 5− 2t.

26. Here g(t) = 2t− 5. Consider the linear equation y ′ + y = 2 + 2t− 5. The inte-
grating factor is µ(t) = et, and the differential equation can be written as (et y)′ =
(2t− 3)et. The general solution is y(t) = 2t− 5 + c e−t.

27. g(t) = 4− t2. Consider the linear equation y ′ + y = 4− 2t− t2 .The integrating
factor is µ(t) = et, and the equation can be written as (et y)′ = (4− 2t− t2)et. The
general solution is y(t) = 4− t2 + c e−t.

28.(a) Differentiating y and using the fundamental theorem of calculus we obtain
that y′ = Ae−

∫
p(t)dt · (−p(t)), and then y′ + p(t)y = 0.

(b) Differentiating y we obtain that

y′ = A′(t)e−
∫
p(t)dt +A(t)e−

∫
p(t)dt · (−p(t)).

If this satisfies the differential equation then

y′ + p(t)y = A′(t)e−
∫
p(t)dt = g(t)

and the required condition follows.

(c) Let us denote µ(t) = e
∫
p(t)dt. Then clearly A(t) =

∫
µ(t)g(t)dt, and after sub-

stitution y =
∫
µ(t)g(t)dt · (1/µ(t)), which is just Eq. (33).

 29. By Problem 28, y(t) = A(t)e−
∫
(−2) dt = A(t)e2t. Differentiating y(t) and sub-

stituting into the differential equation yields A′(t) = t2 since the terms involving
A(t) add to zero. Thus A(t) = t3/3 + c, which substituted into y(t) yields the
solution.
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30. We assume a solution of the form y = A(t)e−
∫
(1/t) dt = A(t)e− ln t = A(t)t−1,

where A(t) satisfies A′(t) = 3t cos 2t. This implies that

A(t) =
3 cos 2t

4
+

3t sin 2t

2
+ c

and the solution is

y =
3 cos 2t

4t
+

3 sin 2t

2
+
c

t
.

2.2

Problems 1 through 16 follow the pattern of the examples worked in this section.
The first eight problems, however, do not have an initial condition, so the integra-
tion constant c cannot be found.

 1. Write the equation in the form ydy = x2dx. Integrating the left side with respect

to y and the right side with respect to x yields y2/2 = x3/3 + C, or 3y2 − 2x3 = c.

2. The differential equation may be written as y−2dy = − sin x dx . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain
the relation −y−1= cos x+ c . That is, (c− cos x)y = 1, in which c is an arbitrary
constant. Solving for the dependent variable, explicitly, y(x) = 1/(c− cos x) .

3. Write the differential equation as cos−2 2y dy = cos2 x dx, which also can be writ-
ten as sec2 2y dy = cos2 x dx. Integrating both sides of the equation, with respect
to the appropriate variables, we obtain the relation tan 2y = sin x cos x+ x+ c .

 4. We need x 6= 0 and |y| < 1 for this problem to be defined. Separating the variables

we get (1− y2)−1/2 dy = x−1 dx. Integrating each side yields arcsin y = ln |x|+ c,
so y = sin(ln |x|+ c), x 6= 0 (note that |y| < 1). Also, y = ±1 satisfy the differential
equation, since both sides are zero.

5. The differential equation may be written as (y + ey)dy=(x− e−x)dx . Integra-
ting both sides of the equation, with respect to the appropriate variables, we obtain
the relation y2 + 2 ey = x2 + 2 e−x + c .

6. Write the differential equation as (1 + y2)dy = x2 dx . Integrating both sides of
the equation, we obtain the relation y + y3/3 = x3/3 + c.

 7. Write the differential equation as y−1 dy = x−1 dx. Integrating both sides of
the equation, we obtain the relation ln |y| = ln |x|+ c. Solving for y explicitly gives
y = kx. Note that k may be positive or negative due to the absolute values in the
integrated equation.

 8. Write the differential equation as y dy = −x dx. Integrating both sides of the

equation, we obtain the relation (1/2)y2 = −(1/2)x2 + c. The explicit form of the
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solution is y(x) = ±
√
x2 + c. The initial condition would then be used to determine

whether the positive of negative solution is to be used for a specific initial value
problem.

9.(a) The differential equation is separable, with y−2dy = (1− 2x)dx. Integration
yields −y−1 = x− x2 + c. Substituting x = 0 and y = −1/6, we find that c = 6.
Hence the specific solution is y = 1/(x2 − x− 6).

(b)

(c) Note that x2 − x− 6 = (x+ 2)(x− 3) . Hence the solution becomes singular at
x = −2 and x = 3 , so the interval of existence is (−2, 3).

 10.(a) Separating the variables we get ydy = (1− 2x)dx, so y2/2 = x− x2 + c.

Setting x = 1 and y = −2 we have c = 2 and thus y2 = 2x− 2x2 + 4 or y(x) =
−
√

2x− 2x2 + 4 . The negative square root must be used since y(1) = −2.

(b)

(c) Rewriting y(x) as y(x) = −
√

2(2− x)(x+ 1), we see that y is defined for −1 ≤
x ≤ 2. However, since y′ does not exist for x = −1 or x = 2, the solution is valid
only for the open interval −1 < x < 2. The interval of existence is (−1, 2).

12.(a) Write the differential equation as r−2dr = θ−1 dθ . Integrating both sides
of the equation results in the relation −r−1 = ln θ + c . Imposing the condition
r(1)=2 , we obtain c = −1/2 . The explicit form of the solution is r=2/(1−2 ln θ).
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(b)

(c) Clearly, the solution makes sense only if θ > 0 . Furthermore, the solution
becomes singular when ln θ = 1/2 , that is, θ =

√
e .

 14.(a) Separating variables and integrating yields y + y2 = x2 + c. Setting y = 0

when x = 2 yields c = −4 or y2 + y = x2 − 4. To solve for y complete the square
on the left side by adding 1/4 to both sides. This yields y2 + y + 1/4 = x2 − 4 + 1/4
or (y + 1/2)2 = x2 − 15/4. Taking the square root of both sides yields y + 1/2 =
±
√
x2 − 15/4, where the positive square root must be taken in order to satisfy the

initial condition. Thus y(x) = −1/2 +
√
x2 − 15/4 , which is defined for x2 ≥ 15/4

or x ≥
√

15/2.

(b)

 15.(a) Separating variables gives (2y − 5)dy = (3x2 − ex)dx and integration then

gives y2 − 5y = x3 − ex + c. Setting x = 0 and y = 1 we have 1− 5 = 0− 1 + c,
or c = −3 and thus y2 − 5y − (x3 − ex − 3) = 0. Using the quadratic formula then
gives y(x) = 5/2−

√
x3 − ex + 13/4 , where the negative square root is chosen so

that y(0) = 1.
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(b)

(c) The solution is valid for approximately −1.45 < x < 4.63. These values are
found by estimating the roots of 4x3 − 4ex + 13 = 0.

 16.(a) We start with cos 3y dy = − sin 2x dx and integrate to get (1/3) sin 3y =
(1/2) cos 2x+ c. Setting y = π/3 when x = π/2 (from the initial condition) we
find that 0 = −1/2 + c or c = 1/2, so that (1/3) sin 3y = (1/2) cos 2x+ 1/2 = cos2 x
(using the appropriate trigonometric identity). To solve for y we must choose the
branch that passes through the point (π/2, π/3), so y(x) = (π − arcsin(3 cos2 x))/3.

(b)

(c) The solution in part (a) is defined only for 0 ≤ 3 cos2 x ≤ 1, or −
√

1/3 ≤ cosx ≤√
1/3. Taking the indicated square roots and then finding the inverse cosine of each

side yields 0.9553 ≤ x ≤ 2.1863, or |x− π/2| ≤ 0.6155, as the appropriate interval.

 17. We have (3y2 − 6y)dy = (1 + 3x2)dx so that y3 − 3y2 = x+ x3 − 2, once the
initial condition is used. From the differential equation, the integral curve will have
a vertical tangent when 3y2 − 6y = 0, or y = 0, 2. For y = 0 we have x3+x−2=0,
which is satisfied for x = 1, which is the only zero of the function w = x3 + x− 2.
Likewise, for y = 2, x = −1. Thus the solution is valid on |x| < 1.

18. The differential equation can be written as (3y2 − 4)dy = 3x2dx. Integrating
both sides, we obtain y3 − 4y = x3 + c. Imposing the initial condition, the specific
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solution is y3 − 4y = x3 − 1. Referring back to the differential equation, we find
that y ′ →∞ as y → ±2/

√
3. The respective values of the abscissas are x ≈ −1.276,

1.598 . Hence the solution is valid for −1.276 < x < 1.598 .

 21.(a) By sketching the direction field or by using the differential equation we note
that y′ < 0 for y > 4 and y′ approaches zero as y approaches 4. For 0 < y < 4,
y′ > 0 and again approaches 0 as y approaches 4. Thus limt→∞ y = 4 if y0 > 0. For
y0 < 0, y′ < 0 for all y and hence y becomes negatively unbounded as t increases.
If y0 = 0, then y′ = 0 for all t, so y = 0 for all t.

(b) Separating variables and using a partial fraction expansion we obtain that
(1/y − 1/(y − 4)) dy = (4/3)t dt. Hence ln |y/(y − 4)| = 2t2/3 + c1, and therefore

|y/(y − 4)| = ec1e2t
2/3 = ce2t

2/3, where c is positive. For y(0) = y0 = 0.5, this gives
us the equation |0.5/(0.5− 4)| = c and thus c = 1/7. Using this value for c and

solving for y yields y(t) = 4/(1 + 7e−2t
2/3). Setting this equal to 3.98 and solving

for t yields t = 3.29527.

22.(a) Write the differential equation as y−1(4− y)−1dy = t(1 + t)−1dt . Integrat-
ing both sides of the equation, we obtain ln |y| − ln |y − 4| = 4t− 4 ln |1 + t|+ c .
Taking the exponential of both sides |y/(y − 4)| = c e4t/(1 + t)4. It follows that as
t → ∞ , |y/(y − 4)| = |1 + 4/(y − 4)| → ∞ . That is, y(t) → 4 .

(b) Setting y(0) = 2 , we obtain that c = 1. Based on the initial condition, the solu-
tion may be expressed as y/(y − 4) = −e4t/(1 + t)4. Note that y/(y − 4) < 0 , for
all t ≥ 0. Hence y < 4 for all t ≥ 0. Referring back to the differential equation, it
follows that y ′ is always positive. This means that the solution is monotone increas-
ing. We find that the root of the equation e4t/(1 + t)4 = 399 is near t = 2.844 .

(c) Note the y(t) = 4 is an equilibrium solution. Examining the local direction
field we see that if y(0) > 0 , then the corresponding solutions converge to y = 4 .
Referring back to part (a), we have y/(y−4) = [y0/(y0−4)] e4t/(1 + t)4, for y0 6= 4 .
Setting t = 2 , we obtain y0/(y0 − 4) = (3/e2)4y(2)/(y(2)− 4). Now since the func-
tion f(y) = y/(y − 4) is monotone for y < 4 and y > 4 , we need only solve the
equations y0/(y0 − 4) = −399(3/e2)4 and y0/(y0 − 4) = 401(3/e2)4. The respective
solutions are y0 = 3.6622 and y0 = 4.4042 .

 23. Separating variables yields (cy+d)/(ay+b) dy=dx. If a 6= 0 and ay+b 6= 0 then
dx = (c/a+ (ad− bc)/(a(ay + b)) dy. Integration then yields the desired answer.

 24. Separating variables yields dQ/(a+ bQ) = rdt. If b 6= 0, then integrating gives
ln(|a+ bQ|)/b = rt+ c; solving for Q and applying the initial condition yield

Q(t) =
(
Q0 +

a

b

)
ebrt − a

b

As t→∞, Q(t)→∞ if br > 0 and Q0 + a
b > 0, Q(t)→ −∞ if br > 0 and Q0 + a

b <
0, Q(t)→ −ab if br < 0 or if br > 0 and Q0 + a

b = 0, and Q(t)→ Q0 if br = 0. If
b = 0 then Q(t) = art+Q0 and Q(t)→∞ if ar > 0, Q(t)→ −∞ if ar < 0, and
Q(t)→ Q0 if ar = 0.
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 25.(a)
dy

dx
=
y − 4x

x− y
=
x
(y
x
− 4
)

x
(

1− y

x

) =

y

x
− 4

1− y

x

(b) From v = y/x we find that y = xv. Thus
dy

dx
= v + x

dv

dx
.

(c) Combining the results of (a) and (b) produces v + x
dv

dx
=
v − 4

1− v
, which may be

solved to find that x
dv

dx
=
v − 4

1− v
− v =

v − 4− v(1− v)

1− v
=
v2 − 4

1− v
.

(d) Separating variables yields (1− v)/(v2 − 4)dv = dx/x. A partial fraction expan-
sion on the leftt side of the equation gives(

1

4(v − 2)
− 3

4(v + 2)

)
dv =

dx

x
or

(
− 1

v − 2
+

3

v + 2

)
dv = −4dx

x

Integration leads to − ln |v − 2|+ 3 ln |v + 2| = −4 ln |x|+ c. Combining the loga-
rithmic terms and exponentiating both sides of the equation produces the implicit
relationship |v + 2|3|v − 2| = k/x4.

(e) Substituting v = y/x in the implicit relationship given in (d) and then mutli-
plying each side by x4 gives the implicit relationship (y + 2x)3(y − 2x) = k.

(f)

- 2 -1 1 2

- 2

- 1

1

2

 28.(a) Observe that (4y − 3x)/(2x− y) = (4(y/x)− 3)/(2− y/x). Hence the dif-
ferential equation is homogeneous.

(b) Substituting y = vx we get v + xv′ = (4v − 3)/(2− v) which can be rewrit-
ten as xv′ = (v2 + 2v − 3)/(2− v). Note that v = −3 and v = 1 are solutions of
this equation. For v 6= 1, −3 separating variables gives (2− v)/((v + 3)(v − 1)) dv =
(1/x) dx. Applying a partial fraction decomposition to the left side we obtain
(1/(4(v − 1))− 5/(4(v + 3))) dv = (1/x) dx, and upon integrating both sides we
find that (1/4) ln |v − 1| − (5/4) ln |v + 3| = ln |x|+ c. Substituting for v and per-
forming some algebraic manipulations we get the solution in the implicit form
|y − x| = c|y + 3x|5. v = 1 and v = −3 yield y = x and y = −3x, respectively, as
solutions also.
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(c) The integral curves are symmetric with respect to the origin.

29.(a) Observe that −(4x+ 3y)/(2x+ y) = −2− (y/x) [2 + (y/x)]
−1

. Hence the
differential equation is homogeneous.

(b) The substitution y = x v results in v + x v ′ = −2− v/(2 + v). The transformed
equation is v ′ = −(v2 + 5v + 4)/(2 + v)x . This equation is separable, with general
solution (v + 4)2 |v + 1| = c/x3. In terms of the original dependent variable, the
solution is (4x+ y)2 |x+ y| = c.

(c) The integral curves are symmetric with respect to the origin.

30.(a) The differential equation can be expressed as y ′ = (1/2)(y/x)−1 − (3/2)(y/x).
Hence the equation is homogeneous. The substitution y = xv results in xv ′ =
(1− 5v2)/2v. Separating variables, we have 2vdv/(1− 5v2) = dx/x.

(b) Integrating both sides of the transformed equation yields −(ln |1− 5v2|)/5 =

ln |x|+ c, that is, 1− 5v2 = c/ |x|5. In terms of the original dependent variable,

the general solution is 5y2 = x2 − c/ |x|3.
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(c) The integral curves are symmetric with respect to the origin.

31.(a) The differential equation can be expressed as y ′ = (3/2)(y/x)− (1/2)(y/x)−1.
Hence the equation is homogeneous. The substitution y = x v results in x v ′ =
(v2 − 1)/2v, that is, 2vdv/(v2 − 1) = dx/x.

(b) Integrating both sides of the transformed equation yields ln
∣∣v2 − 1

∣∣ = ln |x|+ c,
that is, v2 − 1 = c |x|. In terms of the original dependent variable, the general
solution is y2 = c x2 |x|+ x2.

(c) The integral curves are symmetric with respect to the origin.

2.3

1. Let Q(t) be the amount of dye in the tank at time t. Clearly, Q(0) = 200 g.
The differential equation governing the amount of dye is Q′(t) = −2Q(t)/200. The
solution of this separable equation is Q(t) = Q(0)e−t/100 = 200e−t/100. We need
the time T such that Q(T ) = 2 g. This means we have to solve 2 = 200e−T/100 and
we obtain that T = −100 ln(1/100) = 100 ln 100 ≈ 460.5 min.

 2. Let S(t) be the amount of salt that is present at any time t, then S(0) = 0 is the
original amount of salt in the tank, 2γ is the amount of salt entering per minute,
and 2(S/120) is the amount of salt leaving per minute (all amounts measured in
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grams). Thus dS/dt = 2γ − 2S/120, S(0) = 0. This is a linear equation, which has
et/60 as its integrating factor. Thus the general solution is S(t) = 120γ + ce−t/60.
S(0) = 0 gives c = −120γ, so S(t) = 120γ(1− e−t/60) and hence S(t)→ 120γ grams
as t→∞.

3.(a) Let Q be the amount of salt in the tank. Salt enters the tank of water at a
rate of 2 (1/4)(1 + (1/2) sin t) = 1/2 + (1/4) sin t oz/min. It leaves the tank at a
rate of 2Q/100 oz/min. Hence the differential equation governing the amount of
salt at any time is

dQ

dt
=

1

2
+

1

4
sin t− Q

50
.

The initial amount of salt is Q0 = 50 oz. The governing differential equation is
linear, with integrating factor µ(t) = et/50. Write the equation as (et/50Q)′ =
et/50(1/2 + (1/4) sin t). The specific solution is Q(t) = 25 + (12.5 sin t− 625 cos t+
63150 e−t/50)/2501 oz.

(b)

(c) The amount of salt approaches a steady state, which is an oscillation of approx-
imate amplitude 1/4 about a level of 25 oz.

4.(a) Using the Principle of Conservation of Energy, the speed v of a particle falling
from a height h is given by

1

2
mv2 = mgh .

(b) The outflow rate is (outflow cross-section area)×(outflow velocity): αa
√

2gh .

At any instant, the volume of water in the tank is V (h) =
∫ h
0
A(u)du. The time rate

of change of the volume is given by dV/dt = (dV/dh)(dh/dt) = A(h)dh/dt. Since
the volume is decreasing, dV/dt = −αa

√
2gh .

(c) With A(h) = π, a = 0.01π , α = 0.6 , the differential equation for the water level
h is π(dh/dt) = −0.006π

√
2gh , with solution h(t)=0.000018gt2 − 0.006

√
2gh(0)

t+h(0). Setting h(0) = 3 and g = 9.8 , h(t) = 0.0001764 t2 − 0.046 t+ 3, resulting
in h(t) = 0 for t ≈ 130.4 s.
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5.(a) The equation governing the value of the investment is dS/dt = r S . The value
of the investment, at any time, is given by S(t) = S0e

rt. Setting S(T ) = 2S0 , the
required time is T = ln(2)/r .

(b) For the case r = .07 , T ≈ 9.9 yr.

(c) Referring to part (a), r = ln(2)/T . Setting T = 8 , the required interest rate is
to be approximately r = 8.66%.

 6.(a) Set S0 = 0 in Eq.(16) (or solve Eq.(15) with S(0) = 0).

(b) Set r = 0.075, t = 40 and S(t) = $1, 000, 000 in the answer to part (a) and then
solve for k.

(c) Set k = $2, 000, t = 40 and S(t) = $1, 000, 000 in the answer to part (a) and
then solve numerically for r.

 7. Let S(t) be the amount of the loan remaining at time t, then dS/dt = 0.1S − k,

S(0) = $8, 000. Solving this for S(t) yields S(t) = 8000e0.1t − 10k(e0.1t − 1). Set-
ting S = 0 and substitution of t = 3 gives k = $3, 086.64 per year. For 3 years this
totals $9, 259.92, so $1, 259.92 has been paid in interest.

8.(a) Using Eq.(15) we have dS/dt− 0.005S = −(800 + 10t), S(0) = 150, 000. Using
an integrating factor and integration by parts we obtain that S(t) = 560, 000−
410, 000e0.005t + 2000t. Setting S(t) = 0 and solving numerically for t yields
t = 146.54 months.

(b) The solution we obtained in part (a) with a general initial condition S(0)=S0 is
S(t)=560, 000− 560, 000e0.005t+S0e

0.005t+2000t. Solving the equation S(240) = 0
yields S0 = 246, 758.

9.(a) Let Q ′ = −r Q . The general solution is Q(t) = Q0e
−rt. Based on the defini-

tion of half-life, consider the equation Q0/2 = Q0e
−5730 r. It follows that −5730 r =

ln(1/2), that is, r = 1.2097× 10−4 per year.

(b) The amount of carbon-14 is given by Q(t) = Q0 e
−1.2097×10−4t.

(c) Given that Q(T ) = Q0/5 , we have the equation 1/5 = e−1.2097×10
−4T . Solving

for the decay time, the apparent age of the remains is approximately T = 13, 305
years.

 10.(a) We have (1/y)dy = (0.1 + 0.2 sin t)dt, by separating variables, and thus y(t) =

ce0.1t−0.2 cos t. y(0) = 1 gives c = e0.2, so y(t) = e0.2+0.1t−0.2 cos t. Setting y = 2
yields ln 2 = 0.2 + 0.1τ − 0.2 cos τ , which can be solved numerically to give τ =
2.9632. If y(0) = y0 then as above, y(t) = y0e

0.2+0.1t−0.2 cos t. Thus if we set y = 2y0
we get the same numerical equation for τ and hence the doubling time has not
changed.

(b) The differential equation is dy/dt = y/10 , with solution y(t) = y(0)et/10. The
doubling time is given by τ = 10 ln 2 ≈ 6.9315.
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(c) Consider the differential equation dy/dt = (0.5 + sin(2πt)) y/5 . The equation is
separable, with (1/y)dy = (0.1 + 1

5 sin(2πt))dt . Integrating both sides, with respect
to the appropriate variable, we obtain ln y = (πt− cos(2πt))/10π + c . Invoking
the initial condition, the solution is y(t) = e(1+πt−cos(2πt))/10π. The doubling-time
is τ ≈ 6.3804 . The doubling time approaches the value found in part (b).

(d)

11.(a) The differential equation dy/dt = r(t) y − k is linear, with integrating factor
µ(t) = e−

∫
r(t)dt. Write the equation as (µ y)′ = −k µ(t) . Integration of both sides

yields the general solution y =
[
−k
∫
µ(τ)dτ + y0 µ(0)

]
/µ(t) . In this problem, the

integrating factor is µ(t) = e(cos t−t)/5.

(b) The population becomes extinct, if y(t∗) = 0 , for some t = t∗. Referring to
part (a), we find that y(t∗) = 0 when∫ t∗

0

e(cos τ−τ)/5dτ = 5 e1/5yc.

It can be shown that the integral on the left hand side increases monotonically, from
zero to a limiting value of approximately 5.0893 . Hence extinction can happen only
if 5 e1/5y0 < 5.0893 . Solving 5e1/5yc = 5.0893 yields yc = 0.8333.

(c) Repeating the argument in part (b), it follows that y(t∗) = 0 when∫ t∗

0

e(cos τ−τ)/5dτ =
1

k
e1/5yc.
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Hence extinction can happen only if e1/5y0/k < 5.0893 , so yc = 4.1667 k .

(d) Evidently, yc is a linear function of the parameter k .

 12. If T is the temperature of the coffee at any time t, then dT/dt = −k(T − 70),
T (0) = 200, T (1) = 190. The solution of this linear equation will involve k (the
cooling rate) and the integration constant c. Use T (0) = 200 to find c and then use
T (1) = 190 to evaluate k.

13.(a) The solution of the governing equation satisfies u3 = u 3
0 /( 3αu 3

0 t+ 1 ). With
the given data, it follows that u(t) = 2000/ 3

√
6 t/125 + 1 .

(b)

(c) Numerical evaluation results in u(t) = 600 for t ≈ 750.77 s.

 14.(a) Eq.(i) is a linear equation with the integrating factor ekt. Thus (ektu)′ =

k(T0 + T1 cosωt)ekt and hence ektu = T0e
kt + kT1

∫
cosωtekt dt+ c. Evaluating

the integral (by parts or by a symbolic software package) and dividing by ekt

yields u(t) = T0 + kT1(k cosωt+ ω sinωt)/(k2 + ω2) + ce−kt. Note that the last
term approaches zero as t→∞ for any initial condition, and that the rest of the
solution oscillates about u(t) = T0.

(b) R ≈ 9◦F, τ ≈ 3.5h.



42 Chapter 2. First-Order Differential Equations

(c) Recall that R cos(ω(t− τ)) = R cosωt cosωτ +R sinωt sinωτ . Comparing this
with the oscillatory portion of the above solution we have R cosωτ = k2T1/(k

2 +
ω2) and R sinωτ = kωT1/(k

2 + ω2) since these are the coefficients of cosωt and
sinωt, respectively. By squaring and adding we find R2 = k2T 2

1 /(k
2 + ω2) and by

dividing we find tanωτ = ω/k.

 15.(a) The required differential equation is dQ/dt = kr + P −Q(t)r/V , since kr
is the rate of water pollutant entering the lake, P is the rate of pollutant en-
tering directly and Q(t)r/V is the rate at which the pollutant leaves the lake.
The initial condition is Q(0) = V c0. Since c = Q(t)/V , the initial value problem
may be rewritten as V c′(t) = kr + P − rc, c(0) = c0, which has the solution c(t) =
k + P/r + (c0 − k − P/r)e−rt/V . It is easy to see that limt→∞ c(t) = k + P/r .

(b) c(t) = c0 e
−rt/V . The reduction times are T50 = V ln 2/r and T10 = V ln 10/r.

(c) The reduction times are TS = (12, 200) ln 10/65.2 = 430.85 years; for Lake Michi-
gan, TM = (4, 900) ln 10/158 = 71.4 years; TE = (460) ln 10/175 = 6.05 years; and
TO = (16, 000) ln 10/209 = 17.63 years.

 16.(a) If we measure x positively upward from the ground, then Eq.(4) of Sec-
tion 1.1 becomes mdv/dt = −mg, since there is no air resistance. Thus the initial
value problem for v(t) is dv/dt = −g, v(0) = 20, which gives v(t) = 20− gt. Since
dx/dt = v(t) we get x(t) = 20t− (g/2)t2 + c. Then x(0) = 30 gives c = 30 and
thus x(t) = 20t− (g/2)t2 + 30. At the maximum height v(tm) = 0 and thus tm =
20/9.8 = 2.04 sec, which when substituted in the equation for x(t) yields the max-
imum height.

(b) The ball hits the ground when x(t) = 0, solving this equation gives t = 5.2 sec.

(c)

 17.(a) The differential equation for the motion is mdv/dt = −v/30−mg . Given

the initial condition v(0) = 20 m/s , the solution is v(t) = −44.1 + 64.1 e−t/4.5 .
Setting v(t1) = 0 , the ball reaches the maximum height at t1 = 1.683 s . Integrat-
ing v(t) , the position is given by x(t) = 318.45− 44.1 t− 288.45 e−t/4.5. Hence the
maximum height is x(t1) = 45.78 m .

(b) Setting x(t2) = 0 , the ball hits the ground at t2 = 5.128 s .
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(c)

18.(a) The differential equation for the upward motion is mdv/dt = −µv2 −mg,
in which µ = 1/1325. This equation is separable, with m/(µ v2 +mg) dv = −dt .
Integrating both sides and invoking the initial condition, v(t) = 44.133 tan(0.425−
0.222 t). Setting v(t1) = 0 , the ball reaches the maximum height at t1 = 1.916 s .
Integrating v(t) , the position is given by x(t) = 198.75 ln [cos(0.222 t− 0.425)] +
48.57 . Therefore the maximum height is x(t1) = 48.56 m.

(b) The differential equation for the downward motion is mdv/dt = +µv2 −mg .
This equation is also separable, with m/(mg − µ v2) dv = −dt . For convenience,
set t = 0 at the top of the trajectory. The new initial condition becomes v(0) = 0 .
Integrating both sides and invoking the initial condition, we obtain ln((44.13− v)/
(44.13+v)) = t/2.25. Solving for the velocity, v(t) = 44.13(1− et/2.25)/(1+et/2.25).
Integrating v(t), we obtain x(t) = 99.29 ln(et/2.25/(1 + et/2.25)2) + 186.2. To esti-
mate the duration of the downward motion, set x(t2) = 0, resulting in t2 = 3.276 s.
Hence the total time that the ball spends in the air is t1 + t2 = 5.192 s.

(c)

19.(a) Measure the positive direction of motion upward . The equation of motion
is given by mdv/dt=−k v−mg . The initial value problem is dv/dt=−kv/m−g,
with v(0) = v0 . The solution is v(t) = −mg/k + (v0 +mg/k)e−kt/m. Setting
v(tm) = 0, the maximum height is reached at time tm = (m/k) ln [(mg + k v0)/mg].
Integrating the velocity, the position of the body is

x(t) = −mg t/k +
[
(
m

k
)2g +

mv0
k

]
(1− e−kt/m).
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Hence the maximum height reached is

xm = x(tm) =
mv0
k
− g(

m

k
)2 ln

[
mg + k v0

mg

]
.

(b) Recall that for δ � 1 , ln(1 + δ) = δ − δ2/2 + δ3/3− δ4/4 + . . ..

(c) The dimensions of the quantities involved are [k] = MT−1, [v0] = LT−1,
[m] = M and [g] = LT−2. This implies that kv0/mg is dimensionless.

 20.(a) As in Problem 19, mdv/dt = −mg − kv, v(0) = v0.

(b) From part (a), v(t) = −mg/k + (v0 +mg/k)e−kt/m. As k → 0, this has the
indeterminate form of −∞+∞. Thus rewrite v(t) as

v(t) = (−mg + (v0k +mg)e−kt/m)/k,

which has the indeterminate form 0/0 as k → 0. Using L’Hospital’s rule,

lim
k→ 0

−mg + (k v0 +mg)e−kt/m

k
= lim
k→ 0

[v0e
−kt/m − t

m
(k v0 +mg)e−kt/m] = v0 − gt.

(c)

lim
m→ 0

[
−mg

k
+ (

mg

k
+ v0)e−kt/m

]
= 0,

since limm→ 0 e
−kt/m = 0 .

 21.(a) The equation of motion is m(dv/dt) = w −R−B which, in this problem,

is (4/3)πa3ρ(dv/dt) = (4/3)πa3ρg − 6πµav − (4/3)πa3ρ′g. The limiting velocity
occurs when dv/dt = 0.

(b) Since the droplet is motionless, v = dv/dt = 0, we have the equation of motion
0 = (4/3)πa3ρg − Ee− (4/3)πa3ρ′g, where ρ is the density of the oil and ρ′ is the
density of air. Solving for e yields the answer.

 22.(a) We obtain these by solving the given differential equations with the initial
conditions v(0) = u cosA and w(0) = u sinA.

(b) From part (a) dx/dt=v=u cosA and hence x(t)= tu cosA+d1. Since x(0)=0,
we have d1 = 0 and x(t) = tu cosA. Likewise, dy/dt = w = −gt+ u sinA and there-
fore y(t)=−gt2/2+tu sinA+d2. Since y(0)=h we have d2 =h and y(t)=−gt2/2 +
tu sinA+ h.
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(c)

(d) Let tw be the time the ball reaches the wall. Then x(tw)) = L = twu cosA and
thus tw = L/(u cosA). For the ball to clear the wall y(tw) ≥ H and thus (setting
tw=L/(u cosA), g = 32 and h=3 in y) we get −16L2/(u2 cos2A)+L tanA+3 ≥ H.

(e) Setting L = 350 and H = 10 we get −161.98/ cos2A+ 350 tanA ≥ 7 or 7 cos2

A− 350 cosA sinA+ 161.98 ≤ 0. This can be solved numerically or by plotting the
left side as a function of A and finding where the zero crossings are.

(f) Setting L = 350 and H = 10 in the answer to part (d) yields the equation
−16(350)2/(u2 cos2A) + 350 tanA = 7, where we have chosen the equality sign since
we want to just clear the wall. Solving for u2, we obtain that in this case
u2 = 1, 960, 000/(175 sin 2A− 7 cos2A). Now u will have a minimum when the deno-
minator has a maximum. Thus 350 cos 2A+ 7 sin 2A = 0, or tan 2A = −50, which
yields A = 0.7954 rad and u = 106.89 ft/sec.

23.(a) Both equations are linear and separable. Initial conditions: v(0) = u cosA
and w(0) = u sinA. We obtain the solutions v(t) = (u cosA)e−rt and w(t) = −g/r +
(u sinA+ g/r)e−rt.

(b) Integrating the solutions in part (a), and invoking the initial conditions, the
coordinates are x(t) = u cosA(1− e−rt)/r and

y(t) = −gt
r

+
g + ur sin A+ hr2

r2
− (

u

r
sin A+

g

r2
)e−rt.
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(c)

(d) Let T be the time that it takes the ball to go 350 ft horizontally. Then from
above, e−T/5 = (u cos A− 70)/u cos A . At the same time, the height of the ball
is given by

y(T ) = −160T + 803 + 5u sinA− (800 + 5u sinA)(u cosA− 70)

u cosA
.

Hence A and u must satisfy the equality

800 ln

[
u cos A− 70

u cos A

]
+ 803 + 5u sin A− (800 + 5u sinA)(u cosA− 70)

u cosA
= 10

for the ball to touch the top of the wall. To find the optimal values for u and A,
consider u as a function of A and use implicit differentiation in the above equation
to find that

du

dA
= −u(u2 cosA− 70u− 11200 sinA)

11200 cosA
.

Solving this equation simultaneously with the above equation yields optimal values
for u and A: u ≈ 145.3 ft/s, A ≈ 0.644 rad.

24.(a) Solving equation (i), y ′(x) =
[
(k2 − y)/y

]1/2
. The positive answer is chosen,

since y is an increasing function of x .

(b) Let y = k2 sin2 t. Then dy = 2k2 sin t cos tdt. Substituting into the equation in
part (a), we find that

2k2 sin t cos tdt

dx
=

cos t

sin t
.

Hence 2k2 sin2 tdt = dx.

(c) Setting θ = 2t, we further obtain k2 sin2(θ/2) dθ = dx. Integrating both sides
of the equation and noting that t = θ = 0 corresponds to the origin, we obtain the
solutions x(θ) = k2(θ − sin θ)/2 and (from part (b)) y(θ) = k2(1− cos θ)/2.

(d) Note that y/x = (1− cos θ)/(θ − sin θ). Setting x = 1 , y = 2 , the solution of
the equation (1− cos θ)/(θ − sin θ) = 2 is θ ≈ 1.401 . Substitution into either of
the expressions yields k ≈ 2.193 .
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2.4

 1. If the equation is written in the form of Eq.(1), then p(t) = ln t/(t− 3) and g(t) =
2t/(t− 3). These are defined and continuous on the intervals (0, 3) and (3,∞), but
since the initial point is t = 1, the solution will be continuous on 0 < t < 3.

2. The function tan t is discontinuous at odd multiples of π/2. Since π/2 < π <
3π/2, the initial value problem has a unique solution on the interval (π/2, 3π/2).

 3. p(t) = 2t/(4− t2) and g(t) = 3t2/(4− t2), which have discontinuities at t = ±2.
Since t0 = −3, the solution will be continuous on −∞ < t < −2.

4. The function ln t is defined and continuous on the interval (0 ,∞) . At t = 1,
ln t = 0, so the normal form of the differential equation has a singularity there.
Also, cot t is not defined at integer multiples of π, so the initial value problem will
have a solution on the interval (1, π).

 5. Theorem 2.4.2 guarantees a unique solution to the differential equation through

any point (t0, y0) such that t20 + y20 < 1 since ∂f/∂y = −y/(1− t2 − y2)1/2 is defined
and continuous only for 1− t2 − y2 > 0. Note also that f = (1− t2 − y2)1/2 is
defined and continuous in this region as well as on the boundary t2 + y2 = 1. The
boundary can’t be included in the final region due to the discontinuity of ∂f/∂y
there.

6. The function f(t , y) is discontinuous along the coordinate axes, and on the
hyperbola t2 − y2 = 1 . Furthermore,

∂f

∂y
=

±1

y(1− t2 + y2)
− 2

y ln |ty|
(1− t2 + y2)2

has the same points of discontinuity.

7. f(t , y) is continuous everywhere on the plane. The partial derivative ∂f/∂y is
also continuous everywhere.

 8. In this case f = (1 + t2)/(y(3− y)), and then ∂f/∂y = (1 + t2)/(y(3− y)2)−
(1 + t2)/(y2(3− y)), which are both continuous everywhere except for y = 0 and
y = 3.

 9. The differential equation can be written as ydy = −4tdt, so y2/2 = −2t2 + c,

or y2 = c− 4t2. The initial condition then yields y20 = c, so that y2 = y20 − 4t2 or
y = ±

√
y20 − 4t2, which is defined for 4t2 < y20 or |t| < |y0|/2. Note that y0 6= 0

since Theorem 2.4.2 does not hold there.

10. The equation is separable, with dy/y2 = 2t dt . Integrating both sides, the
solution is given by y(t) = y0/(1− y0t2). For y0 > 0 , solutions exist as long as
t2 < 1/y0 . For y0 ≤ 0 , solutions are defined for all t .
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11. The equation is separable, with dy/y3 = − dt . Integrating both sides and
invoking the initial condition, y(t) = y0/

√
2y20t+ 1 . Solutions exist as long as

2y20t+ 1 > 0 , that is, 2y20t > −1 . If y0 6= 0 , solutions exist for t > −1/2y20 . If
y0 = 0 , then the solution y(t) = 0 exists for all t .

12. The function f(t , y) is discontinuous along the straight lines t = −1 and y = 0 .
The partial derivative ∂f/∂y is discontinuous along the same lines. The equation
is separable, with y dy = t2 dt/(1 + t3). Integrating and invoking the initial con-

dition, the solution is y(t) =
[
(2/3) ln

∣∣1 + t3
∣∣+ y20

]1/2
. Solutions exist as long as

(2/3) ln
∣∣1 + t3

∣∣+ y20 ≥ 0, that is, y20 ≥ −(2/3) ln
∣∣1 + t3

∣∣. For all y0 (it can be ver-
ified that y0 = 0 yields a valid solution, even though Theorem 2.4.2 does not guar-
antee one) , solutions exist as long as

∣∣1 + t3
∣∣ ≥ e−3y20/2. From above, we must have

t > −1 . Hence the inequality may be written as t3 ≥ e−3y20/2 − 1 . It follows that
the solutions are valid for (e−3y

2
0/2 − 1)1/3 < t <∞ .

 13.

From the direction field (or the given differential equation) it is noted that for t > 0
and y < 0 that y′ < 0, so y → −∞ for y0 < 0. Likewise, for 0 < y0 < 3, y′ > 0 and
y′ → 0 as y → 3, so y → 3 for 0 < y0 < 3 and for y0 > 3, y′ < 0 and again y′ → 0 as
y → 3 , so y → 3 for y0 > 3 . For y0 = 3, y′ = 0 and y = 3 for all t and for y0 = 0,
y′ = 0 and y = 0 for all t.

14.
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Based on the direction field, and the differential equation, for y0 < 0 , the slopes
eventually become negative, and hence solutions tend to −∞ . For y0 > 0, solutions
increase without bound if t0 < 0 . Otherwise, the slopes eventually become negative,
and solutions tend to zero. Furthermore, y0 = 0 is an equilibrium solution. Note
that slopes are zero along the curves y = 0 and ty = 3 .

15.

For initial conditions (t0, y0) satisfying ty < 3 , the respective solutions all tend to
zero . For y0 ≤ 9, the solutions tend to 0; for y0 > 9, the solutions tend to∞. Also,
y0 = 0 is an equilibrium solution.

16.

Solutions with t0 < 0 all tend to −∞ . Solutions with initial conditions (t0, y0)
to the right of the parabola t = 1 + y2 asymptotically approach the parabola as
t → ∞ . Integral curves with initial conditions above the parabola (and y0 > 0)
also approach the curve. The slopes for solutions with initial conditions below the
parabola (and y0 < 0) are all negative. These solutions tend to −∞ .

17.(a) No. There is no value of t0 ≥ 0 for which (2/3)(t− t0)2/3 satisfies the con-
dition y(1) = 1.

(b) Yes. Let t0 = 1/2 in Eq.(19).

(c) For t0 > 0, |y(2)| ≤ (4/3)3/2 ≈ 1.54.
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 18.(a) For y1 = 1− t, y′1 = −1, so substitution into the differential equation gives

−1 = (−t+
√
t2 + 4(1− t))/2 = (−t+

√
(t− 2)2)/2 = (−t+ |t−2|)/2. By the defi-

nition of the absolute value, the right side is −1 if t− 2 ≥ 0. Setting t = 2 in y1 we
get y1(2) = −1, as required by the initial condition. For y2 = −t2/4, y′2 = −t/2 so
substitution into the differential equation yields−t/2 = (−t+

√
t2 + 4(−t2/4))/2 =

−t/2 which is valid for all t values. Also, y2(2) = −1.

(b) By Theorem 2.4.2 we are guaranteed a unique solution only where f(t, y) =

(−t+
√
t2 + 4y)/2 and fy(t, y) = 1/

√
t2 + 4y are continuous. In this case the ini-

tial point (2,−1) lies in the region t2 + 4y ≤ 0, so ∂f/∂y is not continuous and
hence the theorem is not applicable and there is no contradiction.

(c) For y = ct+ c2 follow the steps of part (a). If y = y2(t) then we must have
ct+ c2 = −t2/4 for all t, which is not possible since c is a constant.

 19.(a) φ(t) = e2t gives φ′(t) = 2e2t so φ′ − 2φ = 0. φ(t) = ce2t gives φ′(t) = 2ce2t,
so φ′ − 2φ = 0.

(b) φ(t) = t−1 gives φ′(t) = −t−2 so φ′ + φ2 = 0. φ(t) = ct−1 gives φ′(t) = −ct−2,
so φ′ + φ2 6= 0 unless c = 0 or c = 1.

20. The assumption is φ′(t) + p(t)φ(t) = 0. But then cφ′(t) + p(t)cφ(t) = 0 as well.

 21. (y1(t)+y2(t))′+p(t)(y1(t) + y2(t))=y′1(t)+p(t)y1(t)+y′2(t)+p(t)y2(t)=0+g(t).

22.(a) Recalling Eq.(33) in Section 2.1,

y =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
c

µ(t)
.

It is evident that y1(t) = 1/µ(t) and y2(t) = (1/µ(t))
∫ t
t0
µ(s)g(s) ds.

(b) By definition, 1/µ(t) = e−
∫
p(t)dt. Hence y ′1 = −p(t)/µ(t) = −p(t)y1. That is,

y ′1 + p(t)y1 = 0.

(c) y ′2 = (−p(t)/µ(t))
∫ t
0
µ(s)g(s) ds+ µ(t)g(t)/µ(t) = −p(t)y2 + g(t). This implies

that y ′2 + p(t)y2 = g(t).

 23.(a) For n = 1, we have y′ + (p(t)− q(t))y = 0, which is linear. Thus Eq.(3) gives

y(t) = cµ−1(t) = ce−
∫
(p(t)−q(t)) dt, since g(t) = 0.

(b) Let v = y1−n, then dv/dt = (1− n)y−ndy/dt, so dy/dt = (1/(1− n))yndv/dt,
for n 6= 1. Substituting into the differential equation yields (1/(1− n))yndv/dt+
p(t)y = q(t)yn, or v′ + (1− n)p(t)y1−n = (1− n)q(t), which is v′ + (1− n)p(t)v =
(1− n)q(t), which is a linear differential equation for v.
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 24. Here n = 2, so v = y−1 and dv/dt = −y−2dy/dt. Thus the differential equation

becomes −y−2dv/dt− ry = −ky2 or dv/dt+ rv = k. Hence µ(t) = ert and v =
(k/r) + ce−rt. Setting v = 1/y then yields the solution.

25. Since n = 3, set v = y−2. It follows that v′ = −2y−3y′ and y′ = −(y3/2)v′. Sub-
stitution into the differential equation yields −(y3/2)v′ − εy = −σy3, which further
results in v ′ + 2εv = 2σ. The latter differential equation is linear, and can be writ-
ten as (ve2εt)′ = 2σe2εt. The solution is given by v(t) = σ/ε+ ce−2εt. Converting
back to the original dependent variable, y = ±v−1/2 = ±(σ/ε+ ce−2εt)−1/2.

 26. Since g(t) is continuous on the interval 0 ≤ t ≤ 1 and hence we solve the ini-
tial value problem y′1 + 2y1 = 1, y1(0) = 0 on that interval to obtain y1 = 1/2−
(1/2)e−2t, 0 ≤ t ≤ 1. For 1 < t, g(t) = 0; and hence we solve y′2 + 2y2 = 0 to obtain
y2 = ce−2t, 1 < t. The solution y of the original initial value problem must be con-
tinuous at t = 1 (since its derivative must exist) and hence we need c in y2 so y2
at 1 has the same value as y1 at 1. Thus ce−2 = 1/2− e−2/2 or c = (1/2)(e2 − 1)
and we obtain

y(t) =

{
1
2 −

1
2e
−2t , 0 ≤ t ≤ 1

1
2 (e2 − 1)e−2t, t > 1

.

and

y′(t) =

{
e−2t , 0 < t < 1

(1− e2)e−2t, t > 1
.

Evaluating the two parts of y′ at t0 = 1 we see that they are different, and hence
y′ is not continuous at t0 = 1.

27. The solution of the initial value problem y ′1 + 2y1 = 0, y1(0) = 1 is y1(t) = e−2t.
Therefore y(1−) = y1(1) = e−2. On the interval (1,∞), the differential equation
is y ′2 + y2 = 0, with y2(t) = ce−t. Therefore y(1+) = y2(1) = ce−1. Equating the
limits y(1−) = y(1+), we require that c = e−1. Hence the global solution of the
initial value problem is

y(t) =

{
e−2t , 0 ≤ t ≤ 1

e−1−t, t > 1
.

Note the discontinuity of the derivative

y′(t) =

{
−2e−2t , 0 < t < 1

−e−1−t, t > 1
.
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2.5

1.

0

-a/b

The equilibrium points are y∗ = −a/b and y∗ = 0, and y′ > 0 when y > 0 or y <
−a/b, and y′ < 0 when −a/b < y < 0, therefore the equilibrium solution y = −a/b
is asymptotically stable and the equilibrium solution y = 0 is unstable.

 2.
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From the graph, y′ < 0 when 1 < y < 2 and y′ > 0 when 0 < y < 1 or y > 2, so the
equilibrium solutions y = 0 and y = 2 are unstable, the equilibrium solution y = 1
is asymptotically stable.

3.

0

The only equilibrium point is y∗ = 0, and y′ > 0 when y > 0, y′ < 0 when y < 0,
hence the equilibrium solution y = 0 is unstable.
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 4.

0

The only equilibrium point is y∗ = 0, and y′ > 0 when y < 0, y′ < 0 when y > 0,
hence the equilibrium solution y = 0 is asymptotically stable.

 5.(a) f(y) = 0 only when y = 1. Therefore, y∗ = 1 is the only critical point.

(b)
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(c) Separate variables to get dy/(1− y)2 = kdt. Integration yields 1/(1− y)=kt+c,
or y = (kt+ c− 1)/(kt+ c). Setting t = 0 and y(0) = y0 yields y0 = (c− 1)/c or
c = 1/(1− y0). Hence y(t)=[y0 + (1− y0)kt]/[1+(1−y0)kt]. If y0 < 1, then y → 1
as t→∞. If y0 > 1, then the denominator will go to zero at some finite time
T = 1/(y0 − 1). Therefore, the solution will go towards infinity at that time T .

 6.

0

-1

1

2

1

0

–1

–2

1 2–1–2

y

The critical points are y = 0,±1. We have y′ > 0 for |y| > 1 while y′ < 0 for |y| < 1.
Thus the equilibrium solution y = −1 is asymptotically stable, y = 0 is semistable
and y = 1 is unstable.

7.
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0

-1

1

The equilibrium points are y∗ = 0,±1 , and y′ > 0 for y < −1 or 0 < y < 1 and
y′ < 0 for −1 < y < 0 or y > 1. The equilibrium solution y = 0 is unstable, and the
remaining two are asymptotically stable.

8.

0

-2

2

The equilibrium points are y∗ = 0 ,±2, and y′ < 0 when y < −2 or y > 2, and
y′ > 0 for −2 < y < 0 or 0 < y < 2. The equilibrium solutions y = −2 and y = 2
are unstable and asymptotically stable, respectively. The equilibrium solution y = 0
is semistable.
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9.

0

1

The equilibrium points are y∗ = 0, 1. y′ > 0 for all y except y = 0 and y = 1. Both
equilibrium solutions are semistable.

 10. Eq.(10) is y/(1− (y/K)) = Cert. Clearing the denominator gives y = Cert(1−
(y/K)) = Cert − Cert(y/K). Thus y + Cert(y/K) = Cert, or (1 + (C/K)ert)y =
Cert. This last equation may easily be solved for y to give y = Cert/(1 + (C/K)ert).
Applying the initial condition y(0) = y0 gives y0 = C/(1 + (C/K)), which may be
solved for C to give C = y0/(1− (y0/K)) = Ky0/(K − y0). Using this last value
of C in the solution for y gives y(x) = ((Ky0e

rt/(K − y0))/(1 + (y0e
rt/(K − y0)),

which may be simplified to yield Eq.(11).

 11. To solve Eq.(12) for t, multiply each side of the equation by (y0/K) + [1−
(y0/K)]e−rt to obtain y((y0/K) + [1− (y0/K)]e−rt) = y0, or y0/y = (y0/K) + [1−
(y0/K)]e−rt. Multiplying each side of this equation by K gives (y0K)/y = y0 +
(K − y0)e−rt, which may be solved for e−rt to find that

e−rt =
(y0K)/y − y0

K − y0
=

(y0/y)− (y0/K)

1− (y0/K)
=

(y0/K)[1− (y/K)]

(y/K)[1− (y0/K)]

as in the text. Taking logarithms and dividing by −r gives

t = −1

r
ln

(y0/K)[1− (y/K)]

(y/K)[1− (y0/K)]

as given in Eq.(13).
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 12. To locate the time at which the solution given in Eq.(15) reaches its vertical
asymptote, determine when the denominator of the solution is zero. Solving y0 +
(T − y0)ert = 0 for ert gives ert = y0/(y0 − T ), where the fact that y0 > T ensures
that y0/(y0 − T ) > 0. Thus the equation ert = y0/(y0 − T ) has a solution, which is
t = (1/r) ln(y0/(y0 − T )) as given in Eq.(16).

 13. To find the inflection points of a solution y to the differential equation y′ = f(y),
first compute y′′ = f ′(y)(dy/dt) = f ′(y)f(y). Thus possible inflection points oc-
cur at solutions to f ′y) = 0 or f(y) = 0. The function f(y) = −r(1− (y/T ))(1−
(y/K))y = 0 at y = 0, y = T , and y = K, but Figure 2.5.7 shows that y′′ does not
change sign at any of these points, so they are not inflection points. To consider the
points at which f ′(y) = 0, note that f(y) = (−r/(KT ))(y − T )(y −K)y, so f ′(y) =
(−r/(KT ))((y −K)y + (y − T )y + (y − T )(y −K)) = (−r/KT )(3y2−2(K + T ) +
KT ). Setting f ′(y) = 0 and using the quadratic formula gives that f ′(y) = 0 when
y = (K + T ±

√
K2 −KT + T 2)/3 as given in Eq.(18).

 14. If f ′(y1) < 0 then the slope of f is negative at y1 and thus f(y) > 0 for y < y1
and f(y) < 0 for y > y1 since f(y1) = 0. Hence y1 is an asymptotically stable
critical point. A similar argument will yield the result for f ′(y1) > 0.

 17.(a) Consider the change of variable u = ln(y/K). Differentiating both sides with
respect to t, u ′ = y ′/y. Substitution into the Gompertz equation yields u ′ = −ru,
with solution u = u0e

−rt. It follows that ln(y/K) = ln(y0/K)e−rt. This implies

that y/K = eln(y0/K)e−rt .

(b) Given K = 80.5× 106, y0/K = 0.25 and r = 0.71 per year, y(2) = 57.58× 106.

(c) Solving for t,

t = −1

r
ln

[
ln(y/K)

ln(y0/K)

]
.

Setting y(τ) = 0.75K, the corresponding time is τ ≈ 2.21 years.

 18.(a) The differential equation is dV/dt = k − απr2. The volume of a cone of

height L and radius r is given by V = πr2L/3 where L = hr/a from symmetry.
Solving for r yields the desired equation dV/dt = k − απ(3a/πh)2/3V 2/3.

(b) The equilibrium is given by the equation k = απr2, which yields r =
√
k/απ

and then L = h
√
k/απ/a. By checking the graph of V ′ we obtain that this is an

asymptotically stable equilibrium point.

(c) The equilibrium height must be less than h, or
√
k/απ/a < 1.

 19.(a) If E < r, then the equilibrium points are given by 0 = r(1− y/K)y − Ey =
y(r − ry/K − E), which means that either y = 0 or y = (r − E)K/r = (1− E/r)
K > 0.
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(b) f ′(y) = r − E − 2ry/K, so f ′(0) = r − E > and 0 is an unstable equilibrium,
while f ′((1− E/r)K) = E − r < 0 and (1− E/r)K is an asymptotically stable
equilibrium.

(c) Y = E(1− E/r)K.

(d) We have to solve 0 = dY/dE = K − 2EK/r to get E = r/2, and then Ym =
rK/4.

 20.(a) Setting dy/dt = 0 the quadratic formula yields the roots

y1,2 =
r ±

√
r2 − 4rh/K

2r/K
=
K

2

(
1±

√
1− 4h

rK

)
,

which are real when h < rK/4. (y1 < y2 because of the minus sign in front of the
square root.)

(b) The graph of the right side of the differential equation is a downward opening
parabola, which implies that y1 is unstable and y2 is asymptotically stable. We can
also use the derivative test of Problem 14.

(c) The graph of f(y) is a downward opening parabola intersecting the horizontal
axis at y1 and y2, so we know that between y1 and y2 the value of y′ = f(y) is
positive, which implies that if y1 < y0 < y2, then the solution is increasing towards
y2, and when y2 < y0, the solution is decreasing towards y2 (because y′ = f(y) is
negative there). Also, when y0 < y1, then y′ < 0, so the solution will decrease and
reach 0 in finite time.

(d) If h > rK/4 there are no critical points (see part (a)) and dy/dt < 0 for all t.

(e) We can see from part (a) that when h = rK/4, then y1 = y2. The graph of
f(y) intersects the horizontal axis at a single point of tangency in this case, and
y′ = f(y) is negative for any other y value, giving the semistability result.

21.(a) The equilibrium points are at y∗ = 0 and y∗ = 1. Since f ′(y) = α− 2αy ,
the equilibrium solution y = 0 is unstable and the equilibrium solution y = 1 is
asymptotically stable.

(b) The differential equation is separable, with [y(1− y)]
−1
dy = αdt . Integrating

both sides and invoking the initial condition, the solution is

y(t) =
y0 e

αt

1− y0 + y0 eαt
=

y0
y0 + (1− y0)e−αt

.

It is evident that (independent of y0) limt→−∞ y(t) = 0 and limt→∞ y(t) = 1 .



60 Chapter 2. First-Order Differential Equations

22.(a) y(t) = y0 e
−βt.

(b) From part (a), dx/dt = −αxy0e−βt. Separating variables, dx/x = −αy0e−βtdt.
Integrating both sides, the solution is x(t) = x0 e

−αy0(1−e−βt)/β .

(c) As t → ∞ , y(t) → 0 and x(t) → x0 e
−αy0/β . Over a long period of time,

the proportion of carriers vanishes. Therefore the proportion of the population that
escapes the epidemic is the proportion of susceptibles left at that time, x0 e

−αy0/β .

 23.(a) Differentiating with respect to t, we obtain that the derivative is z′ = (nx′ −
xn′)/n2 = (−βnx− µnx+ νβx2 + µnx)/n2 = −βx/n+ νβx2/n2 = −βz + νβz2 =
−βz(1− νz).

(b) First, we rewrite the equation as z′ + βz = βνz2. This is a Bernoulli equation
with n = 2. Let w = z1−n = z−1. Then, our equation can be written as w′ − βw =
−βν. This is a linear equation with solution w = ν + ceβt. Then, using the fact
that z = 1/w, we see that z = 1/(ν + ceβt). Finally, the initial condition z(0) = 1
implies c = 1− ν. Therefore, z(t) = 1/(ν + (1− ν)eβt).

(c) Evaluating z(20) for ν = β = 1/8, we conclude that z(20) = 0.0927.

 24.(a) The critical points occur when a− y2 = 0. If a < 0, there are no critical

points. If a = 0, then y∗ = 0 is the only critical point. If a > 0, then y∗ = ±
√
a are

the two critical points.

(b) We note that f ′(y) = −2y. Therefore, f ′(
√
a) < 0 which implies that

√
a is

asymptotically stable; f ′(−
√
a) > 0 which implies −

√
a is unstable; the behavior

of f ′ around y∗ = 0 implies that y∗ = 0 is semistable.

(c) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.
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25.(a) For a < 0 , the only critical point is at y = 0 , which is asymptotically stable.
For a = 0 , the only critical point is at y = 0 , which is asymptotically stable. For
a > 0 , the three critical points are at y = 0 , ±

√
a . The critical point at y = 0 is

unstable, whereas the other two are asymptotically stable.

(b) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.
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(c)

26.(a) f(y) = y(a− y); f ′(y) = a− 2y. For a < 0, the critical points are at y = a
and y = 0. Observe that f ′(a) > 0 and f ′(0) < 0 . Hence y = a is unstable and
y = 0 asymptotically stable. For a = 0 , the only critical point is at y = 0 , which is
semistable since f(y) = −y2 is concave down. For a > 0 , the critical points are at
y = 0 and y = a . Observe that f ′(0) > 0 and f ′(a) < 0 . Hence y = 0 is unstable
and y = a asymptotically stable.
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(b) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.

(c)
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 27. (a) Since the critical points are x∗=p, q, we will look at their stability. Since

f ′(x) = −αq − αp+ 2αx2, we see that f ′(p) = α(2p2 − q − p) and f ′(q) = α(2q2 −
q − p). Now if p > q, then −p < −q, and, therefore, f ′(q) = α(2q2 − q − p) <
α(2q2 − 2q) = 2αq(q − 1) < 0 since 0 < q < 1. Therefore, if p > q, f ′(q) < 0, and,
therefore, x∗ = q is asymptotically stable. Similarly, if p < q, then x∗ = p is asymp-
totically stable, and therefore, we can conclude that x(t)→ min{p, q} as t→∞.

The equation is separable. It can be solved by using partial fractions as follows.
We can rewrite the equation as(

1/(q − p)
p− x

+
1/(p− q)
q − x

)
dx = αdt,

which implies

ln

∣∣∣∣p− xq − x

∣∣∣∣ = (p− q)αt+ C.

The initial condition x0 = 0 implies C = ln |p/q|, and, therefore,

ln

∣∣∣∣q(p− x)

p(q − x)

∣∣∣∣ = (p− q)αt.

Applying the exponential function and simplifying, we conclude that

x(t) =
pq(e(p−q)αt − 1)

pe(p−q)αt − q
=
pq(eα(q−p)t − 1)

qeα(q−p)t − p
.

(b) In this case, x∗ = p is the only critical point. Since f(x) = α(p− x)2 is concave
up, we conclude that x∗ = p is semistable. Further, if x0 = 0, we can conclude
that x→ p as t→∞. This equation is separable. Its solution is given by x(t) =
p2αt/(pαt+ 1).

2.6

1. M(x, y) = 2x+ 3 and N(x, y) = 2y − 2 . Since My = Nx = 0 , the equation is
exact. Integrating M with respect to x , while holding y constant, yields ψ(x, y) =
x2 + 3x+ h(y) . Now ψy = h ′(y) , and equating with N results in the possible
function h(y) = y2 − 2y . Hence ψ(x, y) = x2 + 3x+ y2 − 2y , and the solution is
defined implicitly as x2 + 3x+ y2 − 2y = c .

2. M(x, y) = 2x+ 4y and N(x, y) = 2x− 2y . Note that My 6= Nx , and hence the
differential equation is not exact.

 3. Here M(x, y) = 3x2−2xy+2 and N(x, y) = 6y2 − x2+3. Since My = −2x=Nx,

the equation is exact. Since ψx = M = 3x2 − 2xy + 2, to solve for ψ, we integrate
M with respect to x. We conclude that ψ = x3 − x2y + 2x+ h(y). Then ψy =
−x2 + h′(y) = N = 6y2 − x2 + 3 implies h′(y)=6y2+3. Therefore, h(y)=2y3+3y
and ψ(x, y) = x3 − x2y + 2x+ 2y3 + 3y = c.
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 4. Here M(x, y) = ax+ by and N(x, y) = bx+ cy. Since My = b = Nx, the equa-
tion is exact. Since ψx = M = ax+ by, to solve for ψ, we integrate M with respect
to x. We conclude that ψ = ax2/2 + bxy + h(y). Then ψy = bx+ h′(y) = N = bx+
cy implies h′(y) = cy. Therefore, h(y) = cy2/2 and ψ(x, y) = ax2 + 2bxy + cy2 = k.

5. Write the equation as (ax− by)dx+ (bx− cy)dy = 0. Now M(x, y) = ax− by
and N(x, y) = bx− cy. Since My 6= Nx , the differential equation is not exact.

 6. Here M(x, y) = yexy cos(2x)−2exy sin(2x)+2x and N(x, y)=xexy cos(2x)− 3.
Since My = exy cos(2x) + xyexy cos(2x)− 2xexy sin(2x)=Nx, the equation is exact.
If we try to find ψ(x, y) by integrating M(x, y) with respect to x we must integrate
by parts. Instead we find ψ(x, y) by integrating N(x, y) with respect to y to obtain
ψ(x, y) = exy cos(2x)− 3y + g(x). Then we find g(x) by differentiating ψ(x, y) with
respect to x and setting it equal to M(x, y), resulting in g′(x) = 2x or g(x) = x2.
As before, the implicit solution is ψ(x, y) = exy cos(2x) + x2 − 3y = c.

7. M(x, y) = y/x+ 6x and N(x, y) = ln x− 2. Since My = Nx = 1/x, the given
equation is exact. Integrating N with respect to y , while holding x constant,
results in ψ(x, y) = y ln x− 2y + h(x) . Differentiating with respect to x, ψx =
y/x+ h′(x). Setting ψx = M , we find that h′(x) = 6x , and hence h(x) = 3x2.
Therefore the solution is defined implicitly as 3x2 + y ln x− 2y = c .

 8. Here M(x, y) = x/(x2 + y2)3/2 and N(x, y) = y/(x2 + y2)3/2. Since My = Nx,

the equation is exact. Since ψx = M = x/(x2 + y2)3/2, to solve for ψ, we integrate
M with respect to x. We conclude that ψ = −1/(x2 + y2)1/2 + h(y). Then ψy =
y/(x2 + y2)3/2 + h′(y) = N = y/(x2 + y2)3/2 implies h′(y)=0. Therefore, h(y)=0
and ψ(x, y) = −1/(x2 + y2)1/2 = c or x2 + y2 = k. We can observe that as long as
x2 + y2 6= 0, we can simplify the equation by multiplying both sides by (x2 + y2)3/2.
This gives the (simpler) exact equation xdx+ ydy = 0, whose solution is the same
as the above.

9. M(x, y) = 2x− y and N(x, y) = 2y − x. Since My = Nx = −1, the equation is
exact. Integrating M with respect to x , while holding y constant, yields ψ(x, y) =
x2 − xy + h(y). Now ψy = −x+ h′(y). Equating ψy with N results in h′(y) = 2y,
and hence h(y) = y2. Thus ψ(x, y) = x2 − xy + y2 , and the solution is given im-
plicitly as x2 − xy + y2 = c . Invoking the initial condition y(1) = 3 , the spe-
cific solution is x2 − xy + y2 = 7. The explicit form of the solution is y(x) =
(x+

√
28− 3x2 )/2. Hence the solution is valid as long as 3x2 ≤ 28 .

 10. Here M(x, y) = 9x2 + y − 1 and N(x, y) = −4y + x. Therefore, My = Nx = 1
which implies that the equation is exact. Integrating M with respect to x, we con-
clude that ψ = 3x3 + xy − x+ h(y). Then ψy = x+ h′(y) = N = −4y + x implies
h′(y) = −4y. Therefore, h(y) = −2y2 and we get ψ = 3x3 + xy − x− 2y2 = c. The
initial condition y(1) = 0 implies c = 2. Therefore, 3x3 + xy − x− 2y2 = 2. Solv-
ing for y using the quadratic formula, we get y = [x− (24x3 + x2 − 8x− 16)1/2]/4.
Using a numerical process the square root term is positive for x > 0.9846.
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 11. Here M(x, y) = xy2 + bx2y and N(x, y) = x3 + x2y. Therefore, My = 2xy +

bx2 and Nx = 3x2 + 2xy. In order for the equation to be exact, we need b = 3.
Taking this value for b, we integrating M with respect to x. We conclude that ψ =
x2y2/2 + x3y + h(y). Then ψy = x2y + x3 + h′(y) = N=x3+x2y implies h′(y)=0.
Therefore, h(y) = c and ψ(x, y) = x2y2/2 + x3y = c. That is, the solution is given
implicitly as x2y2 + 2x3y = k.

12. M(x, y) = y e2xy + x and N(x, y) = bx e2xy. Note that My = e2xy + 2xy e2xy,
and Nx = b e2xy + 2bxy e2xy. The given equation is exact, as long as b = 1 . Inte-
grating N with respect to y , while holding x constant, results in ψ(x, y) = e2xy/2 +
h(x) . Now differentiating with respect to x, ψx = y e2xy+h′(x). Setting ψx = M ,
we find that h′(x) = x , and hence h(x) = x2/2 . We conclude that ψ(x, y) =
e2xy/2 + x2/2 . Hence the solution is given implicitly as e2xy + x2 = c .

13. Note that ψ is of the form ψ(x , y) = f(x) + g(y), since each of the integrands
is a function of a single variable. It follows that ψx = f ′(x) and ψy = g′(y). That
is, ψx = M(x , y0) and ψy = N(x0 , y). Furthermore,

∂2ψ

∂x∂y
(x0 , y0 ) =

∂M

∂y
(x0 , y0 ) and

∂2ψ

∂y∂x
(x0 , y0 ) =

∂N

∂x
(x0 , y0 ) ,

based on the hypothesis and the fact that the point (x0, y0) is arbitrary, ψxy = ψyx
and My(x, y) = Nx(x, y).

14. Observe that (M(x))y = (N(y))x = 0 .

 15. Here M(x, y) = x2y3 and N(x, y) = x+ xy2. Therefore, My = 3x2y2 and Nx =

1 + y2. We see that the equation is not exact. Now, multiplying the equation by
µ(x, y) = 1/xy3, the equation becomes xdx+ (1 + y2)/y3dy = 0. Now we see that
for this equation M = x and N = (1 + y2)/y3. Therefore, My = 0 = Nx. Integrat-
ing M with respect to x, we see that ψ = x2/2 + h(y). Further, ψy = h′(y) = N =
(1 + y2)/y3 = 1/y3 + 1/y. Therefore, h(y) = −1/2y2 + ln y and we conclude that
the solution of the equation is given implicitly by x2 − 1/y2 + 2 ln y = c and y = 0.

 16. We see that My = (x+ 2) cos y while Nx = cos y. Therefore, My 6= Nx. How-
ever, multiplying the equation by the given integrating factor µ(x, y) = xex, this
becomes (x2 + 2x)ex sin ydx+ x2ex cos ydy = 0. Now we see that for this equation
My = (x2 + 2x)ex cos y = Nx. To solve this exact equation it is easiest to integrate
(the new) N with respect to y to get ψ(x, y) = x2ex sin y + g(x). Finding ψx and
setting it equal to (the new) M yields g′(x) = 0, which implies that the solution of
the equation is given implicitly by x2ex sin y = c.

 17. Suppose µ is an integrating factor which will make the equation exact. Then
multiplying the equation by µ, we have µMdx+ µNdy = 0. Then we need (µM)y =
(µN)x. That is, we need µyM + µMy = µxN + µNx. Then we rewrite the equa-
tion as µ(Nx−My)=µyM−µxN . Suppose µ does not depend on x. Then µx=0.
Therefore, µ(Nx −My) = µyM . Using the assumption that (Nx −My)/M = Q(y),
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we can find an integrating factor µ by choosing µ which satisfies µy/µ = Q. We con-
clude that µ(y) = exp

∫
Q(y) dy is an integrating factor of the differential equation.

 18. Since (My −Nx)/N = 3 is a function of x only, we know that µ = e3x is an
integrating factor for this equation. Multiplying the equation by µ, we obtain
the equation e3x(3x2y + 2xy + y3)dx+ e3x(x2 + y2)dy = 0. Then My = e3x(3x2 +
2x+ 3y2) = Nx. Therefore, this new equation is exact. Integrating M with respect
to x, we conclude that ψ = (x2y + y3/3)e3x + h(y). Then ψy = (x2 + y2)e3x +
h′(y) = N = e3x(x2 + y2). Therefore, h′(y) = 0 and we conclude that the solution
is given implicitly by (3x2y + y3)e3x = c.

 19. Since (My −Nx)/N = −1 is a function of x only, we know that µ = e−x is an
integrating factor for this equation. Multiplying the equation by µ, we obtain the
equation (e−x − ex − ye−x)dx+ e−xdy = 0. Then My = −e−x=Nx. Therefore,
this new equation is exact. Integrating M with respect to x, we conclude that
ψ=−e−x − ex+ye−x+h(y). Then ψy=e−x+h′(y)=N = e−x. Therefore, h′(y)=0
and we conclude that the solution is given implicitly by−e−x− ex+ye−x=c. Alt-
ernatively, we might recognize that y′ − y = e2x − 1 is a linear first order equation
which can be solved as in Section 2.1.

 20. Since (Nx −My)/M = 1/y is a function of y only, we know by Problem 17

that µ(y) = e
∫
1/y dy = y is an integrating factor for this equation. Multiplying the

equation by µ, we obtain ydx+ (x− y sin y)dy = 0. Then for this equation, My =
1 = Nx. Therefore, this new equation is exact. Integrating M with respect to x, we
conclude that ψ = xy + h(y). Then ψy = x+ h′(y) = N = x− y sin y. Therefore,
h′(y) = −y sin y which implies that h(y) = − sin y + y cos y, and we conclude that
the solution is given implicitly by xy − sin y + y cos y = c.

21. The equation is not exact, since Nx −My = 2y − 1 . However, (Nx −My)/M =
(2y − 1)/y is a function of y alone. Hence there exists µ = µ(y) , which is a solution
of the differential equation µ′ = (2− 1/y)µ . The latter equation is separable, with
dµ/µ = 2− 1/y . One solution is µ(y) = e2y−ln y = e2y/y . Now rewrite the given
ODE as e2ydx+ (2x e2y − 1/y)dy = 0 . This equation is exact, and it is easy to see
that ψ(x, y) = x e2y − ln |y|. Therefore the solution of the given equation is defined
implicitly by x e2y − ln |y| = c .

22. Multiplying both sides of the ODE by µ = [xy(2x+ y)]
−1

, the given equation is
equivalent to

[
(3x+ y)/(2x2 + xy)

]
dx+

[
(x+ y)/(2xy + y2)

]
dy = 0 . Rewrite the

differential equation as[
2

x
+

2

2x+ y

]
dx+

[
1

y
+

1

2x+ y

]
dy = 0 .

It is easy to see that My = Nx. Integrating M with respect to x, while keep-
ing y constant, results in ψ(x, y) = 2 ln |x|+ ln |2x+ y|+ h(y) . Now taking the
partial derivative with respect to y , ψy = (2x+ y)−1 + h ′(y) . Setting ψy = N ,
we find that h ′(y) = 1/y , and hence h(y) = ln |y| . Therefore ψ(x, y) = 2 ln |x|+
ln |2x+ y|+ ln |y|, and the solution of the given equation is defined implicitly by
2x3y + x2y2 = c .
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2.7

 1. The Euler formula is yn+1 = yn + h(3 + tn − yn) = (1− h)yn + h(3 + tn).

(a) 1.2, 1.39, 1.571, 1.7439

(b) 1.1975, 1.38549, 1.56491, 1.73658

(c) 1.19631, 1.38335, 1.56200, 1.73308

(d) The differential equation is linear with solution y(t) = 2 + t− e−t. The values
are 1.19516, 1.38127, 1.55918, 1.72968.

2. The Euler formula is given by yn+1 = yn + h(2yn − 1) = (1 + 2h)yn − h.

(a) 1.1, 1.22, 1.364, 1.5368

(b) 1.105, 1.23205, 1.38578, 1.57179

(c) 1.10775, 1.23873, 1.39793, 1.59144

(d) The differential equation is linear with solution y(t) = (1 + e2t)/2. The values
are 1.1107, 1.24591, 1.41106, 1.61277.

 3. The Euler formula is yn+1 = yn + h(0.5− tn + 2yn) = (1 + 2h)yn + h(0.5− tn).

(a) 1.25, 1.54, 1.878, 2.2736

(b) 1.26, 1.5641, 1.92156, 2.34359

(c) 1.26551, 1.57746, 1.94586, 2.38287

(d) The differential equation is linear with solution y(t) = 0.5t+ e2t. The values
are 1.2714, 1.59182, 1.97212, 2.42554.

 4. The Euler formula is yn+1 = yn + h(3 cos(tn)− 2yn) = (1− 2h)yn + 3h cos(tn).

(a) 0.3, 0.538501, 0.724821, 0.866458

(b) 0.284813, 0.513339, 0.693451, 0.831571

(c) 0.277920, 0.501813, 0.678949, 0.815302

(d) The differential equation is linear with solution y(t) = (6 cos(t) + 3 sin(t)−
6e−2t)/5. The values are 0.271428, 0.490897, 0.665142, 0.799729.
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5.

All solutions seem to converge to y = 25/9 .

 6.

Solutions with y(0) > 0 appear to converge to a specific function, while solutions
with y(0) < 0 decrease without bound. y = 0 is an equilibrium solution.

7.

Solutions with initial conditions |y(0)| > 2.5 seem to diverge. On the other hand,
solutions with initial conditions |y(0)| < 2.5 seem to converge to zero. Also, y = 0
is an equilibrium solution.
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 8.

All solutions seem to diverge.

9. The Euler formula is yn+1 = yn − 3h
√
yn + 5h. The initial value is y0 = 2.

(a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521

(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209

(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053

(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

10. The Euler formula is yn+1 = (1 + 3h)yn − htny2n. The initial value is (t0, y0) =
(0, 0.5).

(a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925

(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191

(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328

(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

 11. The Euler formula is yn+1 = yn + h3t2n/(3y
2
n − 4) with initial value (t0, y0) =

(1, 0).

(a) −0.166134, −0.410872, −0.804660, 4.15867

(b) −0.174652, −0.434238, −0.889140, −3.09810

(c) There are two factors that explain the large differences. From the differential
equation, the slope of y, y′, becomes very large for values of y near −1.155. Also, the
slope changes sign at y = −1.155. Thus for part (a), y(1.7) = y7 = −1.178, which
is close to −1.155 and the slope y′ here is large and positive, creating the large
change in y8 = y(1.8). For part (b), y(1.65) = −1.125, resulting in a large negative
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slope, which yields y(1.7) = −3.133. The slope at this point is now positive and
the remainder of the solutions grow to −3.098 for the approximation to y(1.8).

 12. The Euler formula is yn+1 = yn + h(t2n + y2n) with (t0, y0) = (0, 1). For the
four step sizes given, the approximate values for y(0.8) are 3.5078, 4.2013, 4.8004
and 5.3428. Thus, since these changes are still rather large, it is hard to give an
estimate other than y(0.8) is at least 5.3428. By using h = 0.005, 0.0025 and 0.001,
we find further approximate values of y(0.8) to be 5.576, 5.707 and 5.790. Thus a
better estimate now is for y(0.8) to be between 5.8 and 6. No reliable estimate is
obtainable for y(1), which is consistent with the direction field of Problem 8.

 13.(a) See the direction field in Problem 7 above.

(b) The Euler formula is yn+1 = yn + h(−tnyn + 0.1y3n). For y0 < 2.37, the solu-
tions seem to converge, while the solutions seem to diverge if y0 > 2.38. We conclude
that 2.37 < α0 < 2.38.

14.(a)

(b) The iteration formula is yn+1 = yn + h y2n − h t2n . The critical value α0 appears
to be between 0.67 and 0.68. For y0 > α0 , the iterations diverge.

15.(a) The ODE is linear, with general solution y(t) = t+ cet. Invoking the spec-
ified initial condition, y(t0) = y0, we have y0 = t0 + cet0 . Hence c = (y0 − t0)e−t0 .
Thus the solution is given by φ(t) = (y0 − t0)et−t0 + t.

(b) The Euler formula is yn+1 = (1 + h)yn + h− h tn . Now set k = n+ 1 .

(c) We have y1 = (1 + h)y0 + h− ht0 = (1 + h)y0 + (t1 − t0)− ht0. Rearranging
the terms, y1 = (1 + h)(y0 − t0) + t1. Now suppose that yk=(1+h)k(y0 − t0)+tk,
for some k ≥ 1. Then yk+1 = (1 + h)yk + h− htk. Substituting for yk, we find that

yk+1 = (1 + h)k+1(y0 − t0) + (1 + h)tk + h− htk = (1 + h)k+1(y0 − t0) + tk + h.

Noting that tk+1 = tk + h, the result is verified.

(d) Substituting h = (t− t0)/n , with tn = t , yn = (1 + (t− t0)/n)n(y0 − t0) + t.
Taking the limit of both sides, and using the fact that limn→∞(1 + a/n)n = ea,
pointwise convergence is proved.
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16. The exact solution is y(t) = et. The Euler formula is yn+1 = (1 + h)yn . It is
easy to see that yn = (1 + h)ny0 = (1 + h)n. Given t > 0 , set h = t/n . Taking the
limit, we find that limn→∞ yn = limn→∞(1 + t/n)n = et.

 17. Using Eq.(8) we have yn+1 =yn+h(2yn−1) = (1+2h)yn − h. Setting n+1=k
(and hence n = k − 1) this becomes yk = (1 + 2h)yk−1 − h, for k = 1, 2, . . .. Since
y0 = 1, we have y1 = 1 + 2h− h = 1 + h = (1 + 2h)/2 + 1/2, and hence y2 = (1 +
2h)y1 − h = (1 + 2h)2/2 + (1 + 2h)/2− h = (1 + 2h)2/2 + 1/2. Furthermore, y3 =
(1 + 2h)y2 − h = (1 + 2h)3/2 + (1 + 2h)/2− h = (1 + 2h)3/2 + 1/2. Continuing in
this fashion (or using induction) we obtain yk = (1 + 2h)k/2 + 1/2. For fixed t > 0
choose h = t/k. Then substitute for h in the last formula to obtain yk = (1 +
2t/k)k/2 + 1/2. Letting k →∞ we find (see hint for Problem 15(d)) that y(t) =
limk→∞ yk = e2t/2 + 1/2, which is the exact solution.

2.8

 1. Let s = t− 1 and w(s) = y(t(s))− 2, then when t = 1 and y = 2 we have
s = 0 and w(0) = 0. Also, dw/ds = (dw/dt)(dt/ds) = (d/dt)(y − 2)(dt/ds) = dy/dt
(since t = s+ 1) and hence dw/ds = (s+ 1)2 + (w + 2)2, upon substitution into the
given differential equation.

2. Let z = y − 3 and τ = t+ 1 . It follows that dz/dτ = (dz/dt)(dt/dτ) = dz/dt .
Furthermore, dz/dt = dy/dt = 1− y3 . Hence dz/dτ = 1− (z + 3)3. The new ini-
tial condition is z(0) = 0 .

3.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

2 [φn(s) + 1] ds .

Setting φ0(t) = 0 , φ1(t) = 2t . Continuing, φ2(t) = 2t2 + 2t , φ3(t) = 4t3/3 + 2t2 +
2t , φ4(t) = 2t4/3 + 4t3/3 + 2t2 + 2t , . . . . Based upon these we conjecture that
φn(t) =

∑n
k=1 2ktk/k! and use mathematical induction to verify this form for φn(t).

First, let n = 1, then φn(t) = 2t, so it is certainly true for n = 1. Then, using Eq.(7)
again we have

φn+1(t) =

∫ t

0

2 [φn(s) + 1] ds =

∫ t

0

2

[
n∑
k=1

2k

k !
sk + 1

]
ds =

n+1∑
k=1

2k

k !
tk,

and we have verified our conjecture.
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(b)

(c) Recall from calculus that eat = 1 +
∑∞
k=1 a

ktk/k!. Thus

φ(t) =

∞∑
k=1

2k

k !
tk = e2t − 1 .

(d)

From the plot it appears that φ4 is a good estimate for |t| < 1/2.

4.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[−φn(s)/2 + s] ds .

Setting φ0(t) = 0, φ1(t) = t2/2. Continuing, φ2(t) = t2/2− t3/12, φ3(t) = t2/2−
t3/12 + t4/96, φ4(t) = t2/2− t3/12 + t4/96− t5/960, . . .. Based upon these we
conjecture that φn(t) =

∑n
k=1 4(−1/2)k+1tk+1/(k + 1)! and use mathematical ind-

uction to verify this form for φn(t).
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(b)

(c) Recall from calculus that eat = 1 +
∑∞
k=1 a

ktk/k!. Thus

φ(t) =

∞∑
k=1

4
(−1/2)k+1

k + 1 !
tk+1 = 4e−t/2 + 2t− 4 .

(d)

From the plot it appears that φ4 is a good estimate for |t| < 2.

 5.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[sφn(s) + 1] ds .

Setting φ0(t) = 0 , φ1(t) = t . Continuing, φ2(t) = t+ t3/3, φ3(t) = t+ t3/3 + t5/
(3 · 5), φ4(t) = t+ t3/3 + t5/(3 · 5) + t7/(3 · 5 · 7), . . . . Based upon these we conjec-
ture that φn(t) =

∑n
k=1 t

2k−1/(1 · 3 · 5 · · · (2k − 1)) and use mathematical induction
to verify this form for φn(t). First, let n = 1, then φn(t) = t, so it is certainly true
for n = 1. Then, using Eq.(7) again we have

φn+1(t) =

∫ t

0

[sφn(s)+1] ds =

∫ t

0

[

n∑
k=1

s
s2k−1

1 · 3 · · · (2k − 1)
+1] ds =

n+1∑
k=1

t2k−1

1 · 3 · · · (2k−1)
,

and we have verified our conjecture.
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(b)

(c) Using the identity φn(t) = φ1(t) + [φ2(t)− φ1(t) + [φ3(t)− φ2(t)] + . . .+ [φn(t)
− φn−1(t)], consider the series φ1(t) +

∑∞
k=1[φk+1(t)− φk(t)]. Fix any t value now.

We use the Ratio Test to prove the convergence of this series:∣∣∣∣φk+1(t)− φk(t)

φk(t)− φk−1(t)

∣∣∣∣ =

∣∣∣∣∣∣
t2k+1

1·3···(2k+1)

t2k−1

1·3···(2k−1)

∣∣∣∣∣∣ =
|t|2

2k + 1
.

The limit of this quantity is 0 for any fixed t as k →∞, and we obtain that φn(t)
is convergent for any t.

6.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
s2φn(s)− s

]
ds .

Set φ0(t) = 0. The iterates are given by φ1(t) = −t2/2 , φ2(t) = −t2/2− t5/10 ,
φ3(t)=−t2/2− t5/10− t8/80 , φ4(t)=−t2/2− t5/10− t8/80− t11/880 ,. . . . Upon
inspection, it becomes apparent that

φn(t) = −t2
[

1

2
+

t3

2 · 5
+

t6

2 · 5 · 8
+ . . .+

(t3)n−1

2 · 5 · 8 . . . [2 + 3(n− 1)]

]
=

= −t2
n∑
k=1

(t3)k−1

2 · 5 · 8 . . . [2 + 3(k − 1)]
.

(b)
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(c) Using the identity φn(t) = φ1(t) + [φ2(t)− φ1(t)] + [φ3(t)− φ2(t)] + . . .+ [φn(t)
− φn−1(t)], consider the series φ1(t) +

∑∞
k=1[φk+1(t)− φk(t)]. Fix any t value now.

We use the Ratio Test to prove the convergence of this series:∣∣∣∣φk+1(t)− φk(t)

φk(t)− φk−1(t)

∣∣∣∣ =

∣∣∣∣∣∣
(−t2)(t3)k
2·5···(2+3k)

(−t2)(t3)k−1

2·5···(2+3(k−1))

∣∣∣∣∣∣ =
|t|3

2 + 3k
.

The limit of this quantity is 0 for any fixed t as k →∞, and we obtain that φn(t)
is convergent for any t.

7.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
s2 + φ2n(s)

]
ds .

Set φ0(t) = 0. The first three iterates are given by φ1(t) = t3/3, φ2(t) = t3/3 +
t7/63, φ3(t) = t3/3 + t7/63 + 2t11/2079 + t15/59535 .

(b)

The iterates appear to be converging.

 8.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
1− φ3n(s)

]
ds .

Set φ0(t) = 0. The first three iterates are given by φ1(t) = t , φ2(t) = t− t4/4 ,
φ3(t) = t− t4/4 + 3t7/28− 3t10/160 + t13/832.
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(b)

The approximations appear to be diverging.

 9.(a) First, recall that sinx = x− x3/3! + x5/5! +O(x7). Now, for this problem,

φ1(t) =
∫ t
0
[1− sinφ0(s)] ds = t and we obtain that φ2(t) =

∫ t
0
[1− sin s] ds =

∫ t
0
[1−

(s− s3/3! + s5/5! +O(s7)] ds = t− t2/2! + t4/4!− t6/6! +O(t8). For φ3 we need
to find sin(φ2(t)), which is given by sin(φ2(t)) = φ2(t)− φ32(t)/3! + φ52(t)/5! +O(t7)
= (t− t2/2! + t4/4!− t6/6!)− (t− t2/2!)3/3! + t5/5! +O(t7), where we have ret-

ained only the terms less than O(t7). Now use this in φ3(t) =
∫ t
0
[1− sin(φ2(s))] ds,

which gives the desired answer up to O(t8).

(b)

10.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
3s2 + 4s+ 2

2(φn(s)− 1)

]
ds .

Note that 1/(2y − 2) = −(1/2)
∑6
k=0 y

k +O(y7). For computational purposes, use
the geometric series sum to replace the above iteration formula by

φn+1(t) = −1

2

∫ t

0

[
(3s2 + 4s+ 2)

6∑
k=0

φkn(s)

]
ds .
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Set φ0(t) = 0. The first four approximations are given by φ1(t) = −t− t2 − t3/2,
φ2(t)=−t− t2/2+t3/6 + t4/4− t5/5− t6/24 + . . ., φ3(t) = −t− t2/2+t4/12−3t5/
20 + 4t6/45 + . . ., φ4(t) = −t− t2/2 + t4/8− 7t5/60 + t6/15 + . . .

(b)

The approximations appear to be converging to the exact solution, which can be
found by separating the variables: φ(t) = 1−

√
1 + 2t+ 2t2 + t3 .

 11. Note that φn(0) = 0 and φn(1) = 1 , for every n ≥ 1 . Let a ∈ (0 , 1) . Then
φn(a) = an . Clearly, limn→∞ an = 0 . Hence the assertion is true.

12.(a) φn(0) = 0, for every n ≥ 1 . Let a ∈ (0 , 1]. Then φn(a) = 2na e−na
2

=

2na/ena
2

. Using l’Hospital’s rule, limz→∞ 2az/eaz
2

= limz→∞ 1/zeaz
2

= 0. Hence
limn→∞ φn(a) = 0 .

(b)
∫ 1

0
2nx e−nx

2

dx = −e−nx2 ∣∣1
0

= 1− e−n. Therefore,

lim
n→∞

∫ 1

0

φn(x)dx 6=
∫ 1

0

lim
n→∞

φn(x)dx .

 13.(a) Recall that Eq.(9) states that φ(t)=
∫ t
0

2s[1+φ(s)] ds. Since φ(t)=
∑∞
k=1 t

2k/k!,

2s[1 + φ(s)] = 2s

∞∑
k=0

s2k

k!
= 2

∞∑
k=0

s2k+1

k!

Integrating term-by-term,∫ t

0

2s[1 + φ(s)] ds =

∫ t

0

2

∞∑
k=0

s2k+1

k!
ds = 2

∞∑
k=0

1

k!

∫ t

0

s2k+1 ds

= 2

∞∑
k=0

1

k!

t2k+2

2k + 2
=

∞∑
k=0

t2(k+1)

(k + 1)!
=

∞∑
k=1

t2k

k!
= φ(t)

and φ(t) is a solution of Eq.(9).
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(b) Recall that the initial value problem in Eq.(8) is y′ = 2t(1 + y), y(0) = 0. Let-
ting y = φ(t) =

∑∞
k=1 t

2k/k!,

y′ = φ′(x) =

∞∑
k=1

2kt2k−1

k!
= 2

∞∑
k=1

t2k−1

(k − 1)!
= 2t

∞∑
k=1

t2k−2

(k − 1)!

= 2t

∞∑
k=0

t2k

k!
= 2t

[
1 +

∞∑
k=1

t2k

k!

]
= 2t[1 + φ(t)]

and y(0) = φ(0) =
∑∞
k=1 0 = 0, so y = φ(t) satisfies the initial value problem y′ =

2t(1 + y), y(0) = 0.

(c) Since et =

∞∑
k=0

tk

k!
,

φ(t) =

∞∑
k=1

t2k

k!
= −1 +

∞∑
k=0

t2k

k!
= −1 +

∞∑
k=0

(t2)k

k!
= −1 + et

2

(d) Separating the variables gives (1/(1 + y)) dy = 2t dt, and integration yields
ln |1 + y| = t2 + c. Applying the initial condition, ln 1 = 0 + c, so c = 0 and ln |1 +

y| = t2. Solving for y first gives |1 + y| = et
2

, so 1 + y = ±et2 . In order for y(0) = 0

to be true, we choose 1 + y = et
2

, and thus y = −1 + et
2

.

(e) Consider the first-order linear equation y′ − 2ty = 0. The integrating factor will

be µ(t) = e
∫
−2t dt = e−t

2

. Since multiplying the differential equation by µ(t) yields

d

dt

(
e−t

2

y
)

= 2te−t
2

we have e−t
2

y =
∫

2te−t
2

dt = −e−t2 + c. The initial condition y(0) = 0 may now

be applied to show that c = 1, and y = et
2

(−e−t2 + 1) = −1 + et
2

.

14. Let t be fixed, such that (t , y1), (t , y2) ∈ D . Without loss of generality, assume
that y1 < y2 . Since f is differentiable with respect to y, the mean value theorem ass-
erts that there exists ξ ∈ (y1 , y2) such that f(t , y1)− f(t , y2) = fy(t , ξ)(y1 − y2).
This means that |f(t , y1)− f(t , y2)| = |fy(t , ξ)| |y1 − y2|. Since, by assumption,
∂f/∂y is continuous in D, fy attains a maximum K on any closed and bounded
subset of D . Hence |f(t , y1)− f(t , y2)| ≤ K |y1 − y2|.

15. For a sufficiently small interval of t, φn−1(t), φn(t) ∈ D. Since f satisfies a
Lipschitz condition, |f(t, φn(t))− f(t, φn−1(t))| ≤ K |φn(t)− φn−1(t)|. Here K =
max |fy|.

16.(a) φ1(t) =
∫ t
0
f(s , 0)ds . Hence |φ1(t)| ≤

∫ |t|
0
|f(s , 0)| ds ≤

∫ |t|
0
Mds = M |t| , in

which M is the maximum value of |f(t , y)| on D .
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(b) By definition, φ2(t)− φ1(t) =
∫ t
0

[f(s , φ1(s))− f(s , 0)] ds . Taking the absolute

value of both sides, |φ2(t)− φ1(t)| ≤
∫ |t|
0
|[f(s , φ1(s))− f(s , 0)]| ds . Based on the

results in Problems 14 and 15,

|φ2(t)− φ1(t)| ≤
∫ |t|
0

K |φ1(s)− 0| ds ≤ KM
∫ |t|
0

|s| ds .

Evaluating the last integral, we obtain that |φ2(t)− φ1(t)| ≤MK |t|2 /2 .

(c) Suppose that

|φi(t)− φi−1(t)| ≤ MKi−1 |t|i

i!

for some i ≥ 1 . By definition,

φi+1(t)− φi(t) =

∫ t

0

[f(s, φi(s))− f(s, φi−1(s))] ds .

It follows that

|φi+1(t)− φi(t)| ≤
∫ |t|
0

|f(s, φi(s))− f(s, φi−1(s))| ds

≤
∫ |t|
0

K |φi(s)− φi−1(s)| ds ≤
∫ |t|
0

K
MK i−1 |s|i

i!
ds =

=
MK i |t|i+1

(i+ 1)!
≤ MK ihi+1

(i+ 1)!
.

Hence, by mathematical induction, the assertion is true.

17.(a) Use the triangle inequality, |a+ b| ≤ |a|+ |b| .

(b) For |t| ≤ h , |φ1(t)| ≤Mh , and |φn(t)− φn−1(t)| ≤MK n−1hn/(n !) . Hence

|φn(t)| ≤M
n∑
i=1

K i−1hi

i !
=
M

K

n∑
i=1

(Kh)i

i !
.

(c) The sequence of partial sums in (b) converges to M(eKh − 1)/K. By the com-
parison test, the sums in (a) also converge. Since individual terms of a convergent
series must tend to zero, |φn(t)− φn−1(t)| → 0 , and it follows that the sequence
|φn(t)| is convergent.

18.(a) Let φ(t) =
∫ t
0
f(s , φ(s))ds and ψ(t) =

∫ t
0
f(s , ψ(s))ds . Then by linearity of

the integral, φ(t)− ψ(t) =
∫ t
0

[f(s , φ(s))− f(s , ψ(s))] ds .

(b) It follows that |φ(t)− ψ(t)| ≤
∫ t
0
|f(s , φ(s))− f(s , ψ(s))| ds .
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(c) We know that f satisfies a Lipschitz condition, |f(t , y1)−f(t , y2)| ≤ K |y1−y2|,
based on |∂f/∂y| ≤ K in D. Therefore,

|φ(t)− ψ(t)| ≤
∫ t

0

|f(s , φ(s))− f(s , ψ(s))| ds ≤
∫ t

0

K |φ(s)− ψ(s)| ds.

2.9

1. Writing the equation for each n ≥ 0 , y1 = −0.9 y0 , y2 = −0.9 y1 = (−0.92)y0,
y3 = −0.9 y2 = (−0.9)3y0 and so on, it is apparent that yn = (−0.9)n y0 . The terms
constitute an alternating series, which converge to zero, regardless of y0 .

2. Write the equation for each n ≥ 0, y1 =
√

3 y0, y2 =
√

4/2 y1, y3 =
√

5/3 y2, . . .

Upon substitution, we find that y2 =
√

(4 · 3)/2 y1, y3 =
√

(5 · 4 · 3)/(3 · 2) y0, . . .
It can be proved by mathematical induction, that

yn =
1√
2

√
(n+ 2)!

n!
y0 =

1√
2

√
(n+ 1)(n+ 2) y0 .

This sequence is divergent, except for y0 = 0 .

3. Writing the equation for each n ≥ 0 , y1 = −y0 , y2 = y1 , y3 = −y2 , y4 = y3 ,
and so on. It can be shown that

yn =

{
y0, for n = 4k or n = 4k − 1

−y0, for n = 4k − 2 or n = 4k − 3

The sequence is convergent only for y0 = 0 .

 4. Writing the equation for each n ≥ 0 ,

y1 = 0.5 y0 + 6

y2 = 0.5 y1 + 6 = 0.5(0.5 y0 + 6) + 6 = (0.5)2y0 + 6 + (0.5)6

y3 = 0.5 y2 + 6 = 0.5(0.5 y1 + 6) + 6 = (0.5)3y0 + 6
[
1 + (0.5) + (0.5)2

]
...

yn = (0.5)ny0 + 12 [1− (0.5)n ] ,

which follows from Eq.(13) and (14). The sequence is convergent for all y0 , and in
fact yn → 12.

5. Let yn be the balance at the end of the nth month. Then yn+1 =(1+r/12)yn+25.
We have yn = ρn[y0 − 25/(1− ρ)] + 25/(1− ρ), in which ρ = (1 + r/12). Here r is
the annual interest rate, given as 8%. Thus y36 = (1.0066)36 [1000 + 12 · 25/r]−
12 · 25/r = $2, 283.63.
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6. Let yn be the balance due at the end of the nth month. The appropriate
difference equation is yn+1 = (1 + r/12) yn − P . Here r is the annual interest rate
and P is the monthly payment. The solution, in terms of the amount borrowed,
is given by yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ), in which ρ = (1 + r/12) and y0 =
8, 000 . To figure out the monthly payment P , we require that y36 = 0. That is,
ρ36[y0 + P/(1− ρ)] = P/(1− ρ). After the specified amounts are substituted, we
find that P = $258.14.

7. Let yn be the balance due at the end of the nth month. The appropriate differ-
ence equation is yn+1 = (1 + r/12) yn − P , in which r = .09 and P is the monthly
payment. The initial value of the mortgage is y0 = $100, 000. Then the balance
due at the end of the n-th month is yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ), where
ρ = (1 + r/12). In terms of the specified values, yn = (1.0075)n[105 − 12P/r] +
12P/r. Setting n = 30 · 12 = 360 , and y360 = 0 , we find that P = $804.62. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and y240 = 0
to find that P = $899.73. The total amount paid during the term of the loan is
360× 804.62 = $289, 663.20 for the 30-year loan and is 240× 899.73 = $215, 935.20
for the 20-year loan.

8. Let yn be the balance due at the end of the nth month, with y0 the initial value of
the mortgage. The appropriate difference equation is yn+1 = (1 + r/12) yn − P , in
which r = 0.1 and P = $1000 is the maximum monthly payment. Given that the life
of the mortgage is 20 years, we require that y240 = 0. The balance due at the end
of the n-th month is yn = ρn[y0 + P/(1− ρ)]− P/(1− ρ). In terms of the specified
values for the parameters, the solution of (1.00833)240[y0 − 12 · 1000/0.1] = −12 ·
1000/0.1 is y0 = $103, 624.62.

 9. We must solve Eq.(14) numerically for ρ when n = 240, y240 = 0, b = −$900 and
y0 = $95, 000. The result is ρ = 1.0081, so the monthly interest rate is r = 0.81%,
which is equivalent to an annual rate of 9.73%.

 10. Substituting Eq.(25), un = (ρ− 1)/ρ+ vn into Eq.(21) we get (ρ− 1)/ρ+
vn+1 = ρ((ρ− 1)/ρ+ vn)(1− (ρ− 1)/ρ− vn), which after simplification turns into
vn+1 = −(ρ− 1)/ρ+ (ρ− 1+ρvn)(1/ρ− vn) = (1− ρ)/ρ+(ρ− 1)/ρ− (ρ− 1)vn +
vn − ρv2n = (2− ρ)vn − ρv2n, which is exactly what we wanted to prove.

 11.(a) For u0 = 0.2, we have u1 = 3.2u0(1− u0) = 0.512 and u2 = 3.2u1(1− u1) =
0.7995392. Likewise, we get u3 = 0.51288406, u4 = 0.7994688, u5 = 0.51301899,
u6 = 0.7994576 and u7 = 0.5130404. Continuing, u14 = u16 = 0.79945549 and u15 =
u17 = 0.51304451.

(b) The plots show the nature of solutions.
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(a) ρ = 2.6 (b) ρ = 2.8

(c) ρ = 3.2 (d) ρ = 3.4

 12.(a) For example, take ρ = 3.5 and u0 = −0.01:

(b) For example, take ρ = 3.5 and u0 = 1.1:

Clearly, un → −∞ as n→∞.
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 13. For both parts of this problem a computer was used and an initial value of
u0 = 0.2 was chosen. Different initial values or different computer programs may
need a slightly different number of iterations to reach the limiting value.

(a)

(a) ρ = 2.9 (b) ρ = 2.95 (c) ρ = 2.99

The limiting value of 0.65517 (to 5 decimal places) is reached after approximately
100 iterations for ρ = 2.9. The limiting value of 0.66102 (to 5 decimal places)
is reached after approximately 200 iterations for ρ = 2.95. The limiting value of
0.66555 (to 5 decimal places) is reached after approximately 910 iterations for ρ =
2.99.

(b)

(a) ρ = 3.01 (b) ρ = 3.05 (c) ρ = 3.1

The solution oscillates between 0.63285 and 0.69938 after approximately 400 ite-
rations for ρ = 3.01. The solution oscillates between 0.59016 and 0.73770 after
approximately 130 iterations for ρ = 3.05. The solution oscillates between 0.55801
and 0.76457 after approximately 30 iterations for ρ = 3.1.

 14. For an initial value of 0.2 and ρ = 3.448 we have the solution oscillating bet-
ween 0.4403086 and 0.8497146. After approximately 3570 iterations the eighth
decimal place is still not fixed, though. For the same initial value and ρ = 3.45 the
solution oscillates between the four values 0.43399155, 0.84746795, 0.44596778 and
0.85242779 after 3700 iterations. For ρ = 3.449 the solution is still varying in the
fourth decimal place after 3570 iterations, but there appear to be four values.
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15.(a) δ2 = (ρ2 − ρ1)/(ρ3 − ρ2) = (3.449− 3)/(3.544− 3.449) = 4.7263 .

(b) diff= (|δ − δ2|/δ) · 100 = (|4.6692− 4.7363|/4.6692) · 100 ≈ 1.22%.

(c) Assuming (ρ3 − ρ2)/(ρ4 − ρ3) = δ , ρ4 ≈ 3.5643

(d) A period 16 solution appears near ρ ≈ 3.565 .

(e) Note that (ρn+1 − ρn) = δ−1n (ρn − ρn−1). With the assumption that δn = δ, we
have (ρn+1 − ρn) = δ−1(ρn − ρn−1), which is of the form yn+1 = α yn , n ≥ 3 . It
follows that (ρk − ρk−1) = δ3−k(ρ3 − ρ2) for k ≥ 4 . Then

ρn = ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2) + (ρ4 − ρ3) + . . .+ (ρn − ρn−1)

= ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2)
[
1 + δ−1 + δ−2 + . . .+ δ3−n

]
= ρ1 + (ρ2 − ρ1) + (ρ3 − ρ2)

[
1− δ4−n

1− δ−1

]
.

Hence limn→∞ ρn = ρ2 + (ρ3 − ρ2)
[

δ
δ−1

]
. Substitution of the appropriate values

yields
lim
n→∞

ρn = 3.5699

PROBLEMS

Before trying to find the solution of a differential equation, it is necessary to know
its type. The student should first classify the differential equations before looking
at this section, which identifies the type of each differential equation in Problems
1 through 24.

1. The equation is linear. It can be written in the form y′ + 2y/x = x2, and the
integrating factor is µ(x) = e

∫
(2/x) dx = e2 ln x = x2. Multiplication by µ(x) yields

x2y′ + 2yx = (yx2)′ = x4. Integration with respect to x and division by x2 gives
that y = x3/5 + c/x2.
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 2. The equation is separable. Separating the variables gives the differential equation
(2− sin y)dy = (1 + cosx)dx, and after integration we obtain that the solution is
2y + cos y − x− sinx = c.

 3. The equation is exact. Simplification gives (2x+ y)dx+ (x− 3− 3y2)dy = 0.
We can check thatMy = 1 = Nx, so the equation is really exact. IntegratingM with
respect to x gives that ψ(x, y) = x2 + xy + g(y), then ψy = x+ g′(y) = x− 3− 3y2,
which means that g′(y) = −3− 3y2, so integrating with respect to y we obtain that
g(y) = −3y − y3. Therefore the solution is defined implicitly as x2 + xy − 3y −
y3 = c. The initial condition y(0) = 0 implies that c = 0, so we conclude that the
solution is x2 + xy − 3y − y3 = 0.

 4. The equation is linear. It can be written as y′ + (2x− 1)y = −3(2x− 1), and

the integrating factor is ex
2−x. Multiplication by this integrating factor and the

subsequent integration gives the solution yex
2−x = −3ex

2−x + c, which means that
y = −3 + cex−x

2

. (The equation is also separable.)

5. The equation is exact. Algebraic manipulations give the symmetric form of
the equation, (2xy + y2 + 1)dx+ (x2 + 2xy)dy = 0. We can check that My = 2x+
2y = Nx, so the equation is really exact. Integrating M with respect to x gives that
ψ(x, y) = x2y + xy2 + x+ g(y), then ψy = x2 + 2xy + g′(y) = x2 + 2xy, so we get
that g′(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as x2y + xy2 + x = c.

6. The equation is linear. It can be written in the form y′ + (1 + (1/x))y = 1/x
and the integrating factor is µ(x) = e

∫
1+(1/x) dx = ex+ln x = xex. Multiplication by

µ(x) yields xexy′ + (xex + ex)y = (xexy)′ = ex. Integration with respect to x and
division by xex shows that the general solution of the equation is y = 1/x+ c/(xex).
The initial condition implies that 0 = 1 + c/e, which means that c = −e and the
solution is y = 1/x− e/(xex) = x−1(1− e1−x).

7. The equation is linear. It can be written in the form y′ + 2y/x = sinx/x2 and the
integrating factor is µ(x) = e

∫
(2/x) dx = e2 ln x = x2. Multiplication by µ(x) gives

x2y′ + 2xy = (x2y)′ = sinx, and after integration with respect to x and division by
x2 we obtain the general solution y = (c− cosx)/x2. The initial condition implies
that c = 4 + cos 2 and the solution becomes y = (4 + cos 2− cosx)/x2.

 8. The equation is exact. Simplification gives (2xy + 1)dx+ (x2 + 2y)dy = 0. We
can check that My = 2x = Nx, so the equation is really exact. Integrating M with
respect to x gives that ψ(x, y) = x2y + x+ g(y), then ψy = x2 + g′(y) = x2 + 2y,
which means that g′(y) = 2y, so we obtain that g(y) = y2. Therefore the solution
is defined implicitly as x2y + x+ y2 = c.

 9. The equation is separable. Factoring the terms we obtain the differential equa-

tion (x2 + x− 1)ydx+ x2(y − 2)dy = 0. We separate the variables by dividing this
equation by yx2 and obtain

(1 +
1

x
− 1

x2
)dx+ (1− 2

y
)dy = 0.
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Integration gives us the solution x+ ln |x|+ 1/x− 2 ln |y|+ y = c. We also have
the solution y = 0 which we lost when we divided by y.

10. The equation is exact. It is easy to check that My = 1 = Nx. Integrating
M with respect to x gives that ψ(x, y) = x3/3 + xy + g(y), then ψy = x+ g′(y) =
x+ ey, which means that g′(y) = ey, so we obtain that g(y) = ey. Therefore the
solution is defined implicitly as x3/3 + xy + ey = c.

11. The equation is exact. We can check that My = 1 = Nx. Integrating M with
respect to x gives that ψ(x, y) = x2/2 + xy + g(y), then ψy = x+ g′(y) = x+ 2y,
which means that g′(y) = 2y, so we obtain that g(y) = y2. Therefore the general
solution is defined implicitly as x2/2 + xy + y2 = c. The initial condition gives us
c = 17, so the solution is x2 + 2xy + 2y2 = 34.

12. The equation is separable. Separation of variables leads us to the equation

dy

y
=

1− ex

1 + ex
dx.

Note that 1 + ex − 2ex = 1− ex. We obtain that

ln |y| =
∫

1− ex

1 + ex
dx =

∫
1− 2ex

1 + ex
dx = x− 2 ln(1 + ex) + c̃.

This means that y = cex(1 + ex)−2, which also can be written as y = c/ cosh2(x/2)
after some algebraic manipulations.

13. The equation is exact. The symmetric form is (−e−x cos y + e2y cosx)dx+
(−e−x sin y + 2e2y sinx)dy = 0. We can check that My = e−x sin y + 2e2y cosx =
Nx. Integrating M with respect to x gives that ψ(x, y) = e−x cos y + e2y sinx+
g(y), then ψy = −e−x sin y + 2e2y sinx+ g′(y) = −e−x sin y + 2e2y sinx, so we get
that g′(y) = 0, so we obtain that g(y) = 0 is acceptable. Therefore the solution is
defined implicitly as e−x cos y + e2y sinx = c.

14. The equation is linear. The integrating factor is µ(x) = e−
∫
3 dx = e−3x, which

turns the equation into e−3xy′ − 3e−3xy = (e−3xy)′ = e−x. We integrate with re-
spect to x to obtain e−3xy = −e−x + c, and the solution is y = ce3x − e2x after
multiplication by e3x.

15. The equation is linear. The integrating factor is µ(x) = e
∫
2 dx = e2x, which

gives us e2xy′ + 2e2xy = (e2xy)′ = e−x
2

. The antiderivative of the function on the
right hand side can not be expressed in a closed form using elementary functions,
so we have to express the solution using integrals. Let us integrate both sides of
this equation from 0 to x. We obtain that the left hand side turns into∫ x

0

(e2sy(s))′ds = e2xy(x)− e0y(0) = e2xy − 3.
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The right hand side gives us
∫ x
0
e−s

2

ds. So we found that

y = e−2x
∫ x

0

e−s
2

ds+ 3e−2x.

16. The equation is exact. Algebraic manipulations give us the symmetric form
(y3 + 2y − 3x2)dx+ (2x+ 3xy2)dy = 0. We can check that My = 3y2 + 2 = Nx.
Integrating M with respect to x gives that ψ(x, y) = xy3 + 2xy − x3 + g(y), then
ψy = 3xy2 + 2x+ g′(y) = 2x+ 3xy2, which means that g′(y) = 0, so we obtain that
g(y) = 0 is acceptable. Therefore the solution is xy3 + 2xy − x3 = c.

17. The equation is separable, because y′ = ex+y = exey. Separation of variables
yields the equation e−ydy = exdx, which turns into −e−y = ex + c after integration
and we obtain the implicitly defined solution ex + e−y = c.

 18. The equation is exact. Algebraic manipulations give us the symmetric form

(2y2 + 6xy − 4)dx+ (3x2 + 4xy + 3y2)dy = 0. We can check that My = 4y + 6x =
Nx. Integrating M with respect to x gives that ψ(x, y) = 2y2x+ 3x2y − 4x+ g(y),
then ψy = 4yx+ 3x2 + g′(y) = 3x2 + 4xy + 3y2, which means that g′(y) = 3y2, so
we obtain that g(y) = y3. Therefore the solution is 2xy2 + 3x2y − 4x+ y3 = c.

19. The equation is linear. Division by t gives y′ + (1 + (1/t))y = e2t/t, so the
integrating factor is µ(t) = e

∫
(1+(1/t))dt = et+ln t = tet. The equation turns into

tety′ + (tet + et)y = (tety)′ = e3t. Integration therefore leads to tety = e3t/3 + c
and the solution is y = e2t/(3t) + ce−t/t.

 20. The equation is homogeneous. (See Section 2.2, Problem 25) We can write the

equation in the form y′ = y/x+ ey/x. We substitute u(x) = y(x)/x, which means
y = ux and then y′ = u′x+ u. We obtain the equation u′x+ u = u+ eu, which is
a separable equation. Separation of variables gives us e−udu = (1/x)dx, so after
integration we obtain that −e−u = ln |x|+ c and then substituting u = y/x back
into this we get the implicit solution e−y/x + ln |x| = c.

 21. The equation can be made exact with an appropriate integrating factor. Alge-

braic manipulations give us the symmetric form xdx− (x2y + y3)dy = 0. We can
check that (My −Nx)/M = 2xy/x = 2y depends only on y, which means we will
be able to find an integrating factor in the form µ(y). This integrating factor is

µ(y) = e−
∫
2ydy = e−y

2

. The equation after multiplication becomes

e−y
2

xdx− e−y
2

(x2y + y3)dy = 0.

This equation is exact now, as we can check thatMy = −2ye−y
2

x = Nx. Integrating

M with respect to x gives that ψ(x, y) = e−y
2

x2/2 + g(y), then ψy = −e−y2x2y +

g′(y) = −e−y2(x2y + y3), which means that g′(y) = −y3e−y2 . We can integrate this
expression by substituting u = −y2, du = −2ydy. Integrating by parts, we obtain
that



2.9 89

g(y) = −
∫
y3e−y

2

dy = −
∫

1

2
ueudu = −1

2
(ueu − eu) + c =

−1

2
(−y2e−y

2

− e−y
2

) + c.

Therefore the solution is defined implicitly as e−y
2

x2/2− 1
2 (−y2e−y2 − e−y2) = c,

or (after simplification) as e−y
2

(x2 + y2 + 1) = c. Remark: using the hint and
substituting u = x2 gives us du = 2xdx. The equation turns into 2(uy + y3)dy =
du, which is a linear equation for u as a function of y. The integrating factor is
e−y

2

and we obtain the same solution after integration.

22. The equation is homogeneous. (See Section 2.2, Problem 25) We can see that

y′ =
x+ y

x− y
=

1 + (y/x)

1− (y/x)
.

We substitute u = y/x, which means also that y = ux and then y′ = u′x+ u =
(1 + u)/(1− u), which implies that

u′x =
1 + u

1− u
− u =

1 + u2

1− u
,

a separable equation. Separating the variables yields

1− u
1 + u2

du =
dx

x
,

and then integration gives arctanu− ln(1 + u2)/2 = ln |x|+ c. Substituting u =
y/x back into this expression and using that

− ln(1 + (y/x)2)/2− ln |x| = − ln(|x|
√

1 + (y/x)2) = − ln(
√
x2 + y2)

we obtain that the solution is arctan(y/x)− ln(
√
x2 + y2) = c.

23. The equation is homogeneous. (See Section 2.2, Problem 25) Algebraic manip-
ulations show that it can be written in the form

y′ =
3y2 + 2xy

2xy + x2
=

3(y/x)2 + 2(y/x)

2(y/x) + 1
.

Substituting u = y/x gives that y = ux and then

y′ = u′x+ u =
3u2 + 2u

2u+ 1
,

which implies that

u′x =
3u2 + 2u

2u+ 1
− u =

u2 + u

2u+ 1
,

a separable equation. We obtain that (2u+ 1)du/(u2 + u) = dx/x, which in turn
means that ln(u2 + u) = ln |x|+ c̃. Therefore, u2 + u = cx and then substituting
u = y/x gives us the solution (y2/x3) + (y/x2) = c.

 24. This is a Bernoulli equation. (See Section 2.4, Problem 23) If we substitute

u = y−1, then u′ = −y−2y′, so y′ = −u′y2 = −u′/u2 and the equation becomes
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−xu′/u2 + (1/u)− e2x/u2 = 0, and then u′ − u/x = −e2x/x, which is a linear equa-
tion. The integrating factor is e−

∫
(1/x)dx = e− ln x = 1/x, and we obtain that

(u′/x)− (u/x2) = (u/x)′ = −e2x/x2. The integral of the function on the right hand
side can not be expressed in a closed form using elementary functions, so we have
to express the solution using integrals. Let us integrate both sides of this equation
from 1 to x. We obtain that the left hand side turns into∫ x

1

(u(s)/s)′ds = (u(x)/x)− (u(1)/1) =
1

yx
− 1

y(1)
=

1

yx
− 1/2.

The right hand side gives us −
∫ x
1

[e2s/s2] ds. So we find that

1/y = −x
∫ x

1

[e2s/s2] ds+ (x/2).

25. Let y1 be a solution, i.e. y′1 = q1 + q2y1 + q3y
2
1 . Now let y = y1 + (1/v) also be

a solution. Differentiating this expression with respect to t and using that y is also
a solution we obtain y′ = y′1 − (1/v2)v′ = q1 + q2y + q3y

2 = q1 + q2(y1 + (1/v)) +
q3(y1 + (1/v))2. Now using that y1 was also a solution we get that −(1/v2)v′ =
q2(1/v) + 2q3(y1/v) + q3(1/v2), which, after some simple algebraic manipulations
turns into v′ = −(q2 + 2q3y1)v − q3.

 26.(a) Using the idea of Problem 25, we obtain that y = t+ (1/v), and v satisfies
the differential equation v′ = −1. This means that v = −t+ c and then y = t+
(c− t)−1.

(b) Using the idea of Problem 25, we set y = (1/t) + (1/v), and then v satisfies
the differential equation v′ = −1− (v/t). This is a linear equation with integrating
factor µ(t) = t, and the equation turns into tv′ + v = (tv)′ = −t, which means that
tv = −t2/2 + c, so v = −(t/2) + (c/t) and y = (1/t) + (1/v) = (1/t) + 2t/(2c− t2).

(c) Using the idea of Problem 25, we set y = sin t+ (1/v). Then v satisfies the
differential equation v′ = − tan tv − 1/(2 cos t). This is a linear equation with inte-
grating factor µ(t) = 1/ cos t, which turns the equation into

v′/ cos t+ v sin t/ cos2 t = (v/ cos t)′ = −1/(2 cos2 t).

Integrating this we obtain that v = c cos t− (1/2) sin t, and the solution is y =
sin t+ (c cos t− (1/2) sin t)−1.

27.(a) The equation is y′=(1−y)(x+by)=x+ (b−x)y−by2. We set y=1+(1/v)
and differentiate: y′ = −v−2v′ = x+ (b− x)(1 + (1/v))− b(1 + (1/v))2, which,
after simplification, turns into v′ = (b+ x)v + b.

(b) When x = at, the equation is v′ − (b+ at)v = b, so the integrating factor is

µ(t) = e−bt−at
2/2. This turns the equation into (vµ(t))′=bµ(t), so vµ(t)=

∫
bµ(t)dt,

and then v = (b
∫
µ(t)dt)/µ(t).
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28. Substitute v=y′, then v′=y′′. The equation turns into t2v′ + 2tv = (t2v)′=1,
which yields t2v = t+ c1, so y′ = v = (1/t) + (c1/t

2). Integrating this expression
gives us the solution y = ln t− (c1/t) + c2.

29. Set v = y′, then v′ = y′′. The equation with this substitution is tv′ + v =
(tv)′ = 1, which gives tv = t+ c1, so y′ = v = 1 + (c1/t). Integrating this expres-
sion yields the solution y = t+ c1 ln t+ c2.

30. Set v = y′, so v′ = y′′. The equation is v′ + tv2 = 0, which is a separable
equation. Separating the variables we obtain dv/v2 = −tdt, so −1/v = −t2/2 + c,
and then y′ = v = 2/(t2 + c1). Now depending on the value of c1, we have the
following possibilities: when c1 = 0, then y = −2/t+ c2, when 0 < c1 = k2, then
y = (2/k) arctan(t/k) + c2, and when 0 > c1 = −k2 then

y = (1/k) ln |(t− k)/(t+ k)|+ c2.

We also divided by v = y′ when we separated the variables, and v = 0 (which is
y = c) is also a solution.

31. Substitute v = y′ and v′ = y′′. The equation is 2t2v′ + v3 = 2tv. This is a
Bernoulli equation (See Section 2.4, Problem 19), so the substitution z = v−2 yields
z′ = −2v−3v′, and the equation turns into 2t2v′v3 + 1 = 2t/v2, i.e. into −2t2z′/2 +
1 = 2tz, which in turn simplifies to t2z′ + 2tz = (t2z)′ = 1. Integration yields t2z =
t+ c, which means that z = (1/t) + (c/t2). Now y′ = v = ±

√
1/z = ±t/

√
t+ c1

and another integration gives

y = ±2

3
(t− 2c1)

√
t+ c1 + c2.

The substitution also loses the solution v = 0, i.e. y = c.

 32. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). The equation turns into

yv′v + v2 = 0, where the differentiation is with respect to y now. This is a separable
equation, separation of variables yields −dv/v = dy/y, and then − ln v = ln y + c̃,
so v = 1/(cy). Now this implies that y′ = 1/(cy), where the differentiation is with
respect to t. This is another separable equation and we obtain that cydy = 1dt, so
cy2/2 = t+ d and the solution is defined implicitly as y2 = c1t+ c2.

33. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
v′v + y = 0, where the differentiation is with respect to y. This is a separable
equation which simplifies to vdv = −ydy. We obtain that v2/2 = −y2/2 + c, so

y′ = v(y) = ±
√
c− y2. We separate the variables again to get dy/

√
c− y2 = ±dt,

so arcsin(y/
√
c) = t+ d, which means that y =

√
c sin(±t+ d) = c1 sin(t+ c2).

34. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equa-
tion yv′v − v3 = 0, where the differentiation is with respect to y. This separa-
ble equation gives us dv/v2 = dy/y, which means that −1/v = ln |y|+ c, and then
y′ = v = 1/(c− ln |y|). We separate variables again to obtain (c− ln |y|)dy = dt,
and then integration yields the implicitly defined solution cy − (y ln |y| − y) = t+ d.
Also, y = c is a solution which we lost when we divided by v = 0.
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 35. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation

v′v + v2 = 2e−y, where the differentiation is with respect to y. This is a Bernoulli
equation (See Section 2.4, Problem 23) and substituting z = v2 we get that z′ =
2vv′, which means that the equation reads z′ + 2z = 4e−y. The integrating factor
is µ(y) = e2y, which turns the equation into e2yz′ + 2e2yz = (e2yz)′ = 4ey. Inte-
gration gives us v2 = z = 4e−y + ce−2y. This implies that y′ = v = ±e−y

√
c+ 4ey.

Separation of variables now shows that ±eydy/
√
c+ 4ey = dt. Integration and sim-

plification gives ±(1/2)(c+ 4ey)1/2 = t+ d. Algebraic manipulations then yield the
implicitly defined solution ey = (t+ c2)2 + c1.

 36. Suppose that y′ = v(y) and then y′′ = v′(y)v(y). The equation is v2v′ = 2,

which gives us v3/3 = 2y + c. Now plugging 0 in place of t gives that 23/3 =
2 · 1 + c and we get that c = 2/3. This turns into v3 = 6y + 2, i.e. y′ = (6y +
2)1/3. This separable equation gives us (6y + 2)−1/3dy = dt, and integration shows
that (1/6)(3/2)(6y + 2)2/3 = t+ d. Again, plugging in t = 0 gives us d = 1 and
the solution is (6y + 2)2/3 = 4(t+ 1). Solving for y here yields y = (4/3)(t+ 1)3/2 −
1/3.

37. Set v = y′, then v′ = y′′. The equation with this substitution turns into
the equation (1 + t2)v′ + 2tv = ((1 + t2)v)′ = −3t−2. Integrating this we get that
(1 + t2)v = 3t−1 + c, and c = −5 from the initial conditions. This means that
y′ = v = 3/(t(1 + t2))− 5/(1 + t2). The partial fraction decomposition of the first
expression shows that y′ = 3/t− 3t/(1 + t2)− 5/(1 + t2) and then another inte-
gration here gives us that y = 3 ln t− (3/2) ln(1 + t2)− 5 arctan t+ d. The initial
conditions identify d = 2 + (3/2) ln 2 + 5π/4, and we obtained the solution.




