\qquad
\qquad
\qquad

Chapter 02: Algebra

Multiple Choice

1. If $x=7$, solve the expression $6-x$.
a. 0
b. 1
c. -1
d. 13

ANSWER: c
2. Solve the expression $\left.\frac{2}{\frac{A}{4}}\right\} \times y$ when $y=2$.
a. 4
b. 2
c. 1
d. $1 / 2$

ANSWER: c
3. Calculate the residual volume (RV) given the following data.
$\mathrm{TLC}=5,500 \mathrm{ml} ; \mathrm{IC}=3,000 \mathrm{ml} ; \mathrm{ERV}=1,100 \mathrm{ml}$
a. $4,400 \mathrm{ml}$
b. $4,100 \mathrm{ml}$
c. $2,500 \mathrm{ml}$
d. $1,400 \mathrm{ml}$

ANSWER: d
4. Which of the following formulas represents an algebraic expression with one variable?
a. ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) 5 / 9$
b. C.O. $=\mathrm{SV} \times \mathrm{HR}$
c. $\frac{F_{\mathrm{D}}}{F_{T}}=\frac{\mathrm{PaCO}_{2}-\mathrm{PECO}_{2}}{\mathrm{PaCO}_{2}}$

ANSWER: a
5. Which of the following terms matches the definition "the opposite value of a negative real number"?
a. opposite
b. reciprocal
c. multiplicative inverse
d. additive inverse

ANSWER: d
\qquad
\qquad
\qquad

Chapter 02: Algebra

6. Identify the quotient in the following equation.
$\left[\frac{12}{3}=4\right]$
a. 12
b. 4
c. 3
d. $12 / 3$

ANSWER: b
7. Solve $24+(-15)$.
a. 39
b. -39
c. 9
d. -9

ANSWER: c
8. Which of the following terms matches the definition "the distance a number is from zero on a number line"?
a. origin
b. absolute value
c. opposite value
d. real number

ANSWER: b
9. Using the number line below, determine the opposite value of -3 .

a. 0
b. -3
c. +3
d. +4

ANSWER: c
10. What is the absolute value of -10 ?
a. -10
b. 0
c. 10
d. cannot be determined without a number line

ANSWER: c
11. Determine the $P_{\text {transpulmonary }}$ when the $P_{\text {alv }}$ is $0 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ and the P_{pl} is $-8 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$.
a. $8 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
\qquad
\qquad
\qquad

Chapter 02: Algebra

b. $0 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
c. $-5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
d. $-8 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

ANSWER: a

12. Calculate the absolute pressure change that occurs when a pressure measurement fluctuates from 770 torr to -8 torr. (Assume the normal "textbook" value for the barometric pressure.)
a. 2 torr
b. -8 torr
c. 18 torr
d. -18 torr

ANSWER: c
13. What is the pressure change expressed in terms of relative pressure values when a pressure measurement changes from $1,041 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ to $1,033 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$?
a. $8 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
b. $-8 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
c. $-1 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
d. $0 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

ANSWER: b
14. Simplify the following equation.
$\hat{H}_{2}=\hat{O}_{\mathrm{P}} \times\left(\mathrm{CaO}_{2}-\mathrm{CVO} \mathrm{O}_{2}\right)$.
$\dot{Q}_{T}=6 \mathrm{~L}$ minute
$\left(\mathrm{CaO}_{2}-\mathrm{CVO}_{2}\right)=5.0 \mathrm{vol}, \mathrm{m}$
a. $30,000 \mathrm{ml} \mathrm{O}_{2} /$ minute
b. $300 \mathrm{ml} \mathrm{O}_{2} /$ minute
c. $30 \mathrm{ml} \mathrm{O}_{2} /$ minute
d. $3 \mathrm{ml} \mathrm{O}_{2}$ /minute

ANSWER: b
15. How many terms are in the algebraic expression $10 x^{2}+2 x-3$?
a. two terms
b. three terms
c. five terms
d. six terms

ANSWER: b
\qquad
\qquad
\qquad

Chapter 02: Algebra

16. Simplify the algebraic expression $2\left\{4\left[5 x^{2}+3\left(4 x^{2}-2 x^{2}\right)\right]-6 y\right\}$.
a. $88 x^{2}-12 y$
b. $88 x^{2}-24 y$
c. $44 x^{2}-24 y$
d. $44 x^{2}-12 y$

ANSWER: a
17. After combining like terms, solve the equation
$\mathrm{CI}=\frac{\mathrm{SV} H \mathrm{HR}}{\mathrm{BSA}}$
$\mathrm{CI}=3.7 \mathrm{~L} /$ minute $/ \mathrm{m}^{2}$
$\mathrm{HR}=80$ beats $/$ minute
$\mathrm{BSA}=1.7 \mathrm{~m}^{2}$
a. $\mathrm{SV}=174 \mathrm{ml} /$ beat
b. $\mathrm{SV}=86 \mathrm{ml} /$ beat
c. $\mathrm{SV}=79 \mathrm{ml} /$ beat
d. $\mathrm{SV}=37 \mathrm{ml} /$ beat

ANSWER: c
18. Transpose the Bohr equation below to solve for the $\mathrm{P}_{\overline{\mathrm{I}}}^{\mathrm{C}} \mathrm{CO}_{2}$.
$\frac{V_{D}}{F_{T}}=\frac{\mathrm{PaCO}_{2}-\mathrm{PECO}_{2}}{\mathrm{PaCO}_{2}}$
a. $\mathrm{PECO}_{2}=\mathrm{PaCO}_{2}+\left(\frac{V_{D}}{V_{T}}\right) \mathrm{PaCO}_{2}$
b. ${ }_{\mathrm{PECCO}}^{2}$ $=\left(\frac{V_{D}}{V_{T}}\right) \mathrm{PaCO}_{2} \div \mathrm{PaCO}_{2}$
c. $\mathrm{PECCO}_{2}=\mathrm{PaCO}_{2}-\left(\frac{V_{D}}{V_{T}}\right) \mathrm{PaCO}_{2}$
d. $\mathrm{PECO}_{2}=\mathrm{PaCO}_{2}\left(\frac{V_{D}}{V_{T}}\right)+\mathrm{PaCO}_{2}$

ANSWER: c
19. Two numbers whose product is unity are called \qquad .
a. equivalents
b. reciprocals
c. absolutes
d. variables

ANSWER: b
\qquad
\qquad
\qquad

Chapter 02: Algebra

20. The general formula $(x)(1 / x)=1$ is described by which of the following terms?
a. multiplicative inverse
b. additive inverse
c. quotient
d. factorization

ANSWER: a
21. Which of the following paired terms represent reciprocals?
I. compliance and elastance
II. conductance and resistance
III. series resistance and parallel resistance
IV. mean airway pressure and peak inspiratory pressure
a. I, IV only
b. II, IV only
c. I, II only
d. I, II, III only

ANSWER: c
22. What is the reciprocal of 0 ?
a. 1
b. 0
c. infinity
d. Zero has no reciprocal.

ANSWER: d
23. Find the answer to the problem $(-88) \div-11$
a. -8
b. 11
c. 8
d. 88

ANSWER: c
24. Perform the following mathematical operation: $(-3)(-12)$.
a. 4
b. 36
c. -4
d. -36

ANSWER: b
25. The rules listed below refer to which of the following mathematical operations?

- Find the number's additive inverse.
- Set up the problem as an addition problem.
\qquad
\qquad
\qquad

Chapter 02: Algebra

- Apply the addition rules.
a. multiplication
b. division
c. addition
d. subtraction

ANSWER: d
26. Which of the following relationships are correct?
I. $\quad P_{\text {transmural }}=P_{\text {airway }}-P_{\text {pleural }}$
II. $\quad P_{\text {transpulmonary }}=P_{\text {alveolar }}-P_{\text {pleural }}$
III. $\quad P_{\text {thorax }}=P_{\text {pleural }}-P_{\text {airway }}$
IV. $\quad P_{\text {chest wall }}=P_{\text {pleural }}-P_{\text {atmospheric }}$
a. I, III only
b. III, IV only
c. I, II, III only
d. I, II, IV only

ANSWER: d
27. Solve the algebraic expression $(x y+3 y) /(z-10)$ if $x=2, y=6$, and $z=20$.
a. 30
b. 15
c. 3
d. 1

ANSWER: c
28. The point on a number line equivalent to zero is called the \qquad .
a. origin
b. opposite
c. absolute value
d. reciprocal

ANSWER: a
29. What is the first rule for order of operations?
a. Add and subtract left to right.
b. Perform operations within parentheses.
c. Perform operations within brackets.
d. Multiply and divide left to right.

ANSWER: b
30. Simplify the algebraic expression $2[3 x+3(2 y+x)]-5 z$ by combining like terms.
\qquad
\qquad
\qquad

Chapter 02: Algebra

a. $12 x+12 y$
b. $12 x+12 y-5 z$
c. $12 x+12 y-10 z$
d. $12 y-5 z$

ANSWER: b

31. The term additive inverse applies to which mathematical operation?
a. addition
b. multiplication
c. subtraction
d. division

ANSWER: c
32. Which of the following terms is defined by the definition "the distance of a number from zero (0) on a number line"?
a. opposite
b. real number
c. absolute value
d. subtrahend

ANSWER: c
33. Using relative terms, what is another name, or term, used to describe atmospheric pressure?
a. 0 pressure
b. supra-atmospheric pressure
c. subatmospheric pressure
d. water vapor pressure

ANSWER: a
34. If pleural pressure is $-3 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ at functional residual capacity, and if the inspiratory muscles produce a pressure of $-5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ to initiate an inspiration, what will be the pressure in the pleural space at that moment?
a. $-2 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
b. $-3 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
c. $-5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
d. $-8 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

ANSWER: d
35. At what point during the respiratory cycle is the pressure gradient between the atmosphere and the alveoli zero?
a. during inspiration
b. during expiration
\qquad
\qquad
\qquad

Chapter 02: Algebra

c. at functional residual capacity
d. during a vital capacity maneuver

ANSWER: c

36. At what lung volume, lung capacity, or point during the respiratory cycle is the opposition of the elastic forces between the lungs and chest wall at equilibrium?
a. total lung capacity
b. functional residual capacity
c. residual volume
d. normal end-inspiration

ANSWER: b
37. Calculate the pressure change that occurs when the atmospheric pressure changes from 770 mm Hg to -8 mm Hg ?
a. 78 mm Hg
b. 762 mm Hg
c. 8 mm Hg
d. 18 mm Hg

ANSWER: d
38. Rearrange the following equation to solve for the PaCO_{2} ?

$$
\mathrm{pH}=6.10 \div \log \left[\frac{\left[\mathrm{HCO}_{2}^{-}\right.}{\left(\mathrm{PaCO}_{2}\right)(0.03 \mathrm{mEq} \text { itorr }]}\right]
$$

a. $\mathrm{PaCO}_{2}=\mathrm{pK}+\log \frac{\left[\mathrm{HCO}_{2}^{-}\right]}{0.03 \mathrm{mxq} \mathrm{mmHg}}$
b. $\mathrm{PaCO}_{2}=\frac{\left[\mathrm{HCO}_{a}^{-}\right]}{0.03 \mathrm{mEq} / \mathrm{L} / \mathrm{mmHg} \times \text { antilog }(\mathrm{pH}-6.1)}$
c. $\mathrm{PaCO}_{2}=($ antilog $\mathrm{pH}-6.1)\left(\mathrm{HCO}_{2}^{-}\right) \div 0.03 \mathrm{mEq} / \mathrm{L} / \mathrm{mm} \mathrm{Hg}$
d. $\mathrm{PaCO}_{2}=(0.03 \mathrm{mEq} / \mathrm{L} / \mathrm{mm} \mathrm{Hg}) \div($ antilog $\mathrm{pH}-6.1)$ (HCO_{3}^{-})

ANSWER: b
39. Solve for the two unknown values in the air-entrainment equation presented here:

$$
\left(C_{S} x \dot{\gamma}_{S}\right) \div\left(C_{\text {GM }} \because \dot{\Gamma}_{Z D I}\right)=\left(C_{D E L} \because \dot{\Gamma}_{D E}\right)
$$

The following data represent the variables in the equation:
C S $($ source gas concentration $)=100 \%$
容 $($ source gas flow $)=20 \mathrm{~L} /$ minute
\qquad
\qquad
\qquad

Chapter 02: Algebra

$C_{\text {ENT }}($ entrained gas concentration $)=20 \%$

产 $($ entrained gas flow $)=$ unknown
$C_{\text {DEL }}($ delivered gas concentration $)=80 \%$
$\hat{H}_{\text {DSI }}($ delivered gas flow $)=$ unknown
a. $\hat{\bar{H}}_{\text {ITT }}=20 \mathrm{~L} /$ minute; $\hat{\bar{t}}_{\text {DSE }}=30 \mathrm{~L} /$ minute
b. $\hat{\bar{H}}_{\text {ITT }}=30 \mathrm{~L} /$ minute; $\hat{\bar{H}}_{\text {DES }}=20 \mathrm{~L} /$ minute
c. $\dot{V}_{\mathrm{EMT}}=6.67 \mathrm{~L} /$ minute; $\dot{\boldsymbol{V}}_{\mathrm{ZEC}}=26.7 \mathrm{~L} /$ minute
d. $\hat{H}_{\text {EMT }}=26.7 \mathrm{~L} /$ minute; $\hat{\bar{V}}_{\text {OSI }}=6.67 \mathrm{~L} /$ minute ANSWER: c
40. Calculate the PIO_{2} using the data provided below:

$$
\mathrm{PIO}_{2}=\mathrm{FIO}_{2}\left(\mathrm{~PB}-\mathrm{PH}_{2} \mathrm{O}\right)
$$

$\mathrm{FIO}_{2}\left(\right.$ fraction of inspired $\left.\mathrm{O}_{2}\right)=0.21$
$\mathrm{P}_{\mathrm{B}}($ barometric pressure $)=760 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{PH}_{2} \mathrm{O}$ (partial pressure of water vapor) 47 mm Hg
$\mathrm{PIO}_{2}=$ partial pressure of inspired $\mathrm{O}_{2}(\mathrm{~mm} \mathrm{Hg})$
a. 159.6 mm Hg
b. 149.7 mm Hg
c. 120.0 mm Hg
d. 108.4 mm Hg

ANSWER: b
41. Perform the following mathematical operation.
$-6+(-8)$
a. -2
b. +2
c. -14
d. +14
\qquad
\qquad
\qquad

Chapter 02: Algebra

ANSWER: c
42. On a number line, the point where zero (0) is located is called the \qquad .
a. additive inverse
b. opposite
c. origin
d. absolute value

ANSWER: c
43. Calculate the transpulmonary pressure when the pressure in the pleural space is $-8 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ and the pressure in the alveoli is 760 mm Hg .
a. $8 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
b. $-8 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
c. 760 mm Hg
d. 752 mm Hg

ANSWER: a
44. Simplify the following equation: $5[6 x+3(2 y-2 x)+10 y]$
a. $15 x+50 y$
b. $15 x+80 y$
c. $30 x+50 y$
d. $80 y$

ANSWER: d
45. Rearrange the following equation to solve for the $V_{\text {lost }}$.

$C_{\text {static }}=40 \mathrm{ml} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$
$V_{\mathrm{T}}=750 \mathrm{ml}$
$\mathrm{PEEP}_{\text {applied }}=5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
$P_{\text {plateau }}=25 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$
$V_{\text {lost }}=? ? \mathrm{ml}$
a. 150 ml
b. 135 ml
c. 105 ml
d. 95 ml

ANSWER: a
46. By multiplying the $R_{\text {aw }}$ by $G_{\text {aw }}$ what product would be expected?
a. 0
\qquad
\qquad
\qquad

Chapter 02: Algebra

b. 10^{1}
c. 1
d. Cannot be determined without the actual measurements of $R_{\text {aw }}$ and $G_{\text {aw }}$.

ANSWER: c
47. Two numbers whose product is unity are \qquad .
a. opposites
b. reciprocals
c. absolute values
d. inverse values

ANSWER: b
48. What are physiological examples of a multiplicative inverse?
I. lung compliance and lung elastance
II. blood pH and PaCO_{2}
III. $\quad \mathrm{PaO} 2$ and SaO_{2}
IV. airway resistance and airway conductance
a. III only
b. I, II only
c. II, III only
d. I, IV only

ANSWER: d
49. Which of the following terms best describes the DLCO measurement?
a. compliance
b. conductance
c. elastance
d. resistance

ANSWER: b
50. Calculate the problem below when $x=15$.
(x) $\frac{10}{2}$
a. 125
b. 75
c. 10
d. 3

ANSWER: b

