Chapter 2
 Cost-Volume-Profit Relationships

Solutions to Questions

2-1 The contribution margin (CM) ratio is the ratio of the total contribution margin to total sales revenue. It can also be expressed as the ratio of the contribution margin per unit to the selling price per unit. It is used in target profit and break-even analysis and can be used to quickly estimate the effect on profits of a change in sales revenue.

2-2 Incremental analysis focuses on the changes in revenues and costs that will result from a particular action.

2-3 All other things equal, Company B , with its higher fixed costs and lower variable costs, will have a higher contribution margin ratio than Company A. Therefore, it will tend to realize a larger increase in contribution margin and in profits when sales increase.

2-4 Operating leverage measures the impact on net operating income of a given percentage change in sales. The degree of operating leverage at a given level of sales is computed by dividing the contribution margin at that level of sales by the net operating income at that level of sales.

2-5 The break-even point is the level of sales at which profits are zero.

2-6 (a) If the selling price decreased, then the total revenue line would rise less steeply, and the break-even point would occur at a
higher unit volume. (b) If the fixed cost increased, then both the fixed cost line and the total cost line would shift upward and the breakeven point would occur at a higher unit volume. (c) If the variable cost per unit increased, then the total cost line would rise more steeply and the break-even point would occur at a higher unit volume.

2-7 The margin of safety is the excess of budgeted (or actual) sales over the break-even volume of sales. It is the amount by which sales can drop before losses begin to be incurred.

2-8 The sales mix is the relative proportions in which a company's products are sold. The usual assumption in cost-volume-profit analysis is that the sales mix will not change.

2-9 A higher break-even point and a lower net operating income could result if the sales mix shifted from high contribution margin products to low contribution margin products. Such a shift would cause the average contribution margin ratio in the company to decline, resulting in less total contribution margin for a given amount of sales. Thus, net operating income would decline. With a lower contribution margin ratio, the break-even point would be higher because more sales would be required to cover the same amount of fixed costs.

Chapter 2: Applying Excel

The completed worksheet is shown below.

© 2020 by McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter 2: Applying Excel (continued)

The completed worksheet, with formulas displayed, is shown below.

(C) The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Chapter 2: Applying Excel (continued)

1. When the fixed expenses are changed to $\$ 270,000$, the worksheet changes as shown below:

The margin of safety percentage is now 10\%, whereas it was 20% before. This change occurred because the increase in fixed expenses increased the break-even point and hence reduced the margin of safety available for the current level of unit sales.
© 2020 by McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter 2: Applying Excel (continued)

2. With the changes in the data, the worksheet should look like this:

The margin of safety percentage is 13% and the degree of operating leverage is 8 .

Chapter 2: Applying Excel (continued)

3. The degree of operating leverage can be used to estimate the expected percentage increase in net operating income from a 15% increase in unit sales as follows:
Percentage change in net operating income $=$ Degree of operating leverage \times Percentage change in sales $=8.00 \times 15 \%=120 \%$
An increase of 120% over the current net operating income of $\$ 60,000$ would result in net operating income of $\$ 132,000$. This is verified in part (4) that follows.

Chapter 2: Applying Excel (continued)

4. Increasing the unit sales by 15% results in net operating income of

 $\$ 132,000-a n$ increase of 120% over the previous net operating income of $\$ 60,000$.| 4 | A | B | C | D | E | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chapter 2: Applying Excel | | | | | |
| 2 | | | | | | |
| 3 | Data | | | | | |
| 4 | Unit sales | 11,500 | units | | | |
| 5 | Selling price per unit | \$120 | per unit | | | |
| 6 | Variable expenses per unit | \$72 | per unit | | | |
| 7 | Fixed expenses | \$420,000 | | | | |
| Fixed expenses | | | | | | |
| 9 | Enter a formula into each of the cells marked with a ? below | | | | | |
| 10 | Review Problem: CVP Relationships | | | | | |
| 11 | | | | | | |
| 12 | Compute the CM ratio and variable expense ratio | | | | | |
| 13 | Selling price per unit | \$120 | per unit | | | |
| 14 | Variable expenses per unit | 72 | per unit | | | |
| 15 | Contribution margin per unit | \$48 | per unit | | | |
| 16 | | | | | | |
| 17 | CM ratio | 40\% | | | | |
| 18 | Variable expense ratio | 60\% | | | | |
| 19 19 | | | | | | |
| 20 | Compute the break-even | | | | | |
| 21 | Break-even in unit sales | 8,750 | units | | | |
| 22 | Break-even in dollar sales | \$1,050,000 | | | | |
| 23 | | | | | | |
| 24 | Compute the margin of safety | | | | | |
| 25 | Margin of safety in dollars | \$330,000 | | | | |
| 26 | Margin of safety percentage | 24\% | | | | |
| 27 | | | | | | |
| 28 | Compute the degree of operating leverage | | | | | |
| 29 | Sales | \$1,380,000 | | | | |
| 30 | Variable expenses | 828,000 | | | | |
| | Contribution margin | 552,000 | | | | |
| 32 | Fixed expenses | 420,000 | | | | |
| 32 | Net operating income | \$ 132,000 | | | | |
| | | | | | | |
| 3
 3
 3 | Degree of operating leverage | 4.18 | | | | |
| | | | | | | \checkmark |
| | 1 - ... Chapter 2 Requirement 4 ... | ¢ \quad - | | | - | |

© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Chapter 2: Applying Excel (continued)

5. a. The initial plan for the Western Hombre motorcycle is summarized below:

© 2020 by McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter 2: Applying Excel (continued)

5. b. The modified plan for the Western Hombre motorcycle is summarized below:

4	A	B	C	D	E	-
1	Chapter 2: Applying Excel					
2						
3	Data					
4	Unit sales	600	units			
5	Selling price per unit	\$9,000	per unit			
6	Variable expenses per unit	\$7,500	per unit			
7	Fixed expenses	\$900,000				
8						
9	Enter a formula into each of the cells marked	a ? below				
10	Review Problem: CVP Relationships					
11						
12	Compute the CM ratio and variable expens					
13	Selling price per unit	\$9,000	per unit			
14	Variable expenses per unit	7,500	per unit			
15	Contribution margin per unit	\$1,500	per unit			
16						
17	CM ratio	17\%				
18	Variable expense ratio	83\%				
19						
20	Compute the break-even					
21	Break-even in unit sales	600	units			
22	Break-even in dollar sales	\$5,400,000				
23						
24	Compute the margin of safety					
25	Margin of safety in dollars	\$0				
26	Margin of safety percentage	0\%				
27						
28	Compute the degree of operating leverage					
29	Sales	\$5,400,000				
30	Variable expenses	4,500,000				
31	Contribution margin	900,000				
32	Fixed expenses	- 900,000				
33	Net operating income	\$ -				
34						
35	Degree of operating leverage	\#DIV/0!				
36						-
	4 , ... Chapter 2 Requirement 5(b)	(+) $\quad 4$				

© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Chapter 2: Applying Excel (continued)
This does not appear to be a good plan. At best, Thad would only break even-and that assumes that 600 units would still be sold despite the drastic reduction in advertising expenses. The margin of safety is zero which means that any decrease in sales to below 600 units would result in a loss.
The degree of operating leverage is displayed in the worksheet as \#DIV/0!. This means that Excel is unable to compute the degree of operating leverage because the divisor is 0 . The divisor is 0 because the degree of operating leverage is the contribution margin divided by the net operating income and the net operating income is zero. Technically, the degree of operating leverage is undefined when net operating income is zero.

The Foundational 15

1. The contribution margin per unit is calculated as follows:

Total contribution margin (a)
Total units sold (b)
Contribution margin per unit (a) \div (b).
\$8,000 1,000 units $\$ 8.00$ per unit

The contribution margin per unit ($\$ 8$) can also be derived by calculating the selling price per unit of $\$ 20(=\$ 20,000 \div 1,000$ units) and deducting the variable expense per unit of $\$ 12(=\$ 12,000 \div 1,000$ units).
2. The contribution margin ratio is calculated as follows:

Total contribution margin (a)
\$8,000
Total sales (b)
\$20,000
Contribution margin ratio (a) \div (b) 40\%
3. The variable expense ratio is calculated as follows:

Total variable expenses (a)................. \$12,000
Total sales (b).............. \$20,000
Variable expense ratio (a) $\div(b) \ldots \quad 60 \%$
4. The increase in net operating income is calculated as follows:

Contribution margin per unit (a) Increase in unit sales (b)
$\$ 8.00$ per unit unit
1

Increase in net operating income $(a) \times(b)$
$\$ 8.00$
5. If sales decline to 900 units, the net operating income would be computed as follows:

	Total	Per Unit
Sales (900 units)	$\$ 18,000$	$\$ 20.00$
Variable expenses........	$\underline{10,800}$	$\underline{12.00}$
Contribution margin.....	7,200	$\$ 8.00$
Fixed expenses...........	$\underline{6,000}$	
Net operating income...	$\underline{\$ 1,200}$	

The Foundational 15 (continued)

6. The new net operating income would be computed as follows:

	Total	Per Unit
Sales (900 units)	$\$ 19,800$	$\$ 22.00$
Variable expenses........	$\underline{10,800}$	$\underline{12.00}$
Contribution margin.....	9,000	$\$ 10.00$
Fixed expenses...........	$\underline{6,000}$	
Net operating income...	$\$ 3,000$	

7. The new net operating income would be computed as follows:

	Total	Per Unit
Sales $(1,250$ units $)$.	$\$ 25,000$	$\$ 20.00$
Variable expenses........	16,250	$\underline{13.00}$
Contribution margin.....	8,750	$\$ 7.00$
Fixed expenses...........	$\underline{7,500}$	
Net operating income...	$\$ 1,250$	

8. The equation method yields the break-even point in unit sales, Q , as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =(\$ 20-\$ 12) \times Q-\$ 6,000 \\
\$ 0 & =(\$ 8) \times Q-\$ 6,000 \\
\$ 8 Q & =\$ 6,000 \\
Q & =\$ 6,000 \div \$ 8 \\
Q & =750 \text { units }
\end{aligned}
$$

9. The equation method yields the dollar sales to break-even as follows:

$$
\begin{aligned}
\text { Profit } & =C M \text { ratio } \times \text { Sales }- \text { Fixed expenses } \\
\$ 0 & =0.40 \times \text { Sales }-\$ 6,000 \\
0.40 \times \text { Sales } & =\$ 6,000 \\
\text { Sales } & =\$ 6,000 \div 0.40 \\
\text { Sales } & =\$ 15,000
\end{aligned}
$$

The dollar sales to break-even $(\$ 15,000)$ can also be computed by multiplying the selling price per unit ($\$ 20$) by the unit sales to break-
even (750 units).

The Foundational 15 (continued)

10. The equation method yields the target profit as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit CM } \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 5,000 & =(\$ 20-\$ 12) \times \mathrm{Q}-\$ 6,000 \\
\$ 5,000 & =(\$ 8) \times \mathrm{Q}-\$ 6,000 \\
\$ 8 \mathrm{Q} & =\$ 11,000 \\
\mathrm{Q} & =\$ 11,000 \div \$ 8 \\
\mathrm{Q} & =1,375 \text { units }
\end{aligned}
$$

11. The margin of safety in dollars is calculated as follows:
\qquad
Break-even sales (at 750 units)........................ 15,000
Margin of safety (in dollars)............................. \$ 5,000
The margin of safety as a percentage of sales is calculated as follows:
Margin of safety (in dollars) (a)................. \$5,000
Sales (b)
\$20,000
Margin of safety percentage (a) \div (b) 25%
12. The degree of operating leverage is calculated as follows:

Contribution margin (a)
\$8,000
Net operating income (b)...................... \$2,000
Degree of operating leverage (a) $\div(b)$. 4.0
13. A 5% increase in sales should result in a 20% increase in net operating income, computed as follows:
Degree of operating leverage (a)
4.0

Percent increase in sales (b)
5\%
Percent increase in net operating income (a) $\times(\mathrm{b}) \ldots \quad 20 \%$
14. The degree of operating leverage is calculated as follows:

Contribution margin (\$20,000 - \$6,000) (a) \$14,000
Net operating income (b)
\$2,000
Degree of operating leverage (a) $\div(b)$ 7.0

The Foundational 15 (continued)

15. A 5% increase in sales should result in a 35% increase in net operating income, computed as follows:
$\begin{array}{llc}\text { Degree of operating leverage (a) ... } & 5 \% \\ \text { Percent increase in sales (b)........ } \\ \text { Percent increase in net operating income (a) } \times(\mathrm{b}) \ldots . & 35 \%\end{array}$
© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Exercise 2-1 (20 minutes)

1. The revised net operating income would be:

	Total	Per Unit
Sales $(10,100$ units) $\ldots . . .$.	$\$ 353,500$	$\$ 35.00$
Variable expenses $\ldots \ldots . .$.	$\underline{202,000}$	$\underline{20.00}$
Contribution margin......	151,500	$\underline{\$ 15.00}$
Fixed expenses	$\underline{135,000}$	
Net operating income	$\underline{\$ 16,500}$	

You can get the same net operating income using the following approach:
Original net operating income \$15,000
Change in contribution margin
(100 units $\times \$ 15.00$ per unit).. $\quad 1,500$
New net operating income......... \$16,500
2. The revised net operating income would be:

	Total	Per Unit
Sales $(9,900$ units)	$\$ 346,500$	$\$ 35.00$
Variable expenses	198,000	$\underline{20.00}$
Contribution margin	148,500	$\$ 15.00$
Fixed expenses	$\underline{135,000}$	
Net operating income......	$\underline{\$ 13,500}$	

You can get the same net operating income using the following approach:
Original net operating income \$15,000
Change in contribution margin
(-100 units $\times \$ 15.00$ per unit).......... $(1,500)$
New net operating income.................. \$13,500

Exercise 2-1 (continued)

3. The revised net operating income would be:

	Total	Per Unit
Sales (9,000 units)	$\$ 315,000$	$\$ 35.00$
Variable expenses	180,000	$\underline{20.00}$
Contribution margin	135,000	$\$ 15.00$
Fixed expenses	$\underline{135,000}$	
Net operating income	$\$ 0$	
Note: This is the company's break-even point.		

Exercise 2-2 (30 minutes)

1. The CVP graph can be plotted using the three steps outlined in the text. The graph appears on the next page.

Step 1. Draw a line parallel to the volume axis to represent the total fixed expense. For this company, the total fixed expense is $\$ 24,000$.

Step 2. Choose some volume of sales and plot the point representing total expenses (fixed and variable) at the activity level you have selected. We'll use the sales level of 8,000 units.

Fixed expenses.. \$ 24,000
Variable expenses (8,000 units $\times \$ 18$ per unit) 144,000
Total expense.. \$168,000
Step 3. Choose some volume of sales and plot the point representing total sales dollars at the activity level you have selected. We'll use the sales level of 8,000 units again.

Total sales revenue (8,000 units $\times \$ 24$ per unit) .. $\$ 192,000$
2. The break-even point is the point where the total sales revenue and the total expense lines intersect. This occurs at sales of 4,000 units. This can be verified as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit CM } \times \mathrm{Q}-\text { Fixed expenses } \\
& =(\$ 24-\$ 18) \times 4,000-\$ 24,000 \\
& =\$ 6 \times 4,000-\$ 24,000 \\
& =\$ 24,000-\$ 24,000 \\
& =\$ 0
\end{aligned}
$$

Exercise 2-2 (continued)

Exercise 2-3 (15 minutes)

1. The profit graph is based on the following simple equation:

Profit $=$ Unit $C M \times Q-$ Fixed expenses
Profit $=(\$ 16-\$ 11) \times Q-\$ 16,000$
Profit $=\$ 5 \times \mathrm{Q}-\$ 16,000$
To plot the graph, select two different levels of sales such as $\mathrm{Q}=0$ and $\mathrm{Q}=4,000$. The profit at these two levels of sales are $-\$ 16,000(=\$ 5 \times 0$ - \$16,000) and \$4,000 (= \$5 $\times 4,000-\$ 16,000$).

Exercise 2-3 (continued)

2. Looking at the graph, the break-even point appears to be 3,200 units. This can be verified as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit CM } \times \mathrm{Q}-\text { Fixed expenses } \\
& =\$ 5 \times \mathrm{Q}-\$ 16,000 \\
& =\$ 5 \times 3,200-\$ 16,000 \\
& =\$ 16,000-\$ 16,000 \\
& =\$ 0
\end{aligned}
$$

Exercise 2-4 (10 minutes)

1. The company's contribution margin (CM) ratio is:

Total sales

$$
\$ 200,000
$$

Total variable expenses 120,000
Total contribution margin (a). $\$ 80,000$
Total contribution margin (a). $\$ 80,000$
Total sales (b) \qquad \$200,000
CM ratio (a) $\div(b) \ldots ~ 40 \%$
2. The change in net operating income from an increase in total sales of $\$ 1,000$ can be estimated by using the CM ratio as follows:
Change in total sales (a)
\$1,000
CM ratio (b).. 40%
Estimated change in net operating income (a) $\times(\mathrm{b}) . \quad \$ 400$
This computation can be verified as follows:
Total sales (a)
\$200,000
Total units sold (b)
50,000 units
Selling price per unit $(a) \div(b) . . \quad \$ 4.00$ per unit
Increase in total sales (a) \$1,000
Selling price per unit (b)...........
Increase in unit sales (a) $\div(b)$.
$\$ 4.00$ per unit 250 units
Increase in unit sales \qquad
Original total unit sales
New total unit sales \qquad 250 units
50,000 units
50,250 units

Total unit sales	Original 50,000	New
Sales	\$200,000	\$201,000
Variable expen	120,000	120,600
Contribution margin	80,000	80,400
Fixed expenses	65,000	65,000
Net operating income	\$ 15,000	\$ 15,400

Exercise 2-5 (20 minutes)

1. The following table shows the effect of the proposed change in monthly advertising budget:

	Sales With Additional		
	Current Sales	Advertising Budget	Difference

Alternative Solution 1

Expected total contribution margin: \$189,000 $\times 30 \%$ CM ratio \$56,700
Present total contribution margin: $\$ 180,000 \times 30 \%$ CM ratio 54,000Incremental contribution margin2,700
Change in fixed expenses:Less incremental advertising expense. 5,000Change in net operating income.$\$(2,300)$
Alternative Solution 2
Incremental contribution margin:
\$9,000 $\times 30 \%$ CM ratio \$2,700
Less incremental advertising expense$\$ \frac{5,000}{(2,300)}$

Exercise 2-5 (continued)

2. The $\$ 2$ increase in variable expense will cause the unit contribution margin to decrease from $\$ 27$ to $\$ 25$ with the following impact on net operating income:
Expected total contribution margin with the higher-quality components: 2,000 units $\times 1.1 \times \$ 25$ per unit \$55,000
Present total contribution margin:
2,000 units $\times \$ 27$ per unit. 54,000
Change in total contribution margin........... \$1,000
Assuming no change in fixed expenses, the net operating income will also increase by $\$ 1,000$. The higher-quality components should be used.

Exercise 2-6 (20 minutes)

1. The break-even point in unit sales, Q , is computed as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } \mathrm{CM} \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 0 & =(\$ 15-\$ 12) \times \mathrm{Q}-\$ 4,200 \\
\$ 0 & =(\$ 3) \times \mathrm{Q}-\$ 4,200 \\
\$ 3 \mathrm{Q} & =\$ 4,200 \\
\mathrm{Q} & =\$ 4,200 \div \$ 3 \\
\mathrm{Q} & =1,400 \text { baskets }
\end{aligned}
$$

2. The break-even point in dollar sales is computed as follows:

Unit sales to break even (a)............................ 1,400
Selling price per unit (b) \$15
Dollar sales to break even (a) $\times(\mathrm{b}) \ldots \quad \$ 21,000$
3. The new break-even point in unit sales, Q , is computed as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } \mathrm{CM} \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 0 & =(\$ 15-\$ 12) \times \mathrm{Q}-\$ 4,800 \\
\$ 0 & =(\$ 3) \times \mathrm{Q}-\$ 4,800 \\
\$ 3 \mathrm{Q} & =\$ 4,800 \\
\mathrm{Q} & =\$ 4,800 \div \$ 3 \\
\mathrm{Q} & =1,600 \text { baskets }
\end{aligned}
$$

The break-even point in dollar sales is computed as follows:

Unit sales to break even (a)	1,600
Selling price per unit (b)	\$15
Dollar sales to break even (a) $\times(\mathrm{b})$	\$24,000

Exercise 2-7 (10 minutes)

1. The required unit sales, Q, to attain the target profit is computed as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } \mathrm{CM} \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 10,000 & =(\$ 120-\$ 80) \times \mathrm{Q}-\$ 50,000 \\
\$ 10,000 & =(\$ 40) \times \mathrm{Q}-\$ 50,000 \\
\$ 40 \times \mathrm{Q} & =\$ 10,000+\$ 50,000 \\
\mathrm{Q} & =\$ 60,000 \div \$ 40 \\
\mathrm{Q} & =1,500 \text { units }
\end{aligned}
$$

2. One approach to solving this requirement is to compute the unit sales required to attain the target profit and then multiply this quantity by the selling price per unit:

$$
\begin{aligned}
\text { Profit } & =\text { Unit CM } \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 15,000 & =(\$ 120-\$ 80) \times \mathrm{Q}-\$ 50,000 \\
\$ 15,000 & =(\$ 40) \times \mathrm{Q}-\$ 50,000 \\
\$ 40 \times \mathrm{Q} & =\$ 15,000+\$ 50,000 \\
\mathrm{Q} & =\$ 65,000 \div \$ 40 \\
\mathrm{Q} & =1,625 \text { units }
\end{aligned}
$$

Unit sales to attain the target profit (a)............ 1,625
Selling price per unit (b) \$120
Dollar sales to attain target profit (a) $\times(\mathrm{b}) \ldots . . . \quad \$ 195,000$

Exercise 2-8 (10 minutes)

1. To compute the margin of safety, we must first compute the break-even unit sales.

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =(\$ 30-\$ 20) \times Q-\$ 7,500 \\
\$ 0 & =(\$ 10) \times Q-\$ 7,500 \\
\$ 10 Q & =\$ 7,500 \\
Q & =\$ 7,500 \div \$ 10 \\
Q & =750 \text { units; or, at } \$ 30 \text { per unit, } \$ 22,500
\end{aligned}
$$

Sales (at the budgeted volume of 1,000 units).. \$30,000 Less break-even sales (at 750 units) 22,500
Margin of safety (in dollars)............................. \$7,500
2. The margin of safety as a percentage of sales is as follows:

Margin of safety (in dollars) (a)................ \$7,500
Sales (b).. \$30,000
Margin of safety percentage (a) $\div(\mathrm{b}) \ldots . . . \quad 25 \%$

Exercise 2-9 (20 minutes)

1. The company's degree of operating leverage would be computed as follows:
Contribution margin (a) \$48,000
Net operating income (b)........................ \$10,000
Degree of operating leverage (a) $\div(\mathrm{b}) \ldots$... 4.8
2. A 5% increase in sales should result in a 24% increase in net operating income, computed as follows:

Degree of operating leverage (a)

Percent increase in sales (b).. 5\%
Estimated percent increase in net operating income (a) $\times(\mathrm{b}) . \quad 24 \%$
3. The new income statement reflecting the change in sales is:

	Amount	Percent of Sales	
Sales	\$84,000	100\%	
Variable expenses	33,600	40\%	
Contribution margin	50,400	60\%	
Fixed expenses	38,000		
Net operating income....	\$12,400		
Net operating income reflecting change in sales......			\$12,400
Original net operating income (a).			10,000
Change in net operating income (b)			\$ 2,400
Percent change in net operating income (b) $\div(\mathrm{a}) . .$.			24\%

Exercise 2-10 (20 minutes)

1. The overall contribution margin ratio can be computed as follows:

Overall CM ratio $=\frac{\text { Total contribution margin }}{\text { Total sales }}$

$$
=\frac{\$ 30,000}{\$ 100,000}=30 \%
$$

2. The overall break-even point in dollar sales can be computed as follows:

Overall break-even $=\frac{\text { Total fixed expenses }}{\text { Overall CM ratio }}$

$$
=\frac{\$ 24,000}{30 \%}=\$ 80,000
$$

3. To construct the required income statement, we must first determine the relative sales mix for the two products:

	Claimjumper Makeover	Total	
Original dollar sales.......	$\$ 30,000$	$\$ 70,000$	$\$ 100,000$
Percent of total	30%	70%	100%
Sales at break-even......	$\$ 24,000$	$\$ 56,000$	$\$ 80,000$
	Claimjumper	Makeover	Total
Sales	$\$ 24,000$	$\$ 56,000$	$\$ 80,000$
Variable expenses*.....	$\underline{16,000}$	$\underline{40,000}$	$\underline{56,000}$
Contribution margin	$\underline{\$ 8,000}$	$\underline{\$ 16,000}$	24,000
Fixed expenses			$\underline{24,000}$
Net operating income....			$\underline{\$ 0}$

*Claimjumper variable expenses: $(\$ 24,000 / \$ 30,000) \times \$ 20,000=\$ 16,000$ Makeover variable expenses: $(\$ 56,000 / \$ 70,000) \times \$ 50,000=\$ 40,000$

Exercise 2-11 (20 minutes)

a.

Number of units sold ..
Sales
Variable expenses
Contribution margin. Fixed expenses.
Net operating income.

Number of units sold ..
Sales
Variable expenses.
Contribution margin
Fixed expenses
Net operating income (loss)..
b.

Sales
Variable expenses
Contribution margin
Fixed expenses
Net operating income..

Sales \qquad
Variable expenses
Contribution margin
Fixed expenses
Net operating income (loss).

Case \#1

15,000 *	
\$180,000 *	\$12
120,000 *	8
60,000	\$4
50,000 *	
\$ 10,000	

Case \#3 $\overline{\$ 200,000}^{10,000} \$ 20$ $\frac{70,000}{130,000} *$

$\frac{118,000}{\$ 12,000} *$ $\begin{array}{r}\underline{\$ 13} *$| 210,000 |
| ---: |
| $\underline{100,000}$ |

$\begin{array}{l}\$(10,000)\end{array}\end{array}$
*Given

Exercise 2-12 (30 minutes)

1.

2. The break-even point for the company as a whole is:

Dollar sales to $=\frac{\text { Fixed expenses }}{\text { Ovall }}$ break even $\quad \overline{\text { Overall CM ratio }}$

$$
=\frac{\$ 183,750}{0.525}=\$ 350,000
$$

3. The additional contribution margin from the additional sales is computed as follows:

$$
\$ 100,000 \times 52.5 \% \text { CM ratio }=\$ 52,500
$$

Assuming no change in fixed expenses, all of this additional contribution margin of $\$ 52,500$ should drop to the bottom line as increased net operating income.

This answer assumes no change in selling prices, variable costs per unit, fixed expense, or sales mix.

Exercise 2-13 (20 minutes)

Total Per UnitVariable expenses

1. Sales (20,000 units $\times 1.15=23,000$ units).... \$345,000 \$345,000207,000
9.00138,000
Contribution margin$\$ 6.00$
Fixed expenses 70,000
Net operating income $\$ 68,000$
2. Sales (20,000 units $\times 1.25=25,000$ units). \$337,500 \$13.50Variable expenses$\underline{225,000 \quad 9.00}$Contribution margin 112,500$\$ 4.50$
Fixed expenses 70,000
Net operating income $\$ 42,500$
3. Sales (20,000 units $\times 0.95=19,000$ units) \$313,500 \$16.50Variable expenses
$171,000 \quad 9.00$Contribution margin142,500$\$ 7.50$
Fixed expenses 90,000
Net operating income $\$ 52,500$
4. Sales $(20,000$ units $\times 0.90=18,000$ units $)$ \$302,400 \$16.80Variable expenses$172,800 \quad 9.60$
Contribution margin 129,600Fixed expenses70,000Net operating income$\$ 59,600$

Exercise 2-14 (30 minutes)

1. Variable expenses: $\$ 40 \times(100 \%-30 \%)=\$ 28$
2. The break-even points in unit sales (Q) and dollar sales are computed as follows:

Selling price	\$40	100\%
Variable expenses	28	70\%
Contribution marg	\$12	30\%

Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=\$ 12 \times Q-\$ 180,000$
$\$ 12 Q=\$ 180,000$
$Q=\$ 180,000 \div \$ 12$
$\mathrm{Q}=15,000$ units
In dollar sales: 15,000 units $\times \$ 40$ per unit $=\$ 600,000$
Alternative solution:

$$
\begin{aligned}
\text { Profit } & =\text { CM ratio } \times \text { Sales }- \text { Fixed expenses } \\
\$ 0 & =0.30 \times \text { Sales }-\$ 180,000
\end{aligned}
$$

$0.30 \times$ Sales $=\$ 180,000$
Sales $=\$ 180,000 \div 0.30$
Sales $=\$ 600,000$
In unit sales: $\$ 600,000 \div \$ 40$ per unit $=15,000$ units
3. The unit sales and dollar sales needed to attain the target profit are computed as follows:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 60,000 & =\$ 12 \times Q-\$ 180,000 \\
\$ 12 Q & =\$ 60,000+\$ 180,000 \\
\$ 12 Q & =\$ 240,000 \\
Q & =\$ 240,000 \div \$ 12 \\
Q & =20,000 \text { units }
\end{aligned}
$$

In dollar sales: 20,000 units $\times \$ 40$ per unit $=\$ 800,000$

Exercise 2-14 (continued)

Alternative solution:

$$
\begin{aligned}
\text { Profit } & =\text { CM ratio } \times \text { Sales }- \text { Fixed expenses } \\
\$ 60,000 & =0.30 \times \text { Sales }-\$ 180,000 \\
0.30 \times \text { Sales } & =\$ 240,000 \\
\text { Sales } & =\$ 240,000 \div 0.30 \\
\text { Sales } & =\$ 800,000
\end{aligned}
$$

In unit sales: $\$ 800,000 \div \$ 40$ per unit $=20,000$ units
4. The new break-even points in unit sales and dollar sales are computed as follows:

The company's new cost/revenue relation will be:
Selling price \$40 100\%
Variable expenses ($\$ 28-\$ 4$) 24 60\%
Contribution margin................... \$16 \quad 40\%

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =(\$ 40-\$ 24) \times Q-\$ 180,000 \\
\$ 16 Q & =\$ 180,000 \\
Q & =\$ 180,000 \div \$ 16 \text { per unit } \\
Q & =11,250 \text { units }
\end{aligned}
$$

In dollar sales: 11,250 units $\times \$ 40$ per unit $=\$ 450,000$
Alternative solution:
Profit $=$ CM ratio \times Sales - Fixed expenses

$$
\$ 0=0.40 \times \text { Sales }-\$ 180,000
$$

$0.40 \times$ Sales $=\$ 180,000$
Sales $=\$ 180,000 \div 0.40$
Sales $=\$ 450,000$
In unit sales: $\$ 450,000 \div \$ 40$ per unit $=11,250$ units

Exercise 2-14 (continued)

4. The dollar sales required to attain the target profit is computed as follows:

$$
\begin{aligned}
\text { Profit } & =\text { CM ratio } \times \text { Sales }- \text { Fixed expenses } \\
\$ 60,000 & =0.40 \times \text { Sales }-\$ 180,000 \\
0.40 \times \text { Sales } & =\$ 240,000 \\
\text { Sales } & =\$ 240,000 \div 0.40 \\
\text { Sales } & =\$ 600,000
\end{aligned}
$$

Exercise 2-15 (15 minutes)

1.

	Per Total	
Unit		

The degree of operating leverage is:
$\begin{gathered}\text { Degree of operating } \\ \text { leverage }\end{gathered}=\frac{\text { Contribution margin }}{\text { Net operating income }}$

$$
=\frac{\$ 210,000}{\$ 28,000}=7.5
$$

2. a. Sales of 18,000 games represent a 20% increase over last year's sales. Because the degree of operating leverage is 7.5 , net operating income should increase by 7.5 times as much, or by 150% ($7.5 \times$ 20\%).
b. The expected total dollar amount of net operating income for next year would be:
Last year's net operating income
\$28,000
Expected increase in net operating income next year $(150 \% \times \$ 28,000)$.

42,000
Total expected net operating income................ \$70,000

Exercise 2-16 (30 minutes)

1. The contribution margin per person would be:

Price per ticket \$35
Variable expenses:

> Dinner.. \$18

Favors and program......................... 20 20
Contribution margin per person
$\$ 15$
The fixed expenses of the dinner-dance total \$6,000 (= \$2,800 + \$900 $+\$ 1,000+\$ 1,300)$. The break-even point would be:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =(\$ 35-\$ 20) \times Q-\$ 6,000 \\
\$ 0 & =(\$ 15) \times Q-\$ 6,000 \\
\$ 15 Q & =\$ 6,000 \\
Q & =\$ 6,000 \div \$ 15 \\
Q & =400 \text { persons; or, at } \$ 35 \text { per person, } \$ 14,000
\end{aligned}
$$

Alternative solution:
Unit sales to = Fixed expenses
break even $=$ Unit contribution margin

$$
=\frac{\$ 6,000}{\$ 15}=400 \text { persons }
$$

or, at $\$ 35$ per person, $\$ 14,000$.
2. Variable cost per person ($\$ 18+\$ 2$)................ $\$ 20$

Fixed cost per person ($\$ 6,000 \div 300$ persons).. $\underline{20}$
Ticket price per person to break even............... \$40

Exercise 2-16 (continued)

3. Cost-volume-profit graph:

Exercise 2-17 (30 minutes)

1. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=(\$ 50-\$ 32) \times Q-\$ 108,000$
$\$ 0=(\$ 18) \times Q-\$ 108,000$
$\$ 18 \mathrm{Q}=\$ 108,000$
$\mathrm{Q}=\$ 108,000 \div \$ 18$
$Q=6,000$ stoves, or at $\$ 50$ per stove, $\$ 300,000$ in sales
Alternative solution:
$\begin{aligned} \begin{array}{r}\text { Unit sales to } \\ \text { break even }\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\ & =\frac{\$ 108,000}{\$ 18.00 \text { per stove }}=6,000 \text { stoves }\end{aligned}$
or at $\$ 50$ per stove, $\$ 300,000$ in sales.
2. An increase in variable expenses as a percentage of the selling price would result in a higher break-even point. If variable expenses increase as a percentage of sales, then the contribution margin will decrease as a percentage of sales. With a lower CM ratio, more stoves would have to be sold to generate enough contribution margin to cover the fixed costs.
3.

Present: Proposed:

	8,000 Stoves		10,000 Stoves*		
	Total	Per Unit	Total	Per Unit	
Sales	\$400,000	\$50	\$450,000	\$45	
Variable expenses.........	256,000	32	320,000	32	
Contribution margin.......	144,000	\$18	130,000	\$13	
Fixed expenses.............	108,000		108,000		
Net operating income	\$ 36,000		\$ 22,000		

$* 8,000$ stoves $\times 1.25=10,000$ stoves
$* * \$ 50 \times 0.9=\$ 45$
**\$50 $\times 0.9=\$ 45$
As shown above, a 25% increase in volume is not enough to offset a 10% reduction in the selling price; thus, net operating income decreases.

Exercise 2-17 (continued)

4. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 35,000=(\$ 45-\$ 32) \times Q-\$ 108,000$
$\$ 35,000=(\$ 13) \times Q-\$ 108,000$
$\$ 13 \times \mathrm{Q}=\$ 143,000$
$Q=\$ 143,000 \div \$ 13$
$\mathrm{Q}=11,000$ stoves
Alternative solution:
Unit sales to attain $=$ Target profit + Fixed expenses
target profit $=$ Unit contribution margin
$=\frac{\$ 35,000+\$ 108,000}{\$ 13}$
$=11,000$ stoves

Exercise 2-18 (30 minutes)

1. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=(\$ 30-\$ 12) \times Q-\$ 216,000$
$\$ 0=(\$ 18) \times Q-\$ 216,000$ $\$ 18 \mathrm{Q}=\$ 216,000$
$Q=\$ 216,000 \div \$ 18$
$Q=12,000$ units, or at $\$ 30$ per unit, $\$ 360,000$
Alternative solution:
Unit sales $=\quad$ Fixed expenses
to break even $=\overline{\text { Unit contribution margin }}$

$$
=\frac{\$ 216,000}{\$ 18}=12,000 \text { units }
$$

or at $\$ 30$ per unit, $\$ 360,000$
2. The contribution margin is $\$ 216,000$ because the contribution margin is equal to the fixed expenses at the break-even point.
3. The unit sales to attain the target profit is computed as follows:
3. $\begin{aligned} & \text { Units sold to attain } \\ & \text { target profit }\end{aligned}=\frac{\text { Target profit }+ \text { Fixed expenses }}{\text { Unit contribution margin }}$

$$
\begin{aligned}
& =\frac{\$ 90,000+\$ 216,000}{\$ 18} \\
& =17,000 \text { units }
\end{aligned}
$$

	Total	Unit
Sales (17,000 units $\times \$ 30$ per unit)	\$510,000	\$30
Variable expenses (17,000 units $\times \$ 12$ per unit).	204,000	12
Contribution margin	306,000	\$18
Fixed expenses	216,000	
Net operating income.	\$ 90,000	

Exercise 2-18 (continued)

4. Margin of safety in dollar terms:
$\begin{aligned} & \text { Margin of safety } \\ & \text { in dollars }\end{aligned}=$ Total sales - Break-even sales

$$
=\$ 450,000-\$ 360,000=\$ 90,000
$$

Margin of safety in percentage terms:
Margin of safety $=\frac{\text { Margin of safety in dollars }}{\text { Meral sase }}$ percentage Total sales

$$
=\frac{\$ 90,000}{\$ 450,000}=20 \%
$$

5. The CM ratio is 60% [$=(\$ 30-\$ 12) \div \$ 30]$.

Expected total contribution margin: $(\$ 500,000 \times 60 \%) . . \quad \$ 300,000$ Present total contribution margin: $(\$ 450,000 \times 60 \%) \quad 270,000$ Increased contribution margin....................................... \$30,000

Alternative solution:
$\$ 50,000$ incremental sales $\times 60 \%$ CM ratio $=\$ 30,000$
Given that the company's fixed expenses will not change, monthly net operating income will also increase by $\$ 30,000$.

Problem 2-19 (45 minutes)

1. Sales (15,000 units $\times \$ 70$ per unit)

Variable expenses (15,000 units $\times \$ 40$ per unit)
Contribution margin
Fixed expenses
\qquad
Net operating loss \$1,050,000 600,000 450,000 540,000
$\$(90,000)$
2. Unit sales to $=\quad$ Fixed expenses break even \quad Unit contribution margin

$$
\begin{aligned}
& =\frac{\$ 540,000}{\$ 70 \text { per unit }-\$ 40 \text { per unit }} \\
& =18,000 \text { units }
\end{aligned}
$$

18,000 units $\times \$ 70$ per unit $=\$ 1,260,000$ to break even
3. See the next page.
4. At a selling price of $\$ 58$ per unit, the contribution margin is $\$ 18$ per unit. Therefore:

$$
\begin{aligned}
\begin{array}{r}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\
& =\frac{\$ 540,000}{\$ 18} \\
& =30,000 \text { units }
\end{aligned}
$$

30,000 units $\times \$ 58$ per unit $=\$ 1,740,000$ to break even.
This break-even point is different from the break-even point in part (2) because of the change in selling price. With the change in selling price, the unit contribution margin drops from $\$ 30$ to $\$ 18$, resulting in an increase in the break-even point.

Problem 2-19 (continued)
3.

Unit Selling Price	Unit Variable Expense	Unit Contribution Margin	Total Volume (Units)	Contribution Margin	Fixed Expenses	Net operating income (loss)
$\$ 70$	$\$ 40$	$\$ 30$	15,000	$\$ 450,000$	$\$ 540,000$	$\$(90,000)$
$\$ 68$	$\$ 40$	$\$ 28$	20,000	$\$ 560,000$	$\$ 540,000$	$\$ 20,000$
$\$ 66$	$\$ 40$	$\$ 26$	25,000	$\$ 650,000$	$\$ 540,000$	$\$ 110,000$
$\$ 64$	$\$ 40$	$\$ 24$	30,000	$\$ 720,000$	$\$ 540,000$	$\$ 180,000$
$\$ 62$	$\$ 40$	$\$ 22$	35,000	$\$ 770,000$	$\$ 540,000$	$\$ 230,000$
$\$ 60$	$\$ 40$	$\$ 20$	40,000	$\$ 800,000$	$\$ 540,000$	$\$ 260,000$
$\$ 58$	$\$ 40$	$\$ 18$	45,000	$\$ 810,000$	$\$ 540,000$	$\$ 270,000$
$\$ 56$	$\$ 40$	$\$ 16$	50,000	$\$ 800,000$	$\$ 540,000$	$\$ 260,000$

The maximum profit is $\$ 270,000$. This level of profit can be earned by selling 45,000 units at a price of $\$ 58$ each.
© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Problem 2-20 (75 minutes)

1. a. Selling price..................... \$25 100\%

Variable expenses 15 60\%
Contribution margin \$10 40\%
Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=\$ 10 \times \mathrm{Q}-\$ 210,000$
$\$ 10 \mathrm{Q}=\$ 210,000$
$\mathrm{Q}=\$ 210,000 \div \$ 10$
$\mathrm{Q}=21,000$ balls
Alternative solution:

$$
\begin{aligned}
\begin{array}{c}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\
& =\frac{\$ 210,000}{\$ 10} \\
& =21,000 \text { balls }
\end{aligned}
$$

b. The degree of operating leverage is:

$$
\begin{aligned}
\begin{array}{c}
\text { Degree of } \\
\text { operating leverage }
\end{array} & =\frac{\text { Contribution margin }}{\text { Net operating income }} \\
& =\frac{\$ 300,000}{\$ 90,000}=3.33 \text { (rounded) }
\end{aligned}
$$

2. The new CM ratio will be:

Selling price \$25 100\%
Variable expenses $18 \quad 72 \%$
Contribution margin......... \$7 28\%
The new break-even point will be:
Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=\$ 7 \times \mathrm{Q}-\$ 210,000$
$\$ 7 \mathrm{Q}=\$ 210,000$
$Q=\$ 210,000 \div \$ 7$
$\mathrm{Q}=30,000$ balls
© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Problem 2-20 (continued)

Alternative solution:

$$
\begin{aligned}
\begin{aligned}
\text { Unit sales to } \\
\text { break even }
\end{aligned} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\
& =\frac{\$ 210,000}{\$ 7} \\
& =30,000 \text { balls }
\end{aligned}
$$

3. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}$ - Fixed expenses

$$
\$ 90,000=\$ 7 \times Q-\$ 210,000
$$

$$
\$ 7 Q=\$ 90,000+\$ 210,000
$$

$$
\mathrm{Q}=\$ 300,000 \div \$ 7
$$

$$
\mathrm{Q}=42,857 \text { balls (rounded) }
$$

Alternative solution:
Unit sales to attain $=\underline{\text { Target profit }+ \text { Fixed expenses }}$
target profit $=$ Unit contribution margin

$$
=\frac{\$ 90,000+\$ 210,000}{\$ 7}=42,857 \text { balls }
$$

Thus, sales will have to increase by 12,857 balls ($=42,857$ balls 30,000 balls $=12,857$ balls) to earn the same amount of net operating income as last year. The computations above and in part (2) show the dramatic effect that increases in variable costs can have on an organization. The effects on Northwood Company are summarized below:

Break-even point (in balls)................................ 21,000 30,000 Sales (in balls) needed to earn a \$90,000 profit .. 30,000 42,857
Note that if variable costs do increase next year, then the company will just break even if it sells the same number of balls $(30,000)$ as it did last year.

Problem 2-20 (continued)

4. The contribution margin ratio last year was 40%. If we let P equal the new selling price, then:

$$
\begin{aligned}
P & =\$ 18+0.40 P \\
0.60 P & =\$ 18 \\
P & =\$ 18 \div 0.60 \\
P & =\$ 30
\end{aligned}
$$

To verify:
Selling price $\$ 30$ 100\%

Variable expenses........... 18 60\%
Contribution margin \$12 40\%
Therefore, to maintain a 40\% CM ratio, a $\$ 3$ increase in variable costs would require a $\$ 5$ increase in the selling price.
5. The new CM ratio would be:

Selling price	\$25	100\%
Variable expenses.	9*	36\%
Contribution margi	\$16	64\%

*\$15 - (\$15 × 40\%) = \$9
The new break-even point would be:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =\$ 16 \times Q-(\$ 210,000 \times 2) \\
\$ 16 Q & =\$ 420,000 \\
Q & =\$ 420,000 \div \$ 16 \\
Q & =26,250 \text { balls }
\end{aligned}
$$

Alternative solution:

$$
\begin{aligned}
\begin{array}{r}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\
& =\frac{\$ 420,000}{\$ 16}=26,250 \text { balls }
\end{aligned}
$$

Although this new break-even point is greater than the company's present break-even point of 21,000 balls [see Part (1) above], it is less than the break-even point will be if the company does not automate and variable labor costs rise next year [see Part (2) above].

Problem 2-20 (continued)

6. a. Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}$ - Fixed expenses
$\$ 90,000=\$ 16 \times Q-\$ 420,000$
$\$ 16 \mathrm{Q}=\$ 90,000+\$ 420,000$
$Q=\$ 510,000 \div \$ 16$
$\mathrm{Q}=31,875$ balls
Alternative solution:
Unit sales to attain $=$ Target profit + Fixed expenses
target profit - Unit contribution margin
$=\frac{\$ 90,000+\$ 420,000}{\$ 16}$
$=31,875$ balls
Thus, the company will have to sell 1,875 more balls (31,875 $30,000=1,875$) than now being sold to earn a profit of $\$ 90,000$ per year. However, this is still less than the 42,857 balls that would have to be sold to earn a $\$ 90,000$ profit if the plant is not automated and variable labor costs rise next year [see Part (3) above].
b. The contribution income statement would be:

Sales (30,000 balls $\times \$ 25$ per ball) $\ldots ~ \$ 750,000$
Variable expenses (30,000 balls $\times \$ 9$ per ball) ... $\underline{270,000}$
Contribution margin... 480,000
Fixed expenses.. 420,000
Net operating income
$\$ 60,000$

$$
\begin{aligned}
\begin{array}{c}
\text { Degree of } \\
\text { operating leverage }
\end{array} & =\frac{\text { Contribution margin }}{\text { Net operating income }} \\
& =\frac{\$ 480,000}{\$ 60,000}=8
\end{aligned}
$$

Problem 2-20 (continued)

c. This problem illustrates the difficulty faced by some companies. When variable labor costs increase, it is often difficult to pass these cost increases along to customers in the form of higher prices. Thus, companies are forced to automate resulting in higher operating leverage, often a higher break-even point, and greater risk for the company.
There is no clear answer as to whether one should have been in favor of constructing the new plant.

Problem 2-21 (30 minutes)
1.

Product

	Product					Total	
	White	Fragr		Loon			
Percentage of total							
Sales	\$300,000 100\%	\$180,000	100\%	\$270,000	100\%	\$750,000	100\%
Variable expenses	216,000 72\%	36,000	20\%	108,000	40\%	360,000	48\%
Contribution margin..	\$84,000 28\%	\$144,000	80\%	\$162,000	60\%	390,000	52\% *
Fixed expenses						449,280	
Net operating income (loss).........						\$ $(\underline{59,280})$	
*\$390,000 \div \$750,000	= 52%						

2. Break-even sales would be:

$$
\begin{aligned}
\begin{array}{c}
\text { Dollar sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { CM ratio }} \\
& =\frac{\$ 449,280}{0.52}=\$ 864,000
\end{aligned}
$$

Problem 2-21 (continued)
3. Memo to the president:

Although the company met its sales budget of $\$ 750,000$ for the month, the mix of products changed substantially from that budgeted. This is the reason the budgeted net operating income was not met, and the reason the break-even sales were greater than budgeted. The company's sales mix was planned at 20\% White, 52\% Fragrant, and 28\% Loonzain. The actual sales mix was 40\% White, 24\% Fragrant, and 36\% Loonzain.
As shown by these data, sales shifted away from Fragrant Rice, which provides our greatest contribution per dollar of sales, and shifted toward White Rice, which provides our least contribution per dollar of sales. Although the company met its budgeted level of sales, these sales provided considerably less contribution margin than we had planned, with a resulting decrease in net operating income. Notice from the attached statements that the company's overall CM ratio was only 52%, as compared to a planned CM ratio of 64%. This also explains why the break-even point was higher than planned. With less average contribution margin per dollar of sales, a greater level of sales had to be achieved to provide sufficient contribution margin to cover fixed costs.

Problem 2-22 (60 minutes)

1. The CM ratio is 30%.

	Total	Per Unit	Percent of Sales	
Sales $(19,500$ units)	$\ldots . . .$.	$\$ 585,000$	$\$ 30.00$	100%
Variable expenses	$\underline{409,500}$	$\underline{21.00}$	$\underline{70 \%}$	
Contribution margin.......	$\underline{\$ 175,500}$	$\underline{\$ 9.00}$	$\underline{\underline{30 \%}}$	

The break-even point is:

$$
\begin{aligned}
\text { Profit } & =\text { Unit } C M \times Q-\text { Fixed expenses } \\
\$ 0 & =(\$ 30-\$ 21) \times Q-\$ 180,000 \\
\$ 0 & =(\$ 9) \times Q-\$ 180,000 \\
\$ 9 Q & =\$ 180,000 \\
Q & =\$ 180,000 \div \$ 9 \\
Q & =20,000 \text { units }
\end{aligned}
$$

20,000 units $\times \$ 30$ per unit $=\$ 600,000$ in sales

Alternative solution:

Unit sales to $=\quad$ Fixed expenses
break even $=\overline{\text { Unit contribution margin }}$

$$
=\frac{\$ 180,000}{\$ 9.00}=20,000 \text { units }
$$

$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{C M \text { ratio }}$

$$
=\frac{\$ 180,000}{0.30}=\$ 600,000 \text { in sales }
$$

2. Incremental contribution margin:

$$
\$ 80,000 \text { increased sales } \times 0.30 \mathrm{CM} \text { ratio............ } \$ 24,000
$$

Increase in monthly net operating income \qquad
Since the company is now showing a loss of $\$ 4,500$ per month, if the changes are adopted, the loss will turn into a profit of \$3,500 each month ($\$ 8,000-\$ 4,500=\$ 3,500$).

Problem 2-22 (continued)

3. Sales (39,000 units @ $\$ 27.00$ per unit*)......... \$1,053,000 Variable expenses
(39,000 units @ \$21.00 per unit)................. 819,000
Contribution margin 234,000
Fixed expenses ($\$ 180,000+\$ 60,000$) 240,000
Net operating loss.. \$ $(6,000)$
*\$30.00 - (\$30.00 $\times 0.10)=\$ 27.00$
4. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses

$$
\$ 9,750=(\$ 30.00-\$ 21.75) \times Q-\$ 180,000
$$

$$
\$ 9,750=(\$ 8.25) \times Q-\$ 180,000
$$

$\$ 8.25 \mathrm{Q}=\$ 189,750$
$Q=\$ 189,750 \div \$ 8.25$ $Q=23,000$ units

* $\$ 21.00+\$ 0.75=\$ 21.75$

Alternative solution:

$$
\begin{aligned}
\begin{aligned}
\text { Unit sales to attain } \\
\text { target profit }
\end{aligned} & =\frac{\text { Target profit }+ \text { Fixed expenses }}{\text { CM per unit }} \\
& =\frac{\$ 9,750+\$ 180,000}{\$ 8.25^{* *}} \\
& =23,000 \text { units }
\end{aligned}
$$

** $\$ 30.00$ - $\$ 21.75=\$ 8.25$
5. a. The new CM ratio would be:

	Per Unit	Percent of Sales
Sales.........................	$\$ 30.00$	100%
Variable expenses........	$\underline{18.00}$	$\underline{60 \%}$
Contribution margin.....	$\underline{\$ 12.00}$	$\underline{40 \%}$

Problem 2-22 (continued)
The new break-even point would be:

$$
\begin{aligned}
\begin{array}{c}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit contribution margin }} \\
& =\frac{\$ 180,000+\$ 72,000}{\$ 12.00} \\
& =21,000 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{c}
\text { Dollar sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { CM ratio }} \\
& =\frac{\$ 180,000+\$ 72,000}{0.40} \\
& =\$ 630,000
\end{aligned}
$$

b. Comparative income statements follow:

	Not Automated			Automated		
		Per			Per	
	Total	Unit	\%	Total	Unit	\%
$\begin{array}{r} \text { Sales (26,000 } \\ \text { units).......... } \end{array}$	\$780,000	\$30.00	100	\$780,000	\$30.00	100
Variable expenses \qquad	546,000	21.00	70	468,000	18.00	60
Contribution margin. \qquad	234,000	\$ 9.00	30	312,000	\$12.00	40
Fixed expenses..	180,000			252,000		
Net operating income \qquad	\$ 54,000			\$ 60,000		

Problem 2-22 (continued)

c. Whether or not the company should automate its operations depends on how much risk the company is willing to take and on prospects for future sales. The proposed changes would increase the company's fixed costs and its break-even point. However, the changes would also increase the company's CM ratio (from 0.30 to 0.40). The higher CM ratio means that once the break-even point is reached, profits will increase more rapidly than at present. If 26,000 units are sold next month, for example, the higher CM ratio will generate $\$ 6,000$ (= $\$ 60,000-\$ 54,000$) more in profits than if no changes are made.

The greatest risk of automating is that future sales may drop back down to present levels (only 19,500 units per month), and as a result, losses will be even larger than at present due to the company's greater fixed costs. (Note the problem states that sales are erratic from month to month.) In sum, the proposed changes will help the company if sales continue to trend upward in future months; the changes will hurt the company if sales drop back down to or near present levels.

Note to the Instructor: Although it is not asked for in the problem, if time permits you may want to compute the point of indifference between the two alternatives in terms of units sold; i.e., the point where profits will be the same under either alternative. At this point, total revenue will be the same; hence, we include only costs in our equation:

$$
\begin{aligned}
\text { Let } \mathrm{Q} & =\text { Point of indifference in units sold } \\
\$ 21.00 \mathrm{Q}+\$ 180,000 & =\$ 18.00 \mathrm{Q}+\$ 252,000 \\
\$ 3.00 \mathrm{Q} & =\$ 72,000 \\
\mathrm{Q} & =\$ 72,000 \div \$ 3.00 \\
\mathrm{Q} & =24,000 \text { units }
\end{aligned}
$$

If more than 24,000 units are sold in a month, the proposed plan will yield the greater profits; if less than 24,000 units are sold in a month, the present plan will yield the greater profits (or the least loss).

Problem 2-23 (60 minutes)

1. The CM ratio is 60% :

Sales price...................... \$20.00 100\%
Variable expenses $\quad 8.00 \quad 40 \%$
Contribution margin \$12.00 60\%
2. $\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}$ break even \quad CM ratio

$$
\begin{aligned}
& =\frac{\$ 180,000}{0.60} \\
& =\$ 300,000
\end{aligned}
$$

3. $\$ 75,000$ increased sales $\times 0.60 \mathrm{CM}$ ratio $=\$ 45,000$ increased contribution margin. Because the fixed costs will not change, net operating income should also increase by $\$ 45,000$.

4a. The degree of operating leverage is calculated as follows:
4.

$$
\begin{aligned}
\begin{array}{c}
\text { Degree of } \\
\text { operating leverage }
\end{array} & =\frac{\text { Contribution margin }}{\text { Net operating income }} \\
& =\frac{\$ 240,000}{\$ 60,000} \\
& =4
\end{aligned}
$$

4b. $4 \times 20 \%=80 \%$ increase in net operating income. In dollars, this increase would be $80 \% \times \$ 60,000=\$ 48,000$.

Problem 2-23 (continued)

5. This year's net operating income is computed as follows:

The sales manager's suggestions should not be implemented because they will lower net operating income by $\$ 20,000$ ($=\$ 60,000-\$ 40,000$).
6. Expected total contribution margin:

20,000 units $\times 1.25 \times \$ 11.00$ per unit* $\ldots . \quad \$ 275,000$
Present total contribution margin 240,000
Incremental contribution margin, and the amount by which advertising can be increased with net operating income remaining unchanged
\$ 35,000
*\$20.00 - (\$8.00 + \$1.00) = \$11.00

Problem 2-24 (30 minutes)

The key to solving the requirements of this problem is understanding that the sweatshirts represent a step-fixed cost. They cannot be purchased at a cost of $\$ 8$ each. They must be bought in batches of 75 sweatshirts at a cost of $\$ 600$ per batch (75 sweatshirts $\times \$ 8$ per shirt $=\$ 600$ per batch).

1. A good starting point for solving this problem is to compute the profit from buying and selling one batch of 75 sweatshirts:

If the profit from selling one batch of 75 sweatshirts is $\$ 300$, then the profit from selling four batches of 75 sweatshirts, or 300 sweatshirts in total, will equal the target profit of $\$ 1,200$ ($\$ 300$ per batch $\times 4$ batches $=\$ 1,200)$.
2. The contribution margin per sweatshirt is:

| Selling price .. | $\$ 13.50$ |
| :--- | :--- | ---: |
| Variable expenses (commissions only) ... | 1.50 |
| Contribution margin.............................. | $\$ 12.00$ |

The fixed cost associated with buying 75 sweatshirts is $\$ 600$; therefore, the break-even point would be 50 sweatshirts computed as follows:

$$
\begin{aligned}
\begin{array}{r}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit CM }} \\
& =\frac{\$ 600}{\$ 12.00}=50 \text { sweatshirts }
\end{aligned}
$$

Problem 2-25 (45 minutes)

1. The contribution margin per unit on the first 16,000 units is:

	Per Unit
Sales price	$\$ 3.00$
Variable expenses.............	$\underline{1.25}$
Contribution margin...........	$\$ 1.75$

The contribution margin per unit on anything over 16,000 units is:

Per Unit

Sales price $\$ 3.00$
Variable expenses................ 1.40
Contribution margin............. \$1.60
Thus, for the first 16,000 units sold, the total amount of contribution margin generated would be:

16,000 units $\times \$ 1.75$ per unit $=\$ 28,000$
Since the fixed costs on the first 16,000 units total \$35,000, the \$28,000 contribution margin above is not enough to permit the company to break even. Therefore, in order to break even, more than 16,000 units would have to be sold. The fixed costs that will have to be covered by the additional sales are:

Fixed costs on the first 16,000 units \$35,000
Less contribution margin from the first 16,000 units. $\quad \underline{28,000}$
Remaining unrecovered fixed costs
Add monthly rental cost of the additional space needed to produce more than 16,000 units. 1,000
Total fixed costs to be covered by remaining sales.... \$8,000

Problem 2-25 (continued)

The additional sales of units required to cover these fixed costs would be:

$$
\frac{\text { Total remaining fixed costs }}{\text { Unit CM on added units }}=\frac{\$ 8,000}{\$ 1.60}=5,000 \text { units }
$$

Therefore, a total of 21,000 units $(16,000+5,000)$ must be sold in order for the company to break even. This number of units would equal total sales of:

21,000 units $\times \$ 3.00$ per unit $=\$ 63,000$ in total sales
2. $\frac{\text { Target profit }}{\text { Unit } C M}=\frac{\$ 12,000}{\$ 1.60}=7,500$ units

Thus, the company must sell 7,500 units above the break-even point to earn a profit of $\$ 12,000$ each month. These units, added to the 21,000 units required to break even, equal total sales of 28,500 units each month to reach the target profit.
3. If a bonus of $\$ 0.10$ per unit is paid for each unit sold in excess of the break-even point, then the contribution margin on these units would drop from $\$ 1.60$ to $\$ 1.50$ per unit.
The desired monthly profit would be:

$$
25 \% \times(\$ 35,000+\$ 1,000)=\$ 9,000
$$

Thus,

$$
\frac{\text { Target profit }}{\text { Unit CM }}=\frac{\$ 9,000}{\$ 1.50}=6,000 \text { units }
$$

Therefore, the company must sell 6,000 units above the break-even point to earn a profit of $\$ 9,000$ each month. These units, added to the 21,000 units required to break even, would equal total sales of 27,000 units each month.

Problem 2-26 (60 minutes)

1. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=(\$ 30-\$ 18) \times Q-\$ 150,000$
$\$ 0=(\$ 12) \times Q-\$ 150,000$
$\$ 12 Q=\$ 150,000$
$\mathrm{Q}=\$ 150,000 \div \$ 12$
$\mathrm{Q}=12,500$ pairs
12,500 pairs $\times \$ 30$ per pair $=\$ 375,000$ in sales
Alternative solution:

$$
\begin{aligned}
\begin{array}{r}
\text { Unit sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{\text { Unit CM }} \\
& =\frac{\$ 150,000}{\$ 12.00}=12,500 \text { pairs }
\end{aligned}
$$

$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}$

$$
=\frac{\$ 150,000}{0.40}=\$ 375,000 \text { in sales }
$$

2. See the graph on the following page.
3. The simplest approach is:

Break-even sales 12,500 pairs
Actual sales.............................. 12,000 pairs
Sales short of break-even........... 500 pairs
500 pairs $\times \$ 12$ contribution margin per pair $=\$ 6,000$ loss Alternative solution:

Sales (12,000 pairs $\times \$ 30.00$ per pair) $\ldots . . \quad \$ 360,000$
Variable expenses
(12,000 pairs $\times \$ 18.00$ per pair) $\underline{216,000}$
Contribution margin................................ 144,000
Fixed expenses. 150,000
Net operating loss
$\$(6,000)$

Problem 2-26 (continued)

2. Cost-volume-profit graph:

© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Problem 2-26 (continued)

4. The variable expenses will now be $\$ 18.75$ per pair, and the contribution margin will be $\$ 11.25$ per pair.

$$
\begin{aligned}
\text { Profit } & =\text { Unit } \mathrm{CM} \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 0 & =(\$ 30.00-\$ 18.75) \times \mathrm{Q}-\$ 150,000 \\
\$ 0 & =(\$ 11.25) \times \mathrm{Q}-\$ 150,000 \\
\$ 11.25 \mathrm{Q} & =\$ 150,000 \\
\mathrm{Q} & =\$ 150,000 \div \$ 11.25 \\
\mathrm{Q} & =13,333 \text { pairs (rounded) }
\end{aligned}
$$

13,333 pairs $\times \$ 30.00$ per pair $=\$ 400,000$ in sales
Alternative solution:
$\begin{gathered}\text { Unit sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\mathrm{CM} \text { per unit }}$

$$
=\frac{\$ 150,000}{\$ 11.25}=13,333 \text { pairs }
$$

$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}$

$$
=\frac{\$ 150,000}{0.375}=\$ 400,000 \text { in sales }
$$

5. The simplest approach is:

Actual sales 15,000 pairs
Break-even sales......................... 12,500 pairs
Excess over break-even sales 2,500 pairs
2,500 pairs $\times \$ 11.50$ per pair* $=\$ 28,750$ profit

* $\$ 12.00$ present contribution margin $-\$ 0.50$ commission $=\$ 11.50$

Problem 2-26 (continued)

6. The new variable expenses will be $\$ 13.50$ per pair.

$$
\begin{aligned}
\text { Profit } & =\text { Unit } \mathrm{CM} \times \mathrm{Q}-\text { Fixed expenses } \\
\$ 0 & =(\$ 30.00-\$ 13.50) \times \mathrm{Q}-(\$ 150,000+\$ 31,500) \\
\$ 0 & =(\$ 16.50) \times \mathrm{Q}-\$ 181,500 \\
\$ 16.50 \mathrm{Q} & =\$ 181,500 \\
\mathrm{Q} & =\$ 181,500 \div \$ 16.50 \\
\mathrm{Q} & =11,000 \text { pairs }
\end{aligned}
$$

11,000 pairs $\times \$ 30.00$ per pair $=\$ 330,000$ in sales
Although the change will lower the break-even point from 12,500 pairs to 11,000 pairs, the company must consider whether this reduction in the break-even point is more than offset by the possible loss in sales arising from having the sales staff on a salaried basis. Under a salary arrangement, the sales staff has less incentive to sell than under the present commission arrangement, resulting in a potential loss of sales and a reduction of profits. Although it is generally desirable to lower the break-even point, management must consider the other effects of a change in the cost structure. The break-even point could be reduced dramatically by doubling the selling price but it does not necessarily follow that this would improve the company's profit.

Problem 2-27 (45 minutes)

1. a.

		ian sy units)	Tahitian Joy $(5,000$ unit		Total	
	Amount	\%	Amount	\%	Amount	\%
Sales.	\$300,000	100\%	\$500,000	100\%	\$800,000	100\%
Variable expenses.......	180,000	60\%	100,000	20\%	280,000	35\%
Contribution margin	\$120,000	40\%	\$400,000	80\%	520,000	65\%
Fixed expenses..........					475,800	
Net operating income..					\$44,200	

b. $\quad \begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 475,800}{0.65}=\$ 732,000$

Margin of safety $=$ Actual sales - Break-even sales

$$
=\$ 800,000-\$ 732,000=\$ 68,000
$$

Margin of safety $=$ Margin of safety in dollars percentage

Actual sales

$$
=\frac{\$ 68,000}{\$ 800,000}=8.5 \%
$$

Problem 2-27 (continued)
2. a.

	Hawaiian Fantasy (20,000 units)		$\begin{gathered} \text { Tahitian } \\ \text { Joy } \\ \text { (5,000 units) } \end{gathered}$		Samoan Delight (10,000 units)		Total	
	Amount	\%	Amount	\%	Amount	\%	Amount	\%
Sales.	\$300,000	100\%	\$500,000	100\%	\$450,000	100\%	\$1,250,000	100.0\%
Variable expenses \qquad	180,000	60\%	100,000	20\%	360,000	80\%	640,000	51.2\%
Contribution margin \qquad	\$120,000	40\%	\$400,000	80\%	\$ 90,000	20\%	610,000	48.8\%
Fixed expenses..							475,800	
Net operating income \qquad							\$ 134,200	

Problem 2-27 (continued)
b. $\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 475,800}{0.488}=\$ 975,000$

Margin of safety $=$ Actual sales - Break-even sales

$$
=\$ 1,250,000-\$ 975,000=\$ 275,000
$$

$\begin{gathered}\text { Margin of safety } \\ \text { percentage }\end{gathered}=\frac{\text { Margin of safety in dollars }}{\text { Actual sales }}$

$$
=\frac{\$ 275,000}{\$ 1,250,000}=22 \%
$$

3. The reason for the increase in the break-even point can be traced to the decrease in the company's overall contribution margin ratio when the third product is added. Note from the income statements above that this ratio drops from 65% to 48.8% with the addition of the third product. This product (the Samoan Delight) has a CM ratio of only 20\%, which causes the average contribution margin per dollar of sales to shift downward.

This problem shows the somewhat tenuous nature of break-even analysis when the company has more than one product. The analyst must be very careful of his or her assumptions regarding sales mix, including the addition (or deletion) of new products.
It should be pointed out to the president that even though the breakeven point is higher with the addition of the third product, the company's margin of safety is also greater. Notice that the margin of safety increases from $\$ 68,000$ to $\$ 275,000$ or from 8.5% to 22%. Thus, the addition of the new product shifts the company much further from its break-even point, even though the break-even point is higher.

Problem 2-28 (60 minutes)

1.

Carbex, Inc.
Income Statement For April

	Standard		Deluxe		Total	
	Amount	\%	Amount	\%	Amount	\%
Sales.	\$240,000	100	\$150,000	100	\$390,000	100.0
Variable expenses:						
Production.	60,000	25	60,000	40	120,000	30.8
Sales commission......	36,000	15	22,500	15	58,500	15.0
Total variable expenses.	96,000	40	82,500	55	178,500	45.8
Contribution margin......	\$144,000	$\underline{60}$	\$ 67,500	45	\$211,500	54.2
Fixed expenses:						
Advertising					105,000	
Depreciation					21,700	
Administrative...........					63,000	
Total fixed expenses					189,700	
Net operating income....					\$ 21,800	

Carbex, Inc.
Income Statement For May

	Standard		Deluxe		Total	
	Amount	\%	Amount	\%	Amount	\%
Sales.	\$60,000	100	\$375,000	100	\$435,000	100.0
Variable expenses:						
Production..	15,000	25	150,000	40	165,000	37.9
Sales commission.......	9,000	15	56,250	15	65,250	15.0
Total variable expenses.	24,000	40	206,250	55	230,250	52.9
Contribution margin......	\$36,000	$\underline{60}$	\$168,750	45	204,750	47.1
Fixed expenses:						
Advertising					105,000	
Depreciation					21,700	
Administrative...........					63,000	
Total fixed expenses					189,700	
Net operating income....					\$ 15,050	

Problem 2-28 (continued)

2. The sales mix has shifted over the last year from Standard sets to Deluxe sets. This shift has caused a decrease in the company's overall CM ratio from 54.2\% in April to 47.1\% in May. For this reason, even though total sales (in dollars) are greater, net operating income is lower.
3. Sales commissions could be based on contribution margin rather than on sales price. A flat rate on total contribution margin, as the text suggests, might encourage the salespersons to emphasize the product with the greatest contribution to the profits.
a. The break-even in dollar sales can be computed as follows:
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 189,700}{0.542}=\$ 350,000$
b. The break-even point in May would be higher than the break-even point in April. This occurs because the sales mix has shifted from the more profitable to the less profitable units, which in turn decreases the company's overall CM ratio.

Problem 2-29 (60 minutes)

1. The income statements would be:

	Present		
	Amount	Per Unit	\%
Sales......................	\$450,000	\$30	100\%
Variable expenses	315,000	21	70\%
Contribution margin ...	135,000	\$ 9	30\%
Fixed expenses	90,000		
Net operating income.	\$ 45,000		
	Proposed		
	Amount	Per Unit	\%
Sales......................	\$450,000	\$30	100\%
Variable expenses*....	180,000	12	40\%
Contribution margin ...	270,000	\$18	60\%
Fixed expenses	225,000		
Net operating income.	\$ 45,000		
* ${ }^{2} 1-\$ 9=\$ 12$			

2. a. Degree of operating leverage:

Present:

$$
\begin{aligned}
\begin{array}{c}
\text { Degree of } \\
\text { operating leverage }
\end{array} & =\frac{\text { Contribution margin }}{\text { Net operating income }} \\
& =\frac{\$ 135,000}{\$ 45,000}=3
\end{aligned}
$$

Proposed:

$$
\begin{aligned}
\begin{array}{c}
\text { Degree of } \\
\text { operating leverage }
\end{array} & =\frac{\text { Contribution margin }}{\text { Net operating income }} \\
& =\frac{\$ 270,000}{\$ 45,000}=6
\end{aligned}
$$

Problem 2-29 (continued)

b. Dollar sales to break even:

Present:

$$
\begin{aligned}
\begin{array}{c}
\text { Dollar sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{C M \text { ratio }} \\
& =\frac{\$ 90,000}{0.30}=\$ 300,000
\end{aligned}
$$

Proposed:

$$
\begin{aligned}
\begin{array}{c}
\text { Dollar sales to } \\
\text { break even }
\end{array} & =\frac{\text { Fixed expenses }}{C M \text { ratio }} \\
& =\frac{\$ 225,000}{0.60}=\$ 375,000
\end{aligned}
$$

c. Margin of safety:

Present:

$$
\begin{aligned}
\text { Margin of safety } & =\text { Actual sales }- \text { Break-even sales } \\
& =\$ 450,000-\$ 300,000=\$ 150,000 \\
\begin{array}{c}
\text { Margin of safety } \\
\text { percentage }
\end{array} & =\frac{\text { Margin of safety in dollars }}{\text { Actual sales }} \\
& =\frac{\$ 150,000}{\$ 450,000}=33.33 \%
\end{aligned}
$$

Proposed:

$$
\begin{aligned}
\text { Margin of safety } & =\text { Actual sales }- \text { Break-even sales } \\
& =\$ 450,000-\$ 375,000=\$ 75,000
\end{aligned}
$$

Margin of safety $=\underline{\text { Margin of safety in dollars }}$
percentage Actual sales

$$
=\frac{\$ 75,000}{\$ 450,000}=16.67 \%
$$

Problem 2-29 (continued)

3. The major factor would be the sensitivity of the company's operations to cyclical movements in the economy. Because the new equipment will increase the CM ratio, in years of strong economic activity, the company will be better off with the new equipment. However, in economic recession, the company will be worse off with the new equipment. The fixed costs of the new equipment will cause losses to be deeper and sustained more quickly than at present. Thus, management must decide whether the potential for greater profits in good years is worth the risk of deeper losses in bad years.
4. No information is given in the problem concerning the new variable expenses or the new contribution margin ratio. Both of these items must be determined before the new break-even point can be computed. The computations are:
New variable expenses:

$$
\begin{aligned}
& \text { Profit }=(\text { Sales }- \text { Variable expenses })-\text { Fixed expenses } \\
& \$ 54,000^{* *}=\left(\$ 585,000^{*}-\text { Variable expenses }\right)-\$ 180,000 \\
& \text { Variable expenses }=\$ 585,000-\$ 180,000-\$ 54,000 \\
&=\$ 351,000 \\
& * \text { New level of sales: } \$ 450,000 \times 1.30=\$ 585,000 \\
& * * \text { New level of net operating income: } \$ 45,000 \times 1.2=\$ 54,000
\end{aligned}
$$

New CM ratio:

Sales	$\$ 585,000$	100%
Variable expenses............	351,000 $\underline{60 \%}$ Contribution margin......... $\underline{\$ 234,000}$$\underline{\underline{40 \%}}$	

With the above data, the new break-even point can be computed:
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{C M \text { ratio }}=\frac{\$ 180,000}{0.40}=\$ 450,000$

Problem 2-29 (continued)
The greatest risk is that the increases in sales and net operating income predicted by the marketing manager will not happen and that sales will remain at their present level. Note that the present level of sales is $\$ 450,000$, which is equal to the break-even level of sales under the new marketing method. Thus, if the new marketing strategy is adopted and sales remain unchanged, profits will drop from the current level of $\$ 45,000$ per month to zero.
It would be a good idea to compare the new marketing strategy to the current situation more directly. What level of sales would be needed under the new method to generate at least the $\$ 45,000$ in profits the company is currently earning each month? The computations are:

$$
\begin{aligned}
\begin{array}{c}
\text { Dollar sales to } \\
\text { attain target profit }
\end{array} & =\frac{\text { Target profit }+ \text { Fixed expenses }}{\text { CM ratio }} \\
& =\frac{\$ 45,000+\$ 180,000}{0.40} \\
& =\$ 562,500 \text { in sales each month }
\end{aligned}
$$

Thus, sales would have to increase by at least 25% ($\$ 562,500$ is 25% higher than $\$ 450,000$) in order to make the company better off with the new marketing strategy than with the current situation. This appears to be extremely risky.

Problem 2-30 (60 minutes)

1. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}-$ Fixed expenses
$\$ 0=(\$ 40-\$ 16) \times Q-\$ 60,000$
$\$ 0=(\$ 24) \times Q-\$ 60,000$
$\$ 24 Q=\$ 60,000$
$Q=\$ 60,000 \div \$ 24$
$\mathrm{Q}=2,500$ pairs, or at $\$ 40$ per pair, $\$ 100,000$ in sales
Alternative solution:

$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 60,000}{0.60}=\$ 100,000$
2. See the graphs at the end of this solution.
3. \quad Profit $=$ Unit $\mathrm{CM} \times \mathrm{Q}$ - Fixed expenses
$\$ 18,000=\$ 24 \times Q-\$ 60,000$
$\$ 24 Q=\$ 18,000+\$ 60,000$
$Q=\$ 78,000 \div \$ 24$
$\mathrm{Q}=3,250$ pairs
Alternative solution:
$\begin{gathered}\text { Unit sales to attain } \\ \text { target profit }\end{gathered}=\frac{\text { Target profit }+ \text { Fixed expenses }}{\text { Unit contribution margin }}$

$$
=\frac{\$ 18,000+\$ 60,000}{\$ 24.00}=3,250 \text { pairs }
$$

4. Incremental contribution margin:
$\$ 25,000$ increased sales $\times 60 \%$ CM ratio $\ldots .$. . $\$ 15,000$
Incremental fixed salary cost 8,000
Increased net income.................................... \$7,000
Yes, the position should be converted to a full-time basis.

Problem 2-30 (continued)

5. a. $\begin{gathered}\text { Degree of } \\ \text { operating leverage }\end{gathered}=\frac{\text { Contribution margin }}{\text { Net operating income }}=\frac{\$ 72,000}{\$ 12,000}=6$
b. $6 \times 50 \%$ sales increase $=300 \%$ increase in net operating income.

Thus, net operating income next year would be: $\$ 12,000+(\$ 12,000$ $\times 300 \%$) $=\$ 48,000$.
2. Cost-volume-profit graph:

Problem 2-30 (continued)

Profit graph:

© The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Problem 2-31 (30 minutes)

1. (1) Dollars
(2) Volume of output, expressed in units, \% of capacity, sales, or some other measure
(3) Total expense line
(4) Variable expense area
(5) Fixed expense area
(6) Break-even point
(7) Loss area
(8) Profit area
(9) Sales line

Problem 2-31 (continued)
2.
a. Line 3: Remain unchanged.

Line 9: Have a steeper slope.
Break-even point: Decrease.
b. Line 3:

Line 9:
Break-even point:
Have a flatter slope.
Remain unchanged.
Decrease.
c. Line 3:

Line 9:
Break-even point:
Shift upward.
Remain unchanged.
Increase.
d. Line 3:

Remain unchanged.
Line 9:
Break-even point:
Remain unchanged.
Remain unchanged.
e. Line 3:

Line 9:
Break-even point:
f. Line 3:

Line 9:
Have a steeper slope.
Have a steeper slope.
Break-even point: Remain unchanged in terms of units; increase in terms of total dollars of sales.
g. Line 3:

Line 9:
Break-even point:
h. Line 3:

Line 9:
Break-even point: Probably change, but the direction is uncertain.

Case 2-32 (60 minutes)
Note: This is a problem that will challenge the very best students' conceptual and analytical skills. However, working through this case will yield substantial dividends in terms of a much deeper understanding of critical management accounting concepts.

1. The overall break-even sales can be determined using the CM ratio.

	Velcro	Metal	Nylon	Total
Sales	\$165,000	\$300,000	\$340,000	\$805,000
Variable expenses	125,000	140,000	100,000	365,000
Contribution margin	\$ 40,000	\$160,000	\$240,000	440,000
Fixed expenses				400,000
Net operating income ...				\$ 40,000

$$
\mathrm{CM} \text { ratio }=\frac{\text { Contribution margin }}{\text { Sales }}=\frac{\$ 440,000}{\$ 805,000}=0.5466
$$

$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 400,000}{0.5466}=\$ 731,797$ (rounded)
2. The issue is what to do with the common fixed cost when computing the break-evens for the individual products. The correct approach is to ignore the common fixed costs. If the common fixed costs are included in the computations, the break-even points will be overstated for individual products and managers may drop products that in fact are profitable.
a. The break-even points for each product can be computed using the contribution margin approach as follows:

	Velcro	Metal	Nylon
Unit selling price	\$1.65	\$1.50	\$0.85
Variable cost per unit	1.25	0.70	0.25
Unit contribution margin (a)	\$0.40	\$0.80	\$0.60
Product fixed expenses (b)	\$20,000	\$80,000	\$60,000
Unit sales to break even (b) \div (a)	50,000	100,000	100,000

Case 2-32 (continued)
b. If the company were to sell exactly the break-even quantities computed above, the company would lose $\$ 240,000$-the amount of the common fixed cost. This can be verified as follows:

	Velcro	Metal	Nylon	Total
Unit sales	50,000	100,000	100,000	
Sales.	\$82,500	\$150,000	\$85,000	\$317,500
Variable expenses.	62,500	70,000	25,000	157,500
Contribution margin	\$20,000	\$ 80,000	\$60,000	160,000
Fixed expenses..........				400,000
Net operating loss.......				\$(240,000)

At this point, many students conclude that something is wrong with their answer to part (a) because a result in which the company loses money operating at the break-evens for the individual products does not seem to make sense. They also worry that managers may be lulled into a false sense of security if they are given the break-evens computed in part (a). Total sales at the individual product break-evens is only $\$ 317,500$, whereas the total sales at the overall break-even computed in part (1) is \$731,797.
Many students (and managers, for that matter) attempt to resolve this apparent paradox by allocating the common fixed costs among the products prior to computing the break-evens for individual products. Any of a number of allocation bases could be used for this purpose-sales, variable expenses, product-specific fixed expenses, contribution margins, etc. (We usually take a tally of how many students allocated the common fixed costs using each possible allocation base before proceeding.) For example, the common fixed costs are allocated on the next page based on sales.

Case 2-32 (continued)
Allocation of common fixed expenses on the basis of sales revenue:

	Velcro	Metal	Nylon	Total
Sales.	\$165,000	\$300,000	\$340,000	\$805,000
Percentage of total sales	20.497\%	37.267\%	42.236\%	100.0\%
Allocated common fixed expense* \qquad	\$49,193	\$ 89,441	\$101,366	\$240,000
Product fixed expenses	20,000	80,000	60,000	160,000
Allocated common and product fixed expenses (a)	\$69,193	\$169,441	\$161,366	\$400,000
Unit contribution margin (b).	\$0.40	\$0.80	\$0.60	
"Break-even" point in units sold (a) \div (b)	172,983	211,801	268,943	

If the company sells 172,983 units of the Velcro product, 211,801 units of the Metal product, and 268,943 units of the Nylon product, the company will indeed break even overall. However, the apparent break-evens for two of the products are higher than their normal annual sales.

	Ve/cro	Metal	Nylon
Normal annual sales volume	100,000	200,000	400,000
"Break-even" annual sales	172,983	211,801	268,943
"Strategic" decision	drop	drop	retain

It would be natural for managers to interpret a break-even for a product as the level of sales below which the company would be financially better off dropping the product. Therefore, we should not be surprised if managers, based on the above erroneous break-even calculation, would decide to drop the Velcro and Metal products and concentrate on the company's "core competency," which appears to be the Nylon product.

Case 2-32 (continued)
If the managers drop the Velcro and Metal products, the company would face a loss of \$60,000 computed as follows:

	Velcro	Metal	Nylon	Total
Sales.........................	dropped	dropped	\$340,000	\$340,000
Variable expenses........			100,000	100,000
Contribution margin......			\$240,000	240,000
Fixed expenses*..........				300,000
Net operating loss.........				\$ $(60,000)$

* By dropping the two products, the company reduces its fixed expenses by only $\$ 100,000(\$ 20,000+\$ 80,000)$. Therefore, the total fixed expenses are $\$ 300,000$ rather than $\$ 400,000$.
By dropping the two products, the company would go from making a profit of $\$ 40,000$ to suffering a loss of $\$ 60,000$. The reason is that the two dropped products were contributing $\$ 100,000$ toward covering common fixed expenses and toward profits. This can be verified by looking at a segmented income statement like the one that will be introduced in a later chapter.

	Velcro	Metal	Nylon	Total
Sales.	\$165,000	\$300,000	\$340,000	\$805,000
Variable expenses...............	125,000	140,000	100,000	365,000
Contribution margin.	40,000	160,000	240,000	440,000
Product fixed expenses	20,000	80,000	60,000	160,000
Product segment margin	\$ 20,000	\$ 80,000	\$180,000	280,000
Common fixed expenses				240,000
Net operating income..........				\$40,000

Case 2-33 (75 minutes)

Before proceeding with the solution, it is helpful first to restructure the data into contribution format for each of the three alternatives. (The data in the statements below are in thousands.)

Sales	15\% Commission		20\% Commission		Own Sales Force	
	\$16,000	100\%	\$16,000	100\%	\$16,000.00	100.0\%
Variable expenses:						
Manufacturing	7,200		7,200		7,200.00	
Commissions (15\%, 20\%, 7.5\%)	2,400		3,200		1,200.00	
Total variable expenses..	9,600	60\%	10,400	65\%	8,400.00	52.5\%
Contribution margin...................	6,400	40\%	5,600	35\%	7,600.00	47.5\%
Fixed expenses:						
Manufacturing overhead...........	2,340		2,340		2,340.00	
Marketing.............................	120		120		2,520.00	
Administrative	1,800		1,800		1,725.00	
Interest................................	540		540		540.00	
Total fixed expenses	4,800		4,800		7,125.00	
Income before income taxes	1,600		800		475.00	
Income taxes (30\%)..................	480		240		142.50	
Net income	\$ 1,120		\$ 560		\$ 332.50	
$\begin{gathered} * \$ 120,000+\$ 2,400,000=\$ 2,520 \\ * * 1,800,000-\$ 75,000=\$ 1,725, \end{gathered}$						

Case 2-33 (continued)

1. When the income before taxes is zero, income taxes will also be zero and net income will be zero. Therefore, the break-even calculations can be based on the income before taxes.
a. Break-even point in dollar sales if the commission remains 15\%:
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{C M \text { ratio }}=\frac{\$ 4,800,000}{0.40}=\$ 12,000,000$
b. Break-even point in dollar sales if the commission increases to 20\%:
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 4,800,000}{0.35}=\$ 13,714,286$
c. Break-even point in dollar sales if the company employs its own sales force:
$\begin{gathered}\text { Dollar sales to } \\ \text { break even }\end{gathered}=\frac{\text { Fixed expenses }}{\text { CM ratio }}=\frac{\$ 7,125,000}{0.475}=\$ 15,000,000$
2. In order to generate a $\$ 1,120,000$ net income, the company must generate $\$ 1,600,000$ in income before taxes. Therefore,
$\begin{gathered}\text { Dollar sales to } \\ \text { attain target }\end{gathered}=\frac{\text { Target income before taxes + Fixed expenses }}{\text { CM ratio }}$

$$
\begin{aligned}
& =\frac{\$ 1,600,000+\$ 4,800,000}{0.35} \\
& =\frac{\$ 6,400,000}{0.35}=\$ 18,285,714
\end{aligned}
$$

3. To determine the volume of sales at which net income would be equal under either the 20% commission plan or the company sales force plan, we find the volume of sales where costs before income taxes under the two plans are equal. See the next page for the solution.

Case 2-33 (continued)

$$
\begin{aligned}
X & =\text { Total sales revenue } \\
0.65 X+\$ 4,800,000 & =0.525 X+\$ 7,125,000 \\
0.125 X & =\$ 2,325,000 \\
X & =\$ 2,325,000 \div 0.125 \\
X & =\$ 18,600,000
\end{aligned}
$$

Thus, at a sales level of $\$ 18,600,000$ either plan would yield the same income before taxes and net income. Below this sales level, the commission plan would yield the largest net income; above this sales level, the sales force plan would yield the largest net income.
4. a., b., and c.

	15\%	20\%	Own
	Commission	Commission	Sales Force
Contribution margin (Part 1) (a).....	\$6,400,000	\$5,600,000	\$7,600,000
Income before taxes (Part 1) (b)....	\$1,600,000	\$800,000	\$475,000
Degree of operating leverage: (a) \div (b)	4	7	16

5. We would continue to use the sales agents for at least one more year, and possibly for two more years. The reasons are as follows:

First, use of the sales agents would have a less dramatic effect on net income.
Second, use of the sales agents for at least one more year would give the company more time to hire competent people and get the sales group organized.
Third, the sales force plan doesn't become more desirable than the use of sales agents until the company reaches sales of $\$ 18,600,000$ a year. This level probably won't be reached for at least one more year, and possibly two years.
Fourth, the sales force plan will be highly leveraged since it will increase fixed costs (and decrease variable costs). One or two years from now, when sales have reached the $\$ 18,600,000$ level, the company can benefit greatly from this leverage. For the moment, profits will be greater and risks will be less by staying with the agents, even at the higher 20\% commission rate.

Appendix 2A Analyzing Mixed Costs

Exercise 2A-1 (20 minutes)
1.

Occupancy-	Electrical
Days	Costs
2,406	$\$ 5,148$
$\underline{124}$	$\underline{1,588}$
$\underline{\underline{2,282}}$	$\underline{\$ 3,560}$

Variable cost $=$ Change in cost \div Change in activity $=\$ 3,560 \div 2,282$ occupancy-days = $\$ 1.56$ per occupancy-day

Total cost (August)

Variable cost element
(\$1.56 per occupancy-day $\times 2,406$ occupancy-days). 3,753
Fixed cost element ... \$1,395
2. Electrical costs may reflect seasonal factors other than just the variation in occupancy days. For example, common areas such as the reception area must be lighted for longer periods during the winter than in the summer. This will result in seasonal fluctuations in the fixed electrical costs.

Additionally, fixed costs will be affected by the number of days in a month. In other words, costs like the costs of lighting common areas are variable with respect to the number of days in the month, but are fixed with respect to how many rooms are occupied during the month.

Other, less systematic, factors may also affect electrical costs such as the frugality of individual guests. Some guests will turn off lights when they leave a room. Others will not.

Exercise 2A-2 (20 minutes)

1. and 2.

The scattergraph plot and least-squares regression estimates of fixed and variable costs using Microsoft Excel are shown below:

The intercept provides the estimate of the fixed cost element, $\$ 1,378$ per month, and the slope provides the estimate of the variable cost element, $\$ 4.04$ per rental return. Expressed as an equation in the form $Y=a+b X$, the relation between car wash costs and rental returns is

$$
Y=\$ 1,378+\$ 4.04 X
$$

where X is the number of rental returns.
Note that the R^{2} is approximately 0.90 , which is quite high, and indicates a strong linear relationship between car wash costs and rental returns.

Exercise 2A-3 (20 minutes)

> 1.
> Kilometers Total Annual Driven Cost*
> High level of activity 105,000 \$11,970
> Low level of activity
> 70,000
> 9,380
> Change
> * 105,000 kilometers $\times \$ 0.114$ per kilometer $=\$ 11,970$ 70,000 kilometers $\times \$ 0.134$ per kilometer $=\$ 9,380$

Variable cost per kilometer:

$$
\frac{\text { Change in cost }}{\text { Change in activity }}=\frac{\$ 2,590}{35,000 \text { kilometers }}=\$ 0.074 \text { per kilometer }
$$

Fixed cost per year:
Total cost at 105,000 kilometers..................... \$11,970
Less variable portion:
105,000 kilometers $\times \$ 0.074$ per kilometer .. 7,770
Fixed cost per year
$\$ 4,200$
2. $Y=\$ 4,200+\$ 0.074 X$
3. Fixed cost
\$ 4,200
Variable cost:
80,000 kilometers $\times \$ 0.074$ per kilometer
5,920
Total annual cost
\$10,120

Exercise 2A-4 (45 minutes)

1. The scattergraph appears below:

Yes, there is an approximately linear relationship between the number of units shipped and the total shipping expense.
(c) The McGraw-Hill Companies, Inc., 2020. All rights reserved.

Exercise 2A-4 (continued)

2. The high-low estimates and cost formula are computed as follows:

Units Shipped Shipping Expense

High activity level (June)
8
Low activity level (July)
Change.

2
$\underline{\underline{6}}$
\$2,700
1,200
\$1,500

Variable cost element:

$$
\frac{\text { Change in expense }}{\text { Change in activity }}=\frac{\$ 1,500}{6 \text { units }}=\$ 250 \text { per unit. }
$$

Fixed cost element:
Shipping expense at high activity level....................... \$2,700
Less variable cost element ($\$ 250$ per unit $\times 8$ units) .. $\quad \underline{2,000}$
Total fixed cost
$\$ 700$
The cost formula is $\$ 700$ per month plus $\$ 250$ per unit shipped or

$$
Y=\$ 700+\$ 250 X
$$

where X is the number of units shipped.
The scattergraph on the following page shows the straight line drawn through the high and low data points.

Exercise 2A-4 (continued)

3. The high-low estimate of fixed costs is $\$ 210.71$ (= \$910.71 - \$700.00) lower than the estimate provided by least-squares regression. The highlow estimate of the variable cost per unit is $\$ 32.14$ (= \$250.00 $\$ 217.86$) higher than the estimate provided by least-squares regression. A straight line that minimized the sum of the squared errors would intersect the Y-axis at $\$ 910.71$ instead of $\$ 700$. It would also have a flatter slope because the estimated variable cost per unit is lower than the high-low method.
4. The cost of shipping units is likely to depend on the weight and volume of the units shipped and the distance traveled as well as on the number of units shipped. In addition, higher cost shipping might be necessary to meet a deadline.

Exercise 2A-5 (20 minutes)

1 . and 2.
The scattergraph plot and regression estimates of fixed and variable costs using Microsoft Excel are shown below:

Note that the R^{2} is approximately 0.94 , which means that 94% of the variation in etching costs is explained by the number of units etched. This is a very high R^{2} which indicates a very good fit.

The regression equation, in the form $Y=a+b X$, is as follows (where a is rounded to nearest dollar and b is rounded to the nearest cent):

$$
Y=\$ 12.32+\$ 1.54 X
$$

3. Total expected etching cost if 5 units are processed:

Variable cost: 5 units $\times \$ 1.54$ per unit...... $\$ 7.70$
Fixed cost ... 12.32
Total expected cost
$\$ 20.02$

Problem 2A-6 (30 minutes)

1. The scattergraph plot and regression estimates of fixed and variable costs using Microsoft Excel are shown below:

The cost formula, in the form $Y=a+b X$, using tons mined as the activity base is $\$ 28,352$ per quarter plus $\$ 2.58$ per ton mined, or

$$
Y=\$ 28,352+\$ 2.58 X .
$$

Note that the R^{2} is approximately 0.47 , which means that only 47% of the variation in utility costs is explained by the number of tons mined.

Problem 2A-6 (continued)

2. The scattergraph plot and regression estimates of fixed and variable costs using Microsoft Excel are shown below:

The cost formula, in the form $Y=a+b X$, using direct labor-hours as the activity base is $\$ 17,000$ per quarter plus $\$ 9.00$ per direct labor-hour, or:
Y = \$17,000 + \$9.00X.

Note that the R^{2} is approximately 0.93 , which means that 93% of the variation in utility costs is explained by direct labor-hours. This is a very high R^{2} which is an indication of a very good fit.
3. The company should probably use direct labor-hours as the activity base, since the fit of the regression line to the data is much tighter than it is with tons mined. The R^{2} for the regression using direct labor-hours as the activity base is twice as large as for the regression using tons mined as the activity base. However, managers should look more closely at the costs and try to determine why utilities costs are more closely tied to direct labor-hours than to the number of tons mined.

Problem 2A-7 (45 minutes)

1. Cost of goods sold................... Variable

Advertising expense Fixed
Shipping expense.................... Mixed
Salaries and commissions Mixed
Insurance expense.................. Fixed
Depreciation expense Fixed
2. Analysis of the mixed expenses:

		Salaries and Commissions		
Shipping				
Expense				Expense
:---:				

Variable cost element:
Variable rate $=\frac{\text { Change in cost }}{\text { Change in activity }}$
Shipping expense: $\frac{\$ 4,000}{1,000 \text { units }}=\$ 4$ per unit
Salaries and commissions expense: $\frac{\$ 12,000}{1,000 \text { units }}=\$ 12$ per unit
Fixed cost element:

		Salaries and
	Shipping	Commissions Expense \$90,000
	Expense	
Cost at high level of activity ...	\$38,000	
Less variable cost element:		
5,000 units $\times \$ 4$ per unit	20,000	
5,000 units $\times \$ 12$ per unit...		60,000
Fixed cost element...............	\$18,000	\$30,000

Problem 2A-7 (continued)

The cost formulas are:
Shipping expense:
$\$ 18,000$ per month plus $\$ 4$ per unit or
$Y=\$ 18,000+\$ 4 X$
Salaries and commissions expense:
$\$ 30,000$ per month plus $\$ 12$ per unit
or
$Y=\$ 30,000+\$ 12 X$
3.

> Morrisey \& Brown, Ltd. Income Statement
> For the Month Ended September 30

Sales (5,000 units $\times \$ 100$ per unit)
\$500,000
Variable expenses:
Cost of goods sold (5,000 units $\times \$ 60$ per unit) \ldots. . $\$ 300,000$
Shipping expense
(5,000 units $\times \$ 4$ per unit) $\ldots \quad 20,000$
Salaries and commissions expense
(5,000 units $\times \$ 12$ per unit)
60,000 380,000
Contribution margin
120,000
Fixed expenses:
Advertising expense.............................. 21,000
Shipping expense 18,000
Salaries and commissions expense 30,000
Insurance expense \qquad 6,000
Depreciation expense 15,000
Net operating income \qquad

Problem 2A-8 (20 minutes)

1. Maintenance cost at the 90,000 machine-hour level of activity can be isolated as follows:

	Level of Activity	
	60,000 MHs	90,000 MHs
Total factory overhead cost	\$174,000	\$246,000
Deduct:		
Utilities cost @ \$0.80 per MH*.	48,000	72,000
Supervisory salaries	21,000	21,000
Maintenance cost	\$105,000	\$153,000
* $448,000 \div 60,000 \mathrm{MHs}=\$ 0.80$		

2. High-low analysis of maintenance cost:

	MachineHours	Maintenance Cost
High activity level	90,000	\$153,000
Low activity level.	60,000	105,000
Change...........	30,000	\$ 48,000

Variable rate:
$\frac{\text { Change in cost }}{\text { Change in activity }}=\frac{\$ 48,000}{30,000 \mathrm{MHs}}=\$ 1.60$ per MH
Total fixed cost:
Total maintenance cost at the high activity level.. \$153,000

Less variable cost element

($90,000 \mathrm{MHs} \times \$ 1.60$ per MH)
144,000
Fixed cost element
$\$ \quad 9,000$
Therefore, the cost formula for maintenance is $\$ 9,000$ per month plus $\$ 1.60$ per machine-hour or

$$
Y=\$ 9,000+\$ 1.60 X
$$

Problem 2A-8 (continued)
3.

Variable Cost per Machine-Hour	Fixed Cost
$\$ 0.80$	
	$\$ 21,000$
$\underline{1.60}$	$\underline{9,000}$
$\$ 2.40$	$\$ 30,000$

Thus, the cost formula would be: $Y=\$ 30,000+\$ 2.40 X$.
4. Total overhead cost at an activity level of 75,000 machine-hours:

> | Fixed costs..$~$ | $\$ 30,000$ |
| :--- | ---: |
| Variable costs: 75,000 MHs $\times \$ 2.40$ per MH. | $\underline{180,000}$ |
| Total overhead costs | $\$ 210,000$ |

Problem 2A-9 (30 minutes)

1. High-low method:

	Units Sold	Shipping Expense
High activity level	20,000	\$210,000
Low activity level..	10,000	119,000
Change.	10,000	\$91,000
$\begin{aligned} \text { Variable cost per unit } & =\frac{C}{C} \\ & =\frac{10}{10}\end{aligned}$	nge in co ge in act	
	$\frac{1,000}{0 \text { units }}=$	0 per unit

Fixed cost element:
Total shipping expense at high activity level
\$210,000
Less variable element:
20,000 units $\times \$ 9.10$ per unit................ 182,000
Fixed cost element.................................. \$28,000
Therefore, the cost formula is: $Y=\$ 28,000+\$ 9.10 X$.

Problem 2A-9 (continued)
2.

Milden Company
 Budgeted Contribution Format Income Statement For the First Quarter, Year 3

Sales (12,000 units $\times \$ 100$ per unit)
\$1,200,000
Variable expenses:
Cost of goods sold (12,000 units $\times \$ 35$ unit) \$420,000
Sales commission ($6 \% \times \$ 1,200,000$) $\ldots \ldots . . . \quad 72,000$
Shipping expense
(12,000 units $\times \$ 9.10$ per unit) 109,200
Total variable expenses............................... $\quad 601,200$
Contribution margin
598,800
Fixed expenses:
Advertising expense.................................. 210,000
Shipping expense 28,000
Administrative salaries 145,000
Insurance expense 9,000
Depreciation expense............................... 76,000
Total fixed expenses................................... $\quad 468,000$
Net operating income
$\$ 130,800$

Problem 2A-10 (30 minutes)

1 . and 2.
The scattergraph plot and regression estimates of fixed and variable costs using Microsoft Excel are shown below:

The cost formula, in the form $Y=a+b X$, using number of sections offered as the activity base is $\$ 3,700$ per quarter plus $\$ 1,750$ per section offered, or:

$$
Y=\$ 3,700+\$ 1,750 X
$$

Note that the R^{2} is approximately 0.96 , which means that 96% of the variation in cost is explained by the number of sections. This is a very high R^{2} which indicates a very good fit.

Problem 2A-10 (continued)
3. Expected total cost would be:

Fixed cost .. \$ 3,700
Variable cost (8 sections $\times \$ 1,750$ per section) . 14,000
Total cost... \$17,700
The problem with using the cost formula from (2) to derive total cost is that an activity level of 8 sections may lie outside the relevant rangethe range of activity within which the fixed cost is approximately $\$ 3,700$ per term and the variable cost is approximately $\$ 1,750$ per section offered. These approximations appear to be reasonably accurate within the range of 2 to 6 sections, but they may be invalid outside this range.

Case 2A-11 (60 minutes)

1. High-low method:

	Hours	Cost
High level of activity	25,000	$\$ 99,000$
Low level of activity	$\underline{10,000}$	$\underline{64,500}$
Change	$\underline{\underline{15,000}}$	$\underline{\$ 34,500}$

Variable element: $\$ 34,500 \div 15,000$ DLH $=\$ 2.30$ per MH
Fixed element:
Total cost-25,000 MH \$99,000
Less variable element: $25,000 \mathrm{MH} \times \$ 2.30$ per MH 57,500
Fixed element.
$\$ 41,500$
Therefore, the cost formula is: $Y=\$ 41,500+\$ 2.30 X$
2. The scattergraph is shown below:

Case 2A-11 (continued)
2. The scattergraph shows that there are two relevant ranges-one below $19,500 \mathrm{MH}$ and one above $19,500 \mathrm{MH}$. The change in equipment lease cost from a fixed fee to an hourly rate causes the slope of the regression line to be steeper above $19,500 \mathrm{MH}$, and to be discontinuous between the fixed fee and hourly rate points.
3. The cost formulas computed with the high-low and regression methods are faulty since they are based on the assumption that a single straight line provides the best fit to the data. Creating two data sets related to the two relevant ranges will enable more accurate cost estimates.
4. High-low method:

	Hours	Cost
High level of activity	25,000	$\$ 99,000$
Low level of activity	$\underline{20,000}$	$\underline{80,000}$
Change	$\underline{\underline{5,000}}$	$\underline{\$ 19,000}$

Variable element: $\$ 19,000 \div 5,000 \mathrm{MH}=\$ 3.80$ per MH
Fixed element:
Total cost-25,000 MH \$99,000
Less variable element:
25,000 MH $\times \$ 3.80$ per MH 95,000
Fixed element...................................... \$4,000
Expected overhead costs when 22,500 machine-hours are used:
Variable cost: 22,500 hours $\times \$ 3.80$ per hour $. \quad \$ 85,500$
Fixed cost
4,000
Total cost
\$89,500
5. The high-low estimate of fixed costs is $\$ 6,090$ ($=\$ 10,090-\$ 4,000)$ lower than the estimate provided by least-squares regression. The highlow estimate of the variable cost per machine hour is $\$ 0.27$ (= \$3.80 $\$ 3.53$) higher than the estimate provided by least-squares regression. A straight line that minimized the sum of the squared errors would intersect the Y-axis at $\$ 10,090$ instead of $\$ 4,000$. It would also have a flatter slope because the estimated variable cost per unit is lower than the high-low method.

Case 2A-12 (45 minutes)

1. and 2.

The scattergraph plot and regression estimates of fixed and variable costs using Microsoft Excel are shown below:

The scattergraph reveals three interesting findings. First, it indicates the relation between overhead expense and labor hours is approximated reasonably well by a straight line. (However, there appears to be a slight downward bend in the plot as the labor-hours increase-evidence of increasing returns to scale. This is a common occurrence in practice. See Noreen \& Soderstrom, "Are overhead costs strictly proportional to activity?" Journal of Accounting and Economics, vol. 17, 1994, pp. 255278.)

Second, the data points are all fairly close to the straight line. This indicates that most of the variation in overhead expenses is explained by labor hours. As a consequence, there probably wouldn't be much benefit to investigating other possible cost drivers for the overhead expenses.
Third, most of the overhead expense appears to be fixed. Maria should ask herself if this is reasonable. Does the company have large fixed expenses such as rent, depreciation, and salaries?

CASE 2A-12 (continued)
The cost formula, in the form $Y=a+b X$, using labor-hours as the activity base is $\$ 48,126$ per month plus $\$ 3.95$ per labor-hour, or:

$$
Y=\$ 48,126+\$ 3.95 X
$$

Note that the R^{2} is approximately 0.96 , which means that 96% of the variation in cost is explained by labor-hours. This is a very high R^{2} which indicates a very good fit.
3. Using the least-squares regression estimate of the variable overhead cost, the total variable cost per guest is computed as follows:

Food and beverages
Labor (0.5 hour @ $\$ 10$ per hour)
Overhead (0.5 hour @ $\$ 3.95$ per hour)..
Total variable cost per guest
$\$ 15.00$
5.00
1.98
$\$ 21.98$

The total contribution from 180 guests paying $\$ 31$ each is computed as follows:

Sales (180 guests @ $\$ 31.00$ per guest)...............	$\$ 5,580.00$
Variable cost (180 guests @ $\$ 21.98$ per guest)...	$\underline{3,956.40}$
Contribution to profit	$\$ 1,623.60$

Fixed costs are not included in the above computation because there is no indication that any additional fixed costs would be incurred as a consequence of catering the cocktail party. If additional fixed costs were incurred, they should also be subtracted from revenue.
4. Assuming that no additional fixed costs are incurred as a result of catering the charity event, any price greater than the variable cost per guest of roughly $\$ 22$ would contribute to profits.

CASE 2A-12 (continued)
5. We would favor bidding slightly less than $\$ 30$ to get the contract. Any bid above $\$ 22$ would contribute to profits and a bid at the normal price of $\$ 31$ is unlikely to land the contract. And apart from the contribution to profit, catering the event would show off the company's capabilities to potential clients. The danger is that a price that is lower than the normal bid of $\$ 31$ might set a precedent for the future or it might initiate a price war among caterers. However, the price need not be publicized and the lower price could be justified to future clients because this is a charity event. Another possibility would be for Maria to maintain her normal price but throw in additional services at no cost to the customer. Whether to compete on price or service is a delicate issue that Maria will have to decide after getting to know the personality and preferences of the customer.

