
Chapter 2 Supplemental Text Material 

 

S2.1. Models for the Data and the t-Test 

 

The model presented in the text, equation (2.23) is more properly called a means model.  

Since the mean is a location parameter, this type of model is also sometimes called a 

location model.  There are other ways to write the model for a t-test.  One possibility is  

 

y
i

j n
ij i ij

i

= + +
=

=

RST
  

1 2

1 2

,

, , ,
 

where  is a parameter that is common to all observed responses (an overall mean) and i 

is a parameter that is unique to the ith factor level.  Sometimes we call i the ith treatment 

effect.  This model is usually called the effects model. 

Since the means model is  

y
i

j n
ij i ij

i

= +
=

=

RST
 

1 2

1 2

,

, , ,
 

we see that the ith treatment or factor level mean is   i i= + ; that is, the mean 

response at factor level i is equal to an overall mean plus the effect of the ith factor.  We 

will use both types of models to represent data from designed experiments.  Most of the 

time we will work with effects models, because it’s the “traditional” way to present much 

of this material.  However, there are situations where the means model is useful, and even 

more natural. 

S2.2. Estimating the Model Parameters 

Because models arise naturally in examining data from designed experiments, we 

frequently need to estimate the model parameters.  We often use the method of least 

squares for parameter estimation.  This procedure chooses values for the model 

parameters that minimize the sum of the squares of the errors ij.  We will illustrate this 

procedure for the means model.  For simplicity, assume that the sample sizes for the two 

factor levels are equal; that is n n n1 2= = .  The least squares function that must be 

minimized is  
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22 2( ) ( ) and and equating these partial derivatives 

to zero yields the least squares normal equations  
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The solution to these equations gives the least squares estimators of the factor level 

means. The solution is   1 1 2 2= =y y and ; that is, the sample averages at leach factor 

level are the estimators of the factor level means.   

This result should be intuitive, as we learn early on in basic statistics courses that the 

sample average usually provides a reasonable estimate of the population mean.  However, 

as we have just seen, this result can be derived easily from a simple location model using 

least squares.  It also turns out that if we assume that the model errors are normally and 

independently distributed, the sample averages are the maximum likelihood estimators 

of the factor level means.  That is, if the observations are normally distributed, least 

squares and maximum likelihood produce exactly the same estimators of the factor level 

means.   Maximum likelihood is a more general method of parameter estimation that 

usually produces parameter estimates that have excellent statistical properties. 

We can also apply the method of least squares to the effects model.  Assuming equal 

sample sizes, the least squares function is  
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and the partial derivatives of L with respect to the parameters are  
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Equating these partial derivatives to zero results in the following least squares normal 

equations: 
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Notice that if we add the last two of these normal equations we obtain the first one.  That 

is, the normal equations are not linearly independent and so they do not have a unique 

solution.  This has occurred because the effects model is overparameterized.  This 



situation occurs frequently; that is, the effects model for an experiment will always be an 

overparameterized model.   

One way to deal with this problem is to add another linearly independent equation to the 

normal equations.  The most common way to do this is to use the equation   1 2 0+ = .  

This is, in a sense, an intuitive choice as it essentially defines the factor effects as 

deviations from the overall mean .  If we impose this constraint, the solution to the 

normal equations is  
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That is, the overall mean is estimated by the average of all 2n sample observation, while 

each individual factor effect is estimated by the difference between the sample average 

for that factor level and the average of all observations. 

This is not the only possible choice for a linearly independent “constraint” for solving the 

normal equations.  Another possibility is to simply set the overall mean equal to a 

constant, such as for example  = 0.  This results in the solution  
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Yet another possibility is  2 0= , producing the solution  
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There are an infinite number of possible constraints that could be used to solve the 

normal equations.  An obvious question is “which solution should we use?”  It turns out 

that it really doesn’t matter. For each of the three solutions above (indeed for any solution 

to the normal equations) we have  

   , ,  i i iy i= + = =12  

That is, the least squares estimator of the mean of the ith factor level will always be the 

sample average of the observations at that factor level.  So even if we cannot obtain 

unique estimates for the parameters in the effects model we can obtain unique estimators 

of a function of these parameters that we are interested in.  We say that the mean of the 

ith factor level is estimable.  Any function of the model parameters that can be uniquely 

estimated regardless of the constraint selected to solve the normal equations is called an 

estimable function.  This is discussed in more detail in Chapter 3.   

S2.3. A Regression Model Approach to the t-Test 

The two-sample t-test can be presented from the viewpoint of a simple linear regression 

model.  This is a very instructive way to think about the t-test, as it fits in nicely with the 

general notion of a factorial experiment with factors at two levels, such as the golf 



experiment described in Chapter 1.  This type of experiment is very important in practice, 

and is discussed extensively in subsequent chapters. 

In the t-test scenario, we have a factor x with two levels, which we can arbitrarily call 

“low” and “high”.  We will use x = -1 to denote the low level of this factor and x = +1 to 

denote the high level of this factor.  The figure below is a scatter plot (from Minitab) of 

the Portland cement mortar tension bond strength data in Table 2.1 of Chapter 2. 
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Figure 2-3.1 Scatter plot of bond strength

 

 

We will a simple linear regression model to this data, say  

y xij ij ij= + +  0 1  

where 0 1 and are the intercept and slope, respectively, of the regression line and the 

regressor or predictor variable is x j1 1= − and x j2 1= + .  The method of least squares can 

be used to estimate the slope and intercept in this model.  Assuming that we have equal 

sample sizes n for each factor level the least squares normal equations are: 
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The solution to these equations is  
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Note that the least squares estimator of the intercept is the average of all the observations 

from both samples, while the estimator of the slope is one-half of the difference between 

the sample averages at the “high” and “low’ levels of the factor x.  Below is the output 

from the linear regression procedure in Minitab for the tension bond strength data. 

 

Regression Analysis: Bond Strength versus Factor level  
 
The regression equation is 

Bond Strength = 16.9 + 0.139 Factor level 

 

 

Predictor        Coef  SE Coef       T      P 

Constant      16.9030   0.0636  265.93  0.000 

Factor level  0.13900  0.06356    2.19  0.042 

 

 

S = 0.284253   R-Sq = 21.0%   R-Sq(adj) = 16.6% 

 

 

Analysis of Variance 

 

Source          DF       SS       MS     F      P 

Regression       1  0.38642  0.38642  4.78  0.042 

Residual Error  18  1.45440  0.08080 

Total           19  1.84082 

 

 

 

Notice that the estimate of the slope (given in the column labeled “Coef” and the row 

labeled “Factor level” above) is 0.139 2 1

1 1
( ) (17.0420 16.7640)

2 2
y y= − = − and the 

estimate of the intercept is 16.9030.   Furthermore, notice that the t-statistic associated 

with the slope is equal to 2.19, exactly the same value (apart from sign) that we gave in 

the Minitab two-sample t-test output in Table 2.2 in the text.  Now in simple linear 

regression, the t-test on the slope is actually testing the hypotheses 
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and this is equivalent to testing H0 1 2: = . 

It is easy to show that the t-test statistic used for testing that the slope equals zero in 

simple linear regression is identical to the usual two-sample t-test.  Recall that to test the 

above hypotheses in simple linear regression the t-statistic is  
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This is the usual two-sample t-test statistic for the case of equal sample sizes. 

 

S2.4. Constructing Normal Probability Plots 

While we usually generate normal probability plots using a computer software program, 

occasionally we have to construct them by hand.  Fortunately, it’s relatively easy to do, 

since specialized normal probability plotting paper is widely available.  This is just 

graph paper with the vertical (or probability) scale arranged so that if we plot the 

cumulative normal probabilities (j – 0.5)/n on that scale versus the rank-ordered 

observations y(j) a graph equivalent to the computer-generated normal probability plot 

will result.  The table below shows the calculations for the unmodified portland cement 

mortar bond strength data. 

j y (j) (j – 0.5)/10 z(j) 

1 16.62 0.05 -1.64 

2 16.75 0.15 -1.04 

3 16.87 0.25 -0.67 

4 16.98 0.35 -0.39 

5 17.02 0.45 -0.13 

6 17.08 0.55 0.13 

7 17.12 0.65 0.39 

8 17.27 0.75 0.67 

9 17.34 0.85 1.04 

10 17.37 0.95 1.64 

 



Now if we plot the cumulative probabilities from the next-to-last column of this table 

versus the rank-ordered observations from the second column on normal probability 

paper, we will produce a graph that is identical to the results for the unmodified mortar 

formulation that is shown in Figure 2.11 in the text. 

A normal probability plot can also be constructed on ordinary graph paper by plotting the 

standardized normal z-scores z(j) against the ranked observations, where the standardized 

normal z-scores are obtained from 
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where ( )•  denotes the standard normal cumulative distribution.  For example, if (j – 

0.5)/n = 0.05, then ( ) . .z zj j= = −0 05 164 implies that .  The last column of the above 

table displays the values of the normal z-scores.  Plotting these values against the ranked 

observations on ordinary graph paper will produce a normal probability plot equivalent to 

the unmodified mortar results in Figure 2.11.  As noted in the text, many statistics 

computer packages present the normal probability plot this way. 

 

 

S2.5. More About Checking Assumptions in the t-Test 

We noted in the text that a normal probability plot of the observations was an excellent 

way to check the normality assumption in the t-test. Instead of plotting the observations, 

an alternative is to plot the residuals from the statistical model.   

Recall that the means model is  
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and that the estimates of the parameters (the factor level means) in this model are the 

sample averages.  Therefore, we could say that the fitted model is  

 , , , , ,y y i j nij i i= = =1 2 1 2 and   

That is, an estimate of the ijth observation is just the average of the observations in the ith 

factor level.  The difference between the observed value of the response and the predicted 

(or fitted) value is called a residual, say 

e y y iij ij i= − = , ,1 2 . 

The table below computes the values of the residuals from the portland cement mortar 

tension bond strength data. 
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1 16.85 0.09 16.62 -0.42 

2 16.40 -0.36 16.75 -0.29 

3 17.21 0.45 17.37 0.33 

4 16.35 -0.41 17.12 0.08 

5 16.52 -0.24 16.98 -0.06 

6 17.04 0.28 16.87 -0.17 

7 16.96 0.20 17.34 0.30 

8 17.15 0.39 17.02 -0.02 

9 16.59 -0.17 17.08 0.04 

10 16.57 -0.19 17.27 0.23 

 

The figure below is a normal probability plot of these residuals from Minitab. 
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As noted in section S2.3 above we can compute the t-test statistic using a simple linear 

regression model approach.  Most regression software packages will also compute a table 

or listing of the residuals from the model.  The residuals from the Minitab regression 

model fit obtained previously are as follows: 

 

 
     Factor      Bond 

Obs   level  Strength      Fit  SE Fit  Residual  St Resid 

  1   -1.00   16.8500  16.7640  0.0899    0.0860      0.32 

  2   -1.00   16.4000  16.7640  0.0899   -0.3640     -1.35 

  3   -1.00   17.2100  16.7640  0.0899    0.4460      1.65 

  4   -1.00   16.3500  16.7640  0.0899   -0.4140     -1.54 

  5   -1.00   16.5200  16.7640  0.0899   -0.2440     -0.90 

  6   -1.00   17.0400  16.7640  0.0899    0.2760      1.02 

  7   -1.00   16.9600  16.7640  0.0899    0.1960      0.73 

  8   -1.00   17.1500  16.7640  0.0899    0.3860      1.43 

  9   -1.00   16.5900  16.7640  0.0899   -0.1740     -0.65 

 10   -1.00   16.5700  16.7640  0.0899   -0.1940     -0.72 

 11    1.00   16.6200  17.0420  0.0899   -0.4220     -1.56 

 12    1.00   16.7500  17.0420  0.0899   -0.2920     -1.08 

 13    1.00   17.3700  17.0420  0.0899    0.3280      1.22 

 14    1.00   17.1200  17.0420  0.0899    0.0780      0.29 

 15    1.00   16.9800  17.0420  0.0899   -0.0620     -0.23 

 16    1.00   16.8700  17.0420  0.0899   -0.1720     -0.64 

 17    1.00   17.3400  17.0420  0.0899    0.2980      1.11 

 18    1.00   17.0200  17.0420  0.0899   -0.0220     -0.08 

 19    1.00   17.0800  17.0420  0.0899    0.0380      0.14 

 20    1.00   17.2700  17.0420  0.0899    0.2280      0.85 

 

 

The column labeled “Fit” contains the averages of the two samples, computed to four 

decimal places.  The residuals in the sixth column of this table are the same (apart from 

rounding) as we computed manually.   

 

 

S2.6. Some More Information about the Paired t-Test 

The paired t-test examines the difference between two variables and test whether the 

mean of those differences differs from zero.  In the text we show that the mean of the 

differences  d is identical to the difference of the means in two independent samples, 

 1 2− .  However the variance of the differences is not the same as would be observed if 

there were two independent samples.  Let d be the sample average of the differences.  

Then 
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assuming that both populations have the same variance 2 and that  is the correlation 

between the two random variables y y1 2 and .  The quantity S nd

2 / estimates the variance 

of the average difference d .  In many paired experiments a strong positive correlation is 



expected to exist between y y1 2 and because both factor levels have been applied to the 

same experimental unit.  When there is positive correlation within the pairs, the 

denominator for the paired t-test will be smaller than the denominator for the two-sample 

or independent t-test.  If the two-sample test is applied incorrectly to paired samples, the 

procedure will generally understate the significance of the data. 

Note also that while for convenience we have assumed that both populations have the 

same variance, the assumption is really unnecessary.  The paired t-test is valid when the 

variances of the two populations are different. 


