Student name:

\qquad

TRUE/FALSE - Write ' T ' if the statement is true and ' F ' if the statement is false.

1) A cost driver is a factor, such as machine-hours, beds occupied, computer time, or flighthours, that causes direct costs.
($)$ true
© false
2) Job-order costing systems often use allocation bases that do not reflect how jobs actually use overhead resources.
($)$ true
© false
3) An employee time ticket is an hour-by-hour summary of the employee's activities throughout the day.
() true
© false
4) The formula for computing the predetermined overhead rate is:Predetermined overhead rate $=$ Estimated total amount of the allocation base \div Estimated total manufacturing overhead cost
() true
© false
5) Generally speaking, when going through the process of computing a predetermined overhead rate, the estimated total manufacturing overhead cost is determined before estimating the amount of the allocation base.
© true
© false
6) If a job is not completed at year end, then no manufacturing overhead cost would be applied to that job when a predetermined overhead rate is used.
© true
© false
7) Actual overhead costs are not assigned to jobs in a job costing system.
© true
© false
8) The amount of overhead applied to a particular job equals the actual amount of overhead caused by the job.
© true
© false
9) If the overhead rate is computed annually based on the actual costs and activity for the year, the manufacturing overhead assigned to any particular job can be computed as soon as the job is completed.
© true
© false
10) Job cost sheets contain entries for actual direct material, actual direct labor, and actual manufacturing overhead cost incurred in completing a job.
© true
© false
11) In a job-order cost system, indirect labor is assigned to a job using information from the employee time ticket.
© true
© false
12) If the allocation base in the predetermined overhead rate does not drive overhead costs, it will nevertheless provide reasonably accurate unit product costs because of the averaging process.
```
(0) true
`) false
```

13) A job cost sheet is used to record how much a customer pays for the job once the job is completed.
© true
© false
14) In a job-order costing system, costs are traced to individual units of product. The sum total of such traced costs is called the unit product cost.
© true
© false
15) The fact that one department may be labor intensive while another department is machine intensive explains in part why multiple predetermined overhead rates are often used in larger companies.
© true
© false
16) A company will improve job cost accuracy by using multiple overhead rates even if it cannot identify more than one overhead cost driver.
© true
© false
17) The appeal of using multiple departmental overhead rates is that they presumably provide a more accurate accounting of the costs caused by jobs.
($)$ true
© false
18) The costs attached to products that have not been sold are included in ending inventory on the balance sheet.
© true
© false
19) In absorption costing, nonmanufacturing costs are assigned to units of product.
© true
© false
20) An employee time ticket is used to record points that are earned by employees based on the hours they worked that can be used to pay for coffee, food in the cafeteria, and even in some cases for vacation travel.
() true
© false
21) A bill of materials is a document that lists the type and quantity of each type of direct material needed to complete a unit of product.
© true
© false
22) Most countries require some form of absorption costing for external reports.
© true
© false
23) When the fixed costs of capacity are spread over the estimated activity of the period rather than the level of activity at capacity, the units that are produced must shoulder the costs of unused capacity.
() true
© false
24) When the predetermined overhead rate is based on the level of activity at capacity, an item called the Cost of Unused Capacity may appear to be treated as a period expense on income statements prepared for internal management use.
() true
© false
25) If the predetermined overhead rate is based on the estimated level of activity for the current period, then products will be charged only for the capacity that they use and will not be charged for the capacity they don't use.
() true
© false

MULTIPLE CHOICE - Choose the one alternative that best completes the statement or answers the question.

26) In a job-order costing system that is based on machine-hours, which of the following formulas is correct?
A) Predetermined overhead rate $=$ Actual manufacturing overhead \div Actual machinehours
B) Predetermined overhead rate $=$ Actual manufacturing overhead \div Estimated machine-hours
C) Predetermined overhead rate $=$ Estimated manufacturing overhead \div Estimated machine-hours
D) Predetermined overhead rate $=$ Estimated manufacturing overhead \div Actual machine-hours
27) Which of the following is the correct formula to compute the predetermined overhead rate?
A) Predetermined overhead rate $=$ Estimated total units in the allocation base \div Estimated total manufacturing overhead costs
B) Predetermined overhead rate $=$ Estimated total manufacturing overhead costs \div Estimated total units in the allocation base
C) Predetermined overhead rate $=$ Actual total manufacturing overhead costs \div Estimated total units in the allocation base
D) Predetermined overhead rate $=$ Estimated total manufacturing overhead costs \div Actual total units in the allocation base.
28) Assigning manufacturing overhead to a specific job is complicated by all of the below except:
A) Manufacturing overhead is an indirect cost that is either impossible or difficult to trace to a particular job.
B) Manufacturing overhead is incurred only to support some jobs.
C) Manufacturing overhead consists of both variable and fixed costs.
D) The average cost of actual fixed manufacturing overhead expenses will vary depending on how many units are produced in a period.
29) Which of the following statements about using a plantwide overhead rate based on direct labor is correct?
A) Using a plantwide overhead rate based on direct labor-hours will ensure that direct labor costs are correctly traced to jobs.
B) Using a plantwide overhead rate based on direct labor costs will ensure that direct labor costs will be correctly traced to jobs.
C) It is often overly simplistic and incorrect to assume that direct labor-hours is a company's only manufacturing overhead cost driver.
D) The labor theory of value ensures that using a plantwide overhead rate based on direct labor will do a reasonably good job of assigning overhead costs to jobs.
30) Which of the following would usually be found on a job cost sheet under a normal cost system?
\(\left.\begin{array}{lcc} \& Actual direct material \& Actual manufacturing

overhead cost\end{array}\right]\) Yes | A) | cost |
| :--- | :---: |
| B) | Yes |
| C) | Yes |
| D) | No |
| Do | Yes |
| | No |

A) Choice A
B) Choice B
C) Choice C
D) Choice D
31) Which of the following statements is not correct concerning multiple overhead rate systems?
A) A multiple overhead rate system is more complex than a system based on a single plantwide overhead rate.
B) A multiple overhead rate system is usually more accurate than a system based on a single plantwide overhead rate.
C) A company may choose to create a separate overhead rate for each of its production departments.
D) In departments that are relatively labor-intensive, their overhead costs should be applied to jobs based on machine-hours rather than on direct labor-hours.
32) Johansen Corporation uses a predetermined overhead rate based on direct labor-hours to apply manufacturing overhead to jobs. The Corporation has provided the following estimated costs for the next year:

```
Direct materials $ 6,000
Direct labor $ 20,000
Rent on factory building $ 15,000
Sales salaries $ 25,000
Depreciation on factory equipment $ 8,000
Indirect labor $ 12,000
Production supervisor's salary
$ 15,000
```

Jameson estimates that 20,000 direct labor-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 2.50$ per direct labor-hour
B) $\$ 2.79$ per direct labor-hour
C) $\$ 3.00$ per direct labor-hour
D) $\$ 4.00$ per direct labor-hour
33) The Silver Corporation uses a predetermined overhead rate to apply manufacturing overhead to jobs. The predetermined overhead rate is based on labor cost in Department A and on machine-hours in Department B. At the beginning of the year, the Corporation made the following estimates:

	Department A	Department B
Direct labor cost	$\$ 60,000$	$\$ 40,000$
Manufacturing overhead	$\$ 90,000$	$\$ 45,000$
Direct labor-hours	6,000	9,000
Machine-hours	2,000	15,000

What predetermined overhead rates would be used in Department A and Department B, respectively?
A) 67% and $\$ 3.00$
B) 150% and $\$ 5.00$
C) 150% and $\$ 3.00$
D) 67% and $\$ 5.00$
34) Purves Corporation is using a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 121,000$ and 10,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$113,000 and 10,900 total direct labor-hours during the period. The predetermined overhead rate is closest to:
A) $\$ 10.37$
B) $\$ 12.10$
C) $\$ 11.10$
D) $\$ 11.30$
35) Reamer Corporation uses a predetermined overhead rate based on machine-hours to apply manufacturing overhead to jobs. The Corporation has provided the following estimated costs for next year:

```
Direct materials $ 1,000
Direct labor $ 3,000
Sales commissions $ 4,000
Salary of production supervisor $ 2,000
Indirect materials $ 400
Advertising expense $ 800
Rent on factory equipment $ 1,000
```

Reamer estimates that 500 direct labor-hours and 1,000 machine-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 6.80$ per machine-hour
B) $\$ 6.00$ per machine-hour
C) $\$ 3.00$ per machine-hour
D) $\$ 3.40$ per machine-hour
36) Baj Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company considers all of its manufacturing overhead costs to be fixed and it has provided the following data for the most recent year.

```
    Estimated total fixed manufacturing overhead from the
beginning of the year
Estimated activity level from the beginning of the year
Actual total fixed manufacturing overhead
Actual activity level
```

```
$ 534,000
```

\$ 534,000
30,000 machine-r
30,000 machine-r
\$ 487,000
\$ 487,000
27,400 machine-1

```
    27,400 machine-1
```

The predetermined overhead rate per machine-hour would be closest to:
A) $\$ 17.80$
B) $\$ 19.49$
C) $\$ 16.23$
D) $\$ 17.77$
37) Giannitti Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:

```
Estimated machine-hours 72,900
Estimated variable manufacturing overhead $3.30 per mach
Estimated total fixed manufacturing overhead $838,720
```

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 8.69$ per machine-hour
B) $\$ 9.90$ per machine-hour
C) $\$ 6.75$ per machine-hour
D) $\$ 14.81$ per machine-hour
38) Giannitti Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:

```
Estimated machine-hours 36,000
Estimated variable manufacturing overhead $3.01 per mach
Estimated total fixed manufacturing overhead
$1,058,040
```

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 29.39$ per machine-hour
B) $\$ 32.40$ per machine-hour
C) $\$ 32.81$ per machine-hour
D) $\$ 3.01$ per machine-hour
39) Gilchrist Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the machine-hours for the upcoming year at 37,200 machine-hours. The estimated variable manufacturing overhead was $\$ 5.94$ per machine-hour and the estimated total fixed manufacturing overhead was $\$ 1,028,580$. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 33.59$ per machine-hour
B) $\$ 32.59$ per machine-hour
C) $\$ 5.94$ per machine-hour
D) $\$ 27.65$ per machine-hour
40) Gilchrist Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the machine-hours for the upcoming year at 79,000 machine-hours. The estimated variable manufacturing overhead was $\$ 7.38$ per machine-hour and the estimated total fixed manufacturing overhead was $\$ 2,347,090$. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 37.09$ per machine-hour
B) $\$ 36.07$ per machine-hour
C) $\$ 7.38$ per machine-hour
D) $\$ 29.71$ per machine-hour
41) Dearden Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 144,000$, variable manufacturing overhead of $\$ 2.00$ per machine-hour, and 60,000 machine-hours. The predetermined overhead rate is closest to:
A) $\$ 2.40$ per machine-hour
B) $\$ 6.40$ per machine-hour
C) $\$ 4.40$ per machine-hour
D) $\$ 2.00$ per machine-hour
42) Longobardi Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the labor-hours for the upcoming year at 35,700 labor-hours. The estimated variable manufacturing overhead was $\$ 5.93$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 805,392$. The actual labor-hours for the year turned out to be 33,200 labor-hours. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 28.49$ per labor-hour
B) $\$ 22.56$ per labor-hour
C) $\$ 5.93$ per labor-hour
D) $\$ 30.64$ per labor-hour
43) Longobardi Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the labor-hours for the upcoming year at 46,000 labor-hours. The estimated variable manufacturing overhead was $\$ 6.25$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 1,026,260$. The actual labor-hours for the year turned out to be 41,200 labor-hours. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 28.56$ per labor-hour
B) $\$ 22.31$ per labor-hour
C) $\$ 6.25$ per labor-hour
D) $\$ 31.16$ per labor-hour
44) Valvano Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 440,000$, variable manufacturing overhead of $\$ 2.20$ per machine-hour, and 50,000 machine-hours. The estimated total manufacturing overhead is closest to:
A) $\$ 440,000$
B) $\$ 110,000$
C) $\$ 440,002$
D) $\$ 550,000$
45) Brothern Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the most recently completed year appear below:

```
Estimates made at the beginning of the
year:
    Estimated machine-hours 34,200
    Estimated variable manufacturing $5.47 per machine-hour
    overhead
    Estimated total fixed manufacturing $769,842
    overhead
Actual machine-hours for the year 30,600
```

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 27.40$ per machine-hour
B) $\$ 27.98$ per machine-hour
C) $\$ 5.47$ per machine-hour
D) $\$ 22.51$ per machine-hour
46) Brothern Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the most recently completed year appear below:

```
Estimates made at the beginning of the
year:
```

Estimated machine-hours
Estimated variable manufacturing overhead

Estimated total fixed manufacturing overhead
Actual machine-hours for the year

39,000
$\$ 6.76$ per machine-hour
$\$ 794,430$

42,700

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 25.37$ per machine-hour
B) $\$ 27.13$ per machine-hour
C) $\$ 6.76$ per machine-hour
D) $\$ 20.37$ per machine-hour
47) Steele Corporation uses a predetermined overhead rate based on machine-hours to apply manufacturing overhead to jobs. Steele Corporation has provided the following estimated costs for next year:

Direct materials	$\$ 20,000$
Direct labor	$\$ 60,000$
Sales commissions	$\$ 80,000$
Salary of production supervisor	$\$ 40,000$
Indirect materials	$\$ 8,000$
Advertising expense	$\$ 16,000$
Rent on factory equipment	$\$ 20,000$

Steele estimates that 10,000 direct labor-hours and 16,000 machine-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 4.25$
B) $\$ 8.00$
C) $\$ 9.00$
D) $\$ 10.25$
48) Helland Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
30,000
Total fixed manufacturing overhead cost \$189,000
Variable manufacturing overhead per direct labor-hour \$2.50
The predetermined overhead rate is closest to:
A) $\$ 2.50$ per direct labor-hour
B) $\$ 11.30$ per direct labor-hour
C) $\$ 6.30$ per direct labor-hour
D) $\$ 8.80$ per direct labor-hour
49) Laflame Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    70,000
Total fixed manufacturing overhead cost $357,000
Variable manufacturing overhead per machine-hour $3.90
```

The estimated total manufacturing overhead is closest to:
A) $\$ 273,000$
B) $\$ 630,000$
C) $\$ 357,004$
D) $\$ 357,000$
50) Almaraz Corporation has two manufacturing departments--Forming and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Finishing	Total
Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 40,600$	$\$ 8,100$	$\$ 48,700$
overhead cost			
Estimated variable manufacturing	$\$ 1.30$	$\$ 2.80$	
overhead cost per machine-hour			

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) $\$ 6.62$
B) $\$ 4.87$
C) $\$ 4.10$
D) $\$ 7.10$
51) Bernson Corporation is using a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 492,000$ and 30,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of \$517,000 and 28,300 total machine-hours during the period. The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 464,120$
B) $\$ 492,000$
C) $\$ 487,703$
D) $\$ 25,000$
52) Beat Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    40,000
Total fixed manufacturing overhead cost $344,000
Variable manufacturing overhead per machine-hour
$ 3.90
```

Recently, Job M759 was completed. It required 60 machine-hours. The amount of overhead applied to Job M759 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 750$
B) $\$ 516$
C) $\$ 984$
D) $\$ 234$
53) Mundorf Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Assembly	Total
Estimated total machine-hours (MHs)	9,000	1,000	10,000
Estimated total fixed manufacturing	$\$ 52,200$	$\$ 2,400$	$\$ 54,600$
overhead cost			
Estimated variable manufacturing	$\$ 2.00$	$\$ 2.10$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job H. There were no beginning inventories. Data concerning those two jobs follow:
Job B Job H

Forming machine-hours 6,100 2,900
Assembly machine-hours 40060
Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job B is closest to:
A) $\$ 48,555$
B) $\$ 35,490$
C) $\$ 2,988$
D) $\$ 45,567$
54) Parido Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Assembly	Total
Estimated total machine-hours (MHs)	8,000	2,000	10,000
Estimated total fixed manufacturing	$\$ 44,000$	$\$ 4,200$	$\$ 48,200$
overhead cost			
Estimated variable manufacturing	$\$ 1.90$	$\$ 3.00$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Casting machine-hours	5,400	2,600
Assembly machine-hours	800	1,200

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 8,328$
B) $\$ 26,372$
C) $\$ 18,316$
D) $\$ 18,044$
55) Juanita Corporation uses a job-order costing system and applies overhead on the basis of direct labor cost. At the end of October, Juanita had one job still in process. The job cost sheet for this job contained the following information:

Direct materials \$480
Direct labor \$150
Manufacturing overhead applied \$600
An additional $\$ 100$ of labor was needed in November to complete this job. For this job, how much should Juanita have transferred to finished goods inventory in November when it was completed?
A) $\$ 1,330$
B) $\$ 500$
C) $\$ 1,230$
D) $\$ 1,730$
56) Carradine Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 105,000$, variable manufacturing overhead of $\$ 3.00$ per machine-hour, and 70,000 machine-hours. The company recently completed Job P233 which required 60 machine-hours. The amount of overhead applied to Job P233 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 90$
B) $\$ 270$
C) $\$ 450$
D) $\$ 180$
57) Fusaro Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.

```
    Estimated total fixed manufacturing overhead from
the beginning of the year
Estimated activity level from the beginning of the 40,000 machine-r
year
Actual total fixed manufacturing overhead $616,000
Actual activity level
    37,700 machine-ł
```

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 644,670$
B) $\$ 684,000$
C) $\$ 68,000$
D) $\$ 580,580$
58) Koelsch Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Molding	Customizing	Total
Estimated total machine-hours (MHs)	1,000	9,000	10,000
Estimated total fixed manufacturing	$\$ 4,000$	$\$ 25,200$	$\$ 29,200$
overhead cost			
Estimated variable manufacturing overhead cost per machine-hour	$\$ 2.00$	$\$ 3.00$	

During the most recent month, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:

	Job \mathbf{F}	Job K
Direct materials	$\$ 12,300$	$\$ 8,400$
Direct labor cost	$\$ 18,200$	$\$ 6,800$
Molding machine-hours	700	300
Customizing machine-hours	3,600	5,400

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job K is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 72,561$
B) $\$ 79,817$
C) $\$ 24,187$
D) $\$ 48,374$
59) Thach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 665,000$, variable manufacturing overhead of $\$ 3.00$ per machine-hour, and 70,000 machine-hours. Recently, Job T321 was completed with the following characteristics:

```
Number of units in the job 30
```

Total machine-hours 90
Direct materials \$ 630
Direct labor cost $\$ 2,880$

The unit product cost for Job T321 is closest to:
A) $\$ 117.00$
B) $\$ 58.50$
C) $\$ 154.50$
D) $\$ 51.50$
60) Tancredi Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

Estimated total machine-hours (MHs)	5,000	5,000	10,000
Estimated total fixed manufacturing	$\$ 22,000$	$\$ 11,500$	$\$ 33,500$
overhead cost			
Estimated variable manufacturing	$\$ 1.80$	$\$ 3.00$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job E and Job J. There were no beginning inventories. Data concerning those two jobs follow:

Job E Job J
Direct materials
Direct labor cost
Machining machine-hours
Customizing machine-hours

$$
\begin{array}{rr}
\$ 12,800 & \$ 7,000 \\
\$ 17,600 & \$ 7,700 \\
3,400 & 1,600 \\
2,000 & 3,000
\end{array}
$$

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. If both jobs are sold during the month, the company's cost of goods sold for the month would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 102,600$
B) $\$ 61,450$
C) $\$ 41,150$
D) $\$ 110,808$
61) Session Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
70,000
Total fixed manufacturing overhead cost
\$511, 000
Variable manufacturing overhead per direct labor-hour

Recently, Job K913 was completed with the following characteristics:

```
Total direct labor-hours 150
Direct materials $ 705
Direct labor cost $4,650
```

The total job cost for Job K913 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 6,060$
B) $\$ 2,115$
C) $\$ 6,765$
D) $\$ 5,355$
62) Pebbles Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Finishing	Total
Estimated total machine-hours (MHs)	2,000	3,000	5,000
Estimated total fixed manufacturing	$\$ 9,800$	$\$ 6,300$	$\$ 16,100$
overhead cost			
Estimated variable manufacturing	$\$ 2.00$	$\$ 2.40$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job A and Job L. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job L

Direct materials	$\$ 15,400$	$\$ 9,600$
Direct labor cost	$\$ 24,900$	$\$ 6,200$
Casting machine-hours	1,400	600
Finishing machine-hours	1,200	1,800

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job L is closest to: (Round your

intermediate calculations to 2 decimal places.)

A) $\$ 9,600$
B) $\$ 6,200$
C) $\$ 28,904$
D) $\$ 13,104$
63) Stockmaster Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Assembly	Total
Estimated total machine-hours (MHs)	5,000	5,000	10,000
Estimated total fixed manufacturing	$\$ 27,000$	$\$ 10,500$	$\$ 37,500$
overhead cost			
Estimated variable manufacturing	$\$ 1.10$	$\$ 2.80$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job C and Job H. There were no beginning inventories. Data concerning those two jobs follow:

$$
\begin{array}{ll}
\text { Job C } & \text { Job H } \\
\$ 11,200 & \$ 7,500
\end{array}
$$

Direct materials
Direct labor cost $\$ 21,000$ \$7,800
Forming machine-hours $\quad 3,400$ 1,600
Assembly machine-hours 2,000 3,000

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 40% on manufacturing cost to establish selling prices. The calculated selling price for Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 96,989$
B) $\$ 88,172$
C) $\$ 25,192$
D) $\$ 62,980$
64) Atteberry Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Finishing	Total
Estimated total machine-hours (MHs)	6,000	4,000	10,000
Estimated total fixed manufacturing	$\$ 30,000$	$\$ 11,200$	$\$ 41,200$
overhead cost			
Estimated variable manufacturing	$\$ 2.00$	$\$ 2.40$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job E and Job L. There were no beginning inventories. Data concerning those two jobs follow:

```
Direct materials $13,400 $9,100
Direct labor cost $24,500 $7,000
Machining machine-hours 4,100 1,900
Finishing machine-hours 1,600 2,400
```

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job E is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 24,500$
B) $\$ 35,796$
C) $\$ 13,400$
D) $\$ 73,696$
65) Coates Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 249,000$, variable manufacturing overhead of $\$ 3.80$ per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job X784 which was recently completed:

```
Number of units in the job 50
Total machine-hours 250
Direct materials
    $ 470
Direct labor cost $5,500
```

If the company marks up its unit product costs by 30% then the selling price for a unit in Job X784 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 253.87$
B) $\$ 233.87$
C) $\$ 53.97$
D) $\$ 155.22$
66) Sutter Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
```

Total fixed manufacturing overhead cost \$35,000
Variable manufacturing overhead per machine-hour
\$ 2.20

```
Recently, Job T369 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 40
Direct materials \$750
Direct labor cost \$1,560
```

If the company marks up its unit product costs by 20% then the selling price for a unit in Job T369 is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 324.56$
B) $\$ 304.56$
C) $\$ 277.20$
D) $\$ 50.76$
67) Doakes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
Recently, Job M843 was completed with the following characteristics:
Number of units in the job 60
Total direct labor-hours 120
Direct materials \$630
Direct labor cost \$2,400
```

 60,000
 \$378,000
\$ 2.20

The unit product cost for Job M843 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 33.75$
B) $\$ 67.50$
C) $\$ 27.50$
D) $\$ 50.50$
68) Placker Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 155,000$, variable manufacturing overhead of $\$ 3.40$ per machine-hour, and 50,000 machine-hours. Recently, Job A881 was completed with the following characteristics:

```
Total machine-hours 100
Direct materials $ 645
Direct labor cost $2,300
```

The total job cost for Job A881 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 3,595$
B) $\$ 2,945$
C) $\$ 2,950$
D) $\$ 1,295$
69) Tomey Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

Machine-hours	18,000	14,000
Direct labor-hours	2,000	8,000
Total fixed manufacturing overhead cost	$\$ 99,000$	$\$ 70,400$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		$\$ 3.70$
Variable manufacturing overhead per direct		

During the current month the company started and finished Job T617. The following data were recorded for this job:

Job T617:	Forming	Finishing
Machine-hours	90	20
Direct labor-hours	30	60

```
Direct materials $940 $ 350
Direct labor cost $960 $1,920
```

The total job cost for Job T617 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 5,604$
B) $\$ 2,584$
C) $\$ 684$
D) $\$ 3,020$
70) Molash Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Assembly	Total
Estimated total machine-hours (MHs)	2,000	3,000	5,000
Estimated total fixed manufacturing	$\$ 9,400$	$\$ 8,100$	$\$ 17,500$
overhead cost			
Estimated variable manufacturing	$\$ 1.80$	$\$ 2.40$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job L.
There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job L
$\$ 14,400$	$\$ 7,100$
$\$ 23,500$	$\$ 6,700$
1,400	600
1,200	1,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job L is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 40,320$
B) $\$ 41,933$
C) $\$ 13,440$
D) $\$ 26,880$
71) Columbo Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Forming	Finishing
Machine-hours	17,000	10,000
Direct labor-hours	1,000	9,000
Total fixed manufacturing overhead cost	$\$ 110,500$	$\$ 78,300$
Variable manufacturing overhead per machine-	$\$ 1.60$	
hour		$\$ 3.30$
Variable manufacturing overhead per direct		
labor-hour		

During the current month the company started and finished Job A948. The following data were recorded for this job:

Job A948:	Forming	Finishing
Machine-hours	70	30
Direct labor-hours	10	50
Direct materials	$\$ 650$	$\$ 330$
Direct labor cost	$\$ 380$	$\$ 1,900$

If the company marks up its manufacturing costs by 40% then the selling price for Job A948 would be closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 6,197.80$
B) $\$ 1,770.80$
C) $\$ 4,427.00$
D) $\$ 6,818.00$
72) Lotz Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Finishing	Total
Estimated total machine-hours (MHs)	2,000	8,000	10,000
Estimated total fixed manufacturing	$\$ 10,200$	$\$ 19,200$	$\$ 29,400$
overhead cost			
Estimated variable manufacturing	$\$ 1.20$	$\$ 2.20$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:

	Job F	Job K
Direct materials	$\$ 14,400$	$\$ 7,100$
Direct labor cost	$\$ 22,500$	$\$ 6,600$
Casting machine-hours	1,400	600
Finishing machine-hours	3,200	4,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job F is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 30,220$
B) $\$ 90,660$
C) $\$ 60,440$
D) $\$ 96,100$
73) Ashe Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Customizing	Total
Estimated total machine-hours (MHs)	1,000	4,000	5,000
Estimated total fixed manufacturing	$\$ 4,700$	$\$ 9,200$	$\$ 13,900$
overhead cost			
Estimated variable manufacturing	$\$ 1.10$	$\$ 2.60$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job K
700	300
1,600	2,400

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job K is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 11,760$
B) $\$ 1,740$
C) $\$ 13,716$
D) $\$ 13,500$
74) Boward Corporation has two production departments, Milling and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Assembly
Machine-hours	18,000	12,000
Direct labor-hours	2,000	7,000
Total fixed manufacturing overhead cost	$\$ 120,600$	$\$ 76,300$
Variable manufacturing overhead per machine-	$\$ 2.00$	
hour		$\$.30$
Variable manufacturing overhead per direct		$\$$
labor-hour		

During the current month the company started and finished Job T818. The following data were recorded for this job:

```
Job T818: Milling Assembly
Machine-hours 50
    50 - 30
Direct labor-hours
10
    4 0
```

The total amount of overhead applied in both departments to Job T818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 1,651$
B) $\$ 608$
C) $\$ 435$
D) $\$ 1,043$
75) Malakan Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Machining	Finishing
Machine-hours	18,000	11,000
Direct labor-hours	2,000	9,000
Total fixed manufacturing overhead cost	$\$ 102,600$	$\$ 96,300$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		
Variable manufacturing overhead per direct		3.90
labor-hour		

During the current month the company started and finished Job K368. The following data were recorded for this job:

Job K368:	Machining	Finishing
Machine-hours	80	30
Direct labor-hours	20	40

The amount of overhead applied in the Machining Department to Job K368 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 856.00$
B) $\$ 168.00$
C) $\$ 624.00$
D) $\$ 140,400.00$
76) Mahon Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Customizing
Machine-hours	19,200	17,200
Direct labor-hours	7,600	8,600
Total fixed manufacturing overhead cost	$\$ 117,120$	$\$ 86,000$
Variable manufacturing overhead per	$\$ 1.80$	
machine-hour		
Variable manufacturing overhead per direct		3.60
labor-hour		

During the current month the company started and finished Job T138. The following data were recorded for this job:

Job T138:	Casting	Customizing
Machine-hours	70	40
Direct labor-hours	14	60

The amount of overhead applied in the Customizing Department to Job T138 is closest to:
(Round your intermediate calculations to 2 decimal places.)
A) $\$ 688.00$
B) $\$ 116,960.00$
C) $\$ 816.00$
D) $\$ 344.00$
77) Mahon Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

Machine-hours	Casting	Customizing
M	18,000	14,000

```
Direct labor-hours 2,000 7,000
Total fixed manufacturing overhead cost $124,200 $68,600
Variable manufacturing overhead per machine- $ 1.90
hour
Variable manufacturing overhead per direct $ 3.80
labor-hour
```

During the current month the company started and finished Job T138. The following data were recorded for this job:

Job T138:	Casting	Customizing
Machine-hours	70	30
Direct labor-hours	10	60

The amount of overhead applied in the Customizing Department to Job T138 is closest to:
(Round your intermediate calculations to 2 decimal places.)
A) $\$ 588.00$
B) $\$ 95,200.00$
C) $\$ 816.00$
D) $\$ 228.00$
78) Marioni Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Assembly	Total
Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 37,100$	$\$ 9,000$	$\$ 46,100$
overhead cost			
Estimated variable manufacturing	$\$ 1.70$	$\$ 2.60$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job H. There were no beginning inventories. Data concerning those two jobs follow:
Job B Job H

Forming machine-hours	4,800	2,200
Assembly machine-hours	1,200	1,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 6,720$
B) $\$ 33,600$
C) $\$ 40,320$
D) $\$ 39,480$
79) Bassett Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Customizing
Machine-hours	16,000	12,000
Direct labor-hours	2,000	8,000
Total fixed manufacturing overhead cost	$\$ 118,400$	$\$ 87,200$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		
Variable manufacturing overhead per direct		3.30
labor-hour		

The predetermined overhead rate for the Milling Department is closest to:
A) $\$ 19.00$ per machine-hour
B) $\$ 2.10$ per machine-hour
C) $\$ 9.50$ per machine-hour
D) $\$ 7.40$ per machine-hour
80) Fatzinger Corporation has two production departments, Milling and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Assembly
Machine-hours	20,000	14,000
Direct labor-hours	2,000	7,000
Total fixed manufacturing overhead cost	$\$ 132,000$	$\$ 57,400$
Variable manufacturing overhead per machine-	$\$ 2.30$	
hour		$\$ 3.40$
Variable manufacturing overhead per direct		

The predetermined overhead rate for the Assembly Department is closest to:
A) $\$ 8.20$ per direct labor-hour
B) $\$ 3.40$ per direct labor-hour
C) $\$ 4.06$ per direct labor-hour
D) $\$ 11.60$ per direct labor-hour
81) Swango Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Customizing
Machine-hours	19,000	11,000
Direct labor-hours	1,000	8,000
Total fixed manufacturing overhead cost	$\$ 138,700$	$\$ 86,400$
Variable manufacturing overhead per machine-	$\$ 1.60$	
hour		
Variable manufacturing overhead per direct		3.00
labor-hour		

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) $\$ 24,000$
B) $\$ 110,400$
C) $\$ 86,400$
D) $\$ 60,379$
82) Tarrant Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Finishing	Total
Estimated total machine-hours (MHs)	1,000	4,000	5,000
Estimated total fixed manufacturing	$\$ 5,700$	$\$ 11,200$	$\$ 16,900$
overhead cost			
Estimated variable manufacturing overhead cost per machine-hour	$\$ 1.30$	$\$ 2.90$	

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Casting Department is closest to:
A) $\$ 5.70$
B) $\$ 1.30$
C) $\$ 5.96$
D) $\$ 7.00$
83) Prayer Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Machining	Customizing
Machine-hours	19,000	13,000
Direct labor-hours	1,000	8,000
Total fixed manufacturing overhead cost	$\$ 110,200$	$\$ 68,800$

```
Variable manufacturing overhead per machine- $ 2.00
hour
Variable manufacturing overhead per direct $ 3.60
labor-hour
```

The estimated total manufacturing overhead for the Machining Department is closest to:
A) $\$ 148,200$
B) $\$ 110,200$
C) $\$ 38,000$
D) $\$ 299,725$
84) Camm Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Assembly	Total
Estimated total machine-hours (MHs)	3,000	2,000	5,000
Estimated total fixed manufacturing	$\$ 12,600$	$\$ 4,600$	$\$ 17,200$
overhead cost			
Estimated variable manufacturing overhead	$\$ 1.70$	$\$ 2.50$	
cost per machine-hour			

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) $\$ 2.50$
B) $\$ 2.30$
C) $\$ 4.80$
D) $\$ 5.46$
85) Huang Aerospace Corporation manufactures aviation control panels in two departments, Fabrication and Assembly. In the Fabrication department, Huang uses a predetermined overhead rate of $\$ 30$ per machine-hour. In the Assembly department, Huang uses a predetermined overhead rate of $\$ 12$ per direct labor-hour. During the current year, Job \#X2984 incurred the following number of hours in each department:

What is the total amount of manufacturing overhead that Huang should have applied to Job \#X2984 during the current year?
A) $\$ 1,200$
B) $\$ 1,500$
C) $\$ 1,560$
D) $\$ 1,734$
86) Sargent Corporation applies overhead cost to jobs on the basis of 90% of direct labor cost. If Job 210 shows $\$ 18,810$ of manufacturing overhead cost applied, how much was the direct labor cost on the job?
A) $\$ 20,900$
B) $\$ 35,739$
C) $\$ 16,929$
D) $\$ 18,810$
87) Sargent Corporation applies overhead cost to jobs on the basis of 80% of direct labor cost. If Job 210 shows $\$ 10,000$ of manufacturing overhead cost applied, how much was the direct labor cost on the job?
A) $\$ 12,500$
B) $\$ 11,000$
C) $\$ 8,000$
D) $\$ 10,000$
88) Kreuzer Corporation is using a predetermined overhead rate of $\$ 22.30$ per machine-hour that was based on estimated total fixed manufacturing overhead of \$446,000 and 20,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of $\$ 409,000$ and 18,200 total machine-hours during the period. The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to:
A) $\$ 446,000$
B) $\$ 37,000$
C) $\$ 372,190$
D) $\$ 405,860$
89) Kavin Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.

```
Predetermined overhead rate
    Estimated total fixed manufacturing
    overhead from the beginning of the
    year
Estimated activity level from the 30,000 machine-hours
beginning of the year
Actual total fixed manufacturing $752,000
overhead
Actual activity level 28,100 machine-hours
```

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to:
A) $\$ 663,160$
B) $\$ 708,000$
C) $\$ 44,000$
D) $\$ 704,373$
90) Job 910 was recently completed. The following data have been recorded on its job cost sheet:

```
Direct labor-hours
Direct labor wage rate
Machine-hours
```

\$ 22 per labor-hour
139 machine-hours

The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 23$ per machine-hour. The total cost that would be recorded on the job cost sheet for Job 910 would be:
A) $\$ 3,971$
B) $\$ 8,008$
C) $\$ 4,492$
D) $\$ 7,168$
91) Job 910 was recently completed. The following data have been recorded on its job cost sheet:

Direct materials

Direct labor-hours
Direct labor wage rate
Machine-hours
\$3, 193
21 labor-hours
\$ 12 per labor-hour
166 machine-hours

The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 15$ per machine-hour. The total cost that would be recorded on the job cost sheet for Job 910 would be:
A) $\$ 3,220$
B) $\$ 3,760$
C) $\$ 5,935$
D) $\$ 3,445$
92) Grib Corporation uses a predetermined overhead rate based on direct labor cost to apply manufacturing overhead to jobs. The predetermined overhead rates for the year are 200% of direct labor cost for Department A and 50\% of direct labor cost for Department B. Job 436, started and completed during the year, was charged with the following costs:

	Department A	Department B
Direct materials	$\$ 50,000$	$\$ 10,000$
Direct labor	$?$	$\$ 60,000$

The total manufacturing cost assigned to Job 436 was:
A) $\$ 360,000$
B) $\$ 390,000$
C) $\$ 270,000$
D) $\$ 480,000$
93) The following data have been recorded for recently completed Job 450 on its job cost sheet. Direct materials cost was $\$ 2,057$. A total of 37 direct labor-hours and 194 machine-hours were worked on the job. The direct labor wage rate is $\$ 24$ per labor-hour. The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 33$ per machine-hour. The total cost for the job on its job cost sheet would be:
A) $\$ 6,303$
B) $\$ 6,722$
C) $\$ 9,347$
D) $\$ 11,492$
94) The following data have been recorded for recently completed Job 450 on its job cost sheet. Direct materials cost was $\$ 3,044$. A total of 46 direct labor-hours and 104 machine-hours were worked on the job. The direct labor wage rate is $\$ 15$ per labor-hour. The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 13$ per machine-hour. The total cost for the job on its job cost sheet would be:
A) $\$ 4,332$
B) $\$ 3,734$
C) $\$ 3,072$
D) $\$ 5,086$
95) Dejarnette Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    80,000
Total fixed manufacturing overhead cost
$416,000
```

Variable manufacturing overhead per machine-hour
\$ 3.10

The estimated total manufacturing overhead is closest to:
A) $\$ 416,003$
B) $\$ 248,000$
C) $\$ 664,000$
D) $\$ 416,000$
96) Dejarnette Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    80,000
Total fixed manufacturing overhead cost
$416,000
Variable manufacturing overhead per machine-hour
    $ 3.10
```

The predetermined overhead rate is closest to:
A) $\$ 8.30$ per machine-hour
B) $\$ 11.40$ per machine-hour
C) $\$ 5.20$ per machine-hour
D) $\$ 3.10$ per machine-hour
97) Odonnel Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 36,000$, variable manufacturing overhead of $\$ 2.80$ per direct labor-hour, and 10,000 direct laborhours. The estimated total manufacturing overhead is closest to:
A) $\$ 64,000$
B) $\$ 36,000$
C) $\$ 28,000$
D) $\$ 36,003$
98) Odonnel Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 36,000$, variable manufacturing overhead of $\$ 2.80$ per direct labor-hour, and 10,000 direct laborhours. The predetermined overhead rate is closest to:
A) $\$ 2.80$ per direct labor-hour
B) $\$ 6.40$ per direct labor-hour
C) $\$ 3.60$ per direct labor-hour
D) $\$ 9.20$ per direct labor-hour
99) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Assembly	Total
Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 39,200$	$\$ 6,600$	$\$ 45,800$
overhead cost			
Estimated variable manufacturing	$\$ 1.90$	$\$ 2.10$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:

	Job B	Job G
Direct materials	$\$ 14,800$	$\$ 8,300$
Direct labor cost	$\$ 22,000$	$\$ 8,900$
Machining machine-hours	4,800	2,200
Assembly machine-hours	1,200	1,800

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) $\$ 4.00$
B) $\$ 7.50$
C) $\$ 4.58$
D) $\$ 6.54$
100) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Assembly	Total
Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 39,200$	$\$ 6,600$	$\$ 45,800$
overhead cost			
Estimated variable manufacturing	$\$ 1.90$	$\$ 2.10$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job G
$\$ 14,800$	$\$ 8,300$
$\$ 22,000$	$\$ 8,900$
4,800	2,200
1,200	1,800

Direct materials	$\$ 14,800$	$\$ 8,300$
Direct labor cost	$\$ 22,000$	$\$ 8,900$
Machining machine-hours	4,800	2,200
Assembly machine-hours	1,200	1,800

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 31,392$
B) $\$ 27,480$
C) $\$ 39,240$
D) $\$ 7,848$
101) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

Machining	Assembly	Total
7,000	3,000	10,000
$\$ 39,200$	$\$ 6,600$	$\$ 45,800$
$\$ 1.90$	$\$ 2.10$	

Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 39,200$	$\$ 6,600$	$\$ 45,800$
overhead cost			
Estimated variable manufacturing	$\$ 1.90$	$\$ 2.10$	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job G
$\$ 14,800$	$\$ 8,300$
$\$ 22,000$	$\$ 8,900$
4,800	2,200
1,200	1,800

Direct materials
Direct labor cost
Machining machine-hours
Assembly machine-hours
1,200 1,800

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job G is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 14,388$
B) $\$ 26,160$
C) $\$ 11,772$
D) $\$ 18,320$
102) Housholder Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.

Estimated total fixed manufacturing overhead from \$310,000 the beginning of the year
Estimated activity level from the beginning of the
20,000 machine-1 year

Actual total fixed manufacturing overhead \$338,000
Actual activity level
18,300 machine-1
The predetermined overhead rate is closest to:
A) $\$ 18.47$
B) $\$ 16.94$
C) $\$ 16.90$
D) $\$ 15.50$
103) Housholder Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.

```
    Estimated total fixed manufacturing overhead from $310,000
    the beginning of the year
Estimated activity level from the beginning of the 20,000 machine-1
year
Actual total fixed manufacturing overhead $338,000
Actual activity level
    18,300 machine-ł
```

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 28,000$
B) $\$ 309,270$
C) $\$ 310,000$
D) $\$ 283,650$
104) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 90,000$, variable manufacturing overhead of $\$ 3.70$ per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.

The estimated total manufacturing overhead is closest to:
A) $\$ 90,000$
B) $\$ 275,000$
C) $\$ 185,000$
D) $\$ 90,004$
105) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \$90,000, variable manufacturing overhead of $\$ 3.70$ per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.The predetermined overhead rate is closest to:
A) $\$ 1.80$ per direct labor-hour
B) $\$ 5.50$ per direct labor-hour
C) $\$ 9.20$ per direct labor-hour
D) $\$ 3.70$ per direct labor-hour
106) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 90,000$, variable manufacturing overhead of $\$ 3.70$ per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.The amount of overhead applied to Job M800 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 270$
B) $\$ 1,380$
C) $\$ 825$
D) $\$ 555$
107) Krier Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 738,000$ and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$792,000 and 31,500 total direct labor-hours during the period.The predetermined overhead rate is closest to:
A) $\$ 26.40$
B) $\$ 25.14$
C) $\$ 23.43$
D) $\$ 24.60$
108) Krier Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 738,000$ and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$792,000 and 31,500 total direct labor-hours during the period.The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 831,600$
B) $\$ 54,000$
C) $\$ 774,900$
D) $\$ 738,000$
109) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    80,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
$312,000
    $ 2.10
```

Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The estimated total manufacturing overhead is closest to:
A) $\$ 168,000$
B) $\$ 312,002$
C) $\$ 312,000$
D) $\$ 480,000$
110) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    80,000
Total fixed manufacturing overhead cost
$312,000
Variable manufacturing overhead per machine-hour
    $ 2.10
```

Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The predetermined overhead rate is closest to:
A) $\$ 8.10$ per machine-hour
B) $\$ 2.10$ per machine-hour
C) $\$ 3.90$ per machine-hour
D) $\$ 6.00$ per machine-hour
111) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
80,000
Total fixed manufacturing overhead cost \$312,000
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The amount of overhead applied to Job T629 is closest to:
A) $\$ 1,620$
B) $\$ 780$
C) $\$ 1,200$
D) $\$ 420$
112) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
    40,000
Total fixed manufacturing overhead cost
$96,000
Variable manufacturing overhead per direct labor-hour
$ 3.00
```

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials \$ 755
Direct labor cost \$4,000

The estimated total manufacturing overhead is closest to:
A) $\$ 120,000$
B) $\$ 96,003$
C) $\$ 96,000$
D) $\$ 216,000$
113) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
    40,000
Total fixed manufacturing overhead cost
$96,000
Variable manufacturing overhead per direct labor-hour
    $ 3.00
```

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials
\$ 755
Direct labor cost
$\$ 4,000$
The predetermined overhead rate is closest to:
A) $\$ 2.40$ per direct labor-hour
B) $\$ 3.00$ per direct labor-hour
C) $\$ 8.40$ per direct labor-hour
D) $\$ 5.40$ per direct labor-hour
114) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
    40,000
Total fixed manufacturing overhead cost $96,000
Variable manufacturing overhead per direct labor-hour $ 3.00
```

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials
\$ 755
Direct labor cost \$4,000
The amount of overhead applied to Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 840$
B) $\$ 300$
C) $\$ 540$
D) $\$ 240$
115) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
    54,000
Total fixed manufacturing overhead cost $259,200
Variable manufacturing overhead per direct labor-hour $6.00
```

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 25
Total direct labor-hours 100

```
Direct materials $ 640
Direct labor cost $5,400
```

The total job cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 6,480$
B) $\$ 6,040$
C) $\$ 1,720$
D) $\$ 7,120$
116) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours
40,000
Total fixed manufacturing overhead cost $96,000
Variable manufacturing overhead per direct labor-hour $ 3.00
```

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials \$755
Direct labor cost \$4,000
The total job cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 4,540$
B) $\$ 4,755$
C) $\$ 1,295$
D) $\$ 5,295$
117) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
96,000
Total fixed manufacturing overhead cost
\$499,200

Variable manufacturing overhead per direct labor-hour
Recently, Job P951 was completed with the following characteristics:

```
Number of units in the job 100
Total direct labor-hours 100
Direct materials $ 640
Direct labor cost $9,600
```

The unit product cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 720.00$
B) $\$ 109.60$
C) $\$ 9.60$
D) $\$ 200.60$
118) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours 40,000
Total fixed manufacturing overhead cost \$96,000
Variable manufacturing overhead per direct labor-hour \$ 3.00
Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials \$755
Direct labor cost \$4,000
The unit product cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 237.75$
B) $\$ 264.75$
C) $\$ 64.75$
D) $\$ 52.95$
119) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 160,000$, variable manufacturing overhead of $\$ 3.40$ per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:

```
Total direct labor-hours 250
Direct materials
    $ 715
Direct labor cost
$9,000
```

The estimated total manufacturing overhead is closest to:
A) $\$ 272,000$
B) $\$ 160,000$
C) $\$ 432,000$
D) $\$ 160,003$
120) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 160,000$, variable manufacturing overhead of $\$ 3.40$ per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:

```
Total direct labor-hours 250
Direct materials
    $ 715
Direct labor cost
$9,000
```

The predetermined overhead rate is closest to:
A) $\$ 8.80$ per direct labor-hour
B) $\$ 2.00$ per direct labor-hour
C) $\$ 3.40$ per direct labor-hour
D) $\$ 5.40$ per direct labor-hour
121) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 160,000$, variable manufacturing overhead of $\$ 3.40$ per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:

```
Total direct labor-hours 250
Direct materials
Direct labor cost $9,000
    $ 715
```

The amount of overhead applied to Job A578 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 500$
B) $\$ 1,350$
C) $\$ 2,200$
D) $\$ 850$
122) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 160,000$, variable manufacturing overhead of $\$ 3.40$ per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:

```
Total direct labor-hours 250
Direct materials $ 715
Direct labor cost $9,000
```

The total job cost for Job A578 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 11,065$
B) $\$ 10,350$
C) $\$ 2,065$
D) $\$ 9,715$
123) Spang Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job P505 was completed with the following characteristics:
```

```
Total machine-hours 200
```

Total machine-hours 200
Direct materials
Direct materials
\$ 540
\$ 540
Direct labor cost \$7,200

```
Direct labor cost $7,200
```

 20,000
 $\$ 176,000$
\$ 2.20

The amount of overhead applied to Job P505 is closest to:
A) $\$ 2,200$
B) $\$ 1,760$
C) $\$ 2,640$
D) $\$ 440$
124) Spang Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
    20,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour

Recently, Job P505 was completed with the following characteristics:
```

Total machine-hours 200
Direct materials \$ 540
Direct labor cost \$7,200

```

The total job cost for Job P505 is closest to:
A) \(\$ 9,400\)
B) \(\$ 9,940\)
C) \(\$ 7,740\)
D) \(\$ 2,740\)
125) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 1,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,000\) & \(\$ 4,500\) & \(\$ 21,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 2.00\) & \(\$ 4.00\) & \\
overhead cost per machine-hour
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job A & \multicolumn{1}{l}{ Job M } \\
\(\$ 16,200\) & \(\$ 9,500\) \\
\(\$ 22,900\) & \(\$ 9,900\) \\
2,700 & 1,300 \\
400 & 600
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 16,200\) & \(\$ 9,500\) \\
Direct labor cost & \(\$ 22,900\) & \(\$ 9,900\) \\
Molding machine-hours & 2,700 & 1,300 \\
Finishing machine-hours & 400 & 600
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 12,730\)
B) \(\$ 9,900\)
C) \(\$ 32,130\)
D) \(\$ 9,500\)
126) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 1,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 19,600\) & \(\$ 2,400\) & \(\$ 22,000\) \\
overhead cost & \(\$ 1.10\) & \(\$ 2.10\) & \\
\begin{tabular}{lrl} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job M
\begin{tabular}{lrr} 
Direct materials & \(\$ 13,600\) & \(\$ 7,500\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 7,400\) \\
Molding machine-hours & 2,700 & 1,300 \\
Finishing machine-hours & 400 & 600
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job M is closest to: (Round your

\section*{intermediate calculations to 2 decimal places.)}
A) \(\$ 10,830\)
B) \(\$ 7,400\)
C) \(\$ 25,730\)
D) \(\$ 7,500\)
127) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 3,250 & 2,250 & 5,500 \\
Estimated total fixed manufacturing & \(\$ 27,000\) & \(\$ 4,700\) & \(\$ 31,700\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.00\) & \(\$ 2.00\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job A & Job M \\
Direct materials & \(\$ 15,900\) & \(\$ 9,700\) \\
Direct labor cost & \(\$ 23,000\) & \(\$ 9,500\) \\
Molding machine-hours & 1,250 & 2,000 \\
Finishing machine-hours & 1,750 & 500
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(30 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 60,410\)
B) \(\$ 78,533\)
C) \(\$ 99,860\)
D) \(\$ 18,123\)
128) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 1,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 19,600\) & \(\$ 2,400\) & \(\$ 22,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.10\) & \(\$ 2.10\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job A & Job M \\
Direct materials & \(\$ 13,600\) & \(\$ 7,500\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 7,400\) \\
Molding machine-hours & 2,700 & 1,300 \\
Finishing machine-hours & 400 & 600
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(40 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 51,970\)
B) \(\$ 72,758\)
C) \(\$ 80,034\)
D) \(\$ 20,788\)
129) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
```

Number of units in the job 40
Total direct labor-hours 80
Direct materials \$950
Direct labor cost \$2,720

```

The estimated total manufacturing overhead is closest to:
A) \(\$ 665,000\)
B) \(\$ 497,002\)
C) \(\$ 497,000\)
D) \(\$ 168,000\)
130) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
```

Number of units in the job 40
Total direct labor-hours 80
Direct materials \$950
Direct labor cost \$2,720

```

The predetermined overhead rate is closest to:
A) \(\$ 11.90\) per direct labor-hour
B) \(\$ 7.10\) per direct labor-hour
C) \(\$ 9.50\) per direct labor-hour
D) \(\$ 2.40\) per direct labor-hour
131) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
```

Number of units in the job 40
Total direct labor-hours 80
Direct materials \$950
Direct labor cost \$2,720

```

The amount of overhead applied to Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 568\)
B) \(\$ 192\)
C) \(\$ 760\)
D) \(\$ 952\)
132) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
```

Number of units in the job 40
Total direct labor-hours 80
Direct materials \$950
Direct labor cost \$2,720

```

The total job cost for Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,430\)
B) \(\$ 3,670\)
C) \(\$ 1,710\)
D) \(\$ 3,480\)
133) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
```

Number of units in the job 40
Total direct labor-hours 80
Direct materials \$ 950
Direct labor cost \$2,720

```

The unit product cost for Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 55.38\)
B) \(\$ 42.75\)
C) \(\$ 91.75\)
D) \(\$ 110.75\)
134) Nielsen Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Machining & Assembly & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,700\) & \(\$ 10,800\) & \(\$ 15,500\) \\
overhead cost & & &
\end{tabular}
```

Estimated variable manufacturing \$ 1.20 \$ 2.20
overhead cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job F & Job M \\
Direct materials & \(\$ 13,000\) & \(\$ 7,400\) \\
Direct labor cost & \(\$ 20,400\) & \(\$ 8,800\) \\
Machining machine-hours & 700 & 300 \\
Assembly machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job F is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 13,000\)
B) \(\$ 20,400\)
C) \(\$ 45,130\)
D) \(\$ 11,730\)
135) Nielsen Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Machining & Assembly & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,700\) & \(\$ 10,800\) & \(\$ 15,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.20\) & \(\$ 2.20\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job \(\mathbf{F}\) & Job M \\
Direct materials & \(\$ 13,000\) & \(\$ 7,400\) \\
Direct labor cost & \(\$ 20,400\) & \(\$ 8,800\) \\
Machining machine-hours & 700 & 300 \\
Assembly machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(40 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 46,154\)
B) \(\$ 41,958\)
C) \(\$ 29,970\)
D) \(\$ 11,988\)
136) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
10,000
Total fixed manufacturing overhead cost \$33,000
Variable manufacturing overhead per direct labor-hour \$ 2.50

```

Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$ 455
Direct labor cost \$5,320
The amount of overhead applied to Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 812\)
B) \(\$ 350\)
C) \(\$ 462\)
D) \(\$ 1,162\)
137) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
10,000
Total fixed manufacturing overhead cost \$33,000

Variable manufacturing overhead per direct labor-hour
Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$ 455
Direct labor cost \$5,320
The total job cost for Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 5,775\)
B) \(\$ 6,132\)
C) \(\$ 6,587\)
D) \(\$ 1,267\)
138) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours 10,000
Total fixed manufacturing overhead cost \$33,000
Variable manufacturing overhead per direct labor-hour \$ 2.50
Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$ 455
Direct labor cost \$5,320
The unit product cost for Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 94.10\)
B) \(\$ 18.10\)
C) \(\$ 82.50\)
D) \(\$ 47.05\)
139) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \$1,400

```

The estimated total manufacturing overhead is closest to:
A) \(\$ 330,000\)
B) \(\$ 162,000\)
C) \(\$ 168,000\)
D) \(\$ 162,003\)
140) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost
\$1,400

```

The predetermined overhead rate is closest to:
A) \(\$ 5.50\) per direct labor-hour
B) \(\$ 8.30\) per direct labor-hour
C) \(\$ 2.80\) per direct labor-hour
D) \(\$ 2.70\) per direct labor-hour
141) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \$1,400

```

The amount of overhead applied to Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 135\)
B) \(\$ 140\)
C) \(\$ 415\)
D) \(\$ 275\)
142) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \$1,400

```

The total job cost for Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,675\)
B) \(\$ 2,595\)
C) \(\$ 1,195\)
D) \(\$ 2,320\)
143) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \$1,400

```

The unit product cost for Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 51.90\)
B) \(\$ 259.50\)
C) \(\$ 232.00\)
D) \(\$ 119.50\)
144) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:

Number of units in the job 10
Total direct labor-hours 50
Direct materials 920
Direct labor cost \$1,400
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 363.30\)
B) \(\$ 103.80\)
C) \(\$ 383.30\)
D) \(\$ 324.80\)
145) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
30,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
\$252,000
\$ 2.10

```

Recently, Job T687 was completed with the following characteristics:
```

Number of units in the job 10
Total machine-hours 30
Direct materials \$675
Direct labor cost \$1,050

```

The estimated total manufacturing overhead is closest to:
A) \(\$ 315,000\)
B) \(\$ 252,000\)
C) \(\$ 252,002\)
D) \(\$ 63,000\)
146) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
30,000
Total fixed manufacturing overhead cost
\$252,000
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T687 was completed with the following characteristics:
```

Number of units in the job 10
Total machine-hours 30
Direct materials \$ 675
Direct labor cost \$1,050

```

The predetermined overhead rate is closest to:
A) \(\$ 12.60\) per machine-hour
B) \(\$ 10.50\) per machine-hour
C) \(\$ 8.40\) per machine-hour
D) \(\$ 2.10\) per machine-hour
147) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
30,400
Total fixed manufacturing overhead cost \$425,600
Variable manufacturing overhead per machine-hour \$5

```

Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 20
Direct materials \$590
Direct labor cost \$1,180
The amount of overhead applied to Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 380.00\)
B) \(\$ 425.60\)
C) \(\$ 466.00\)
D) \(\$ 76.00\)
148) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
30,000
Total fixed manufacturing overhead cost
\$252,000
\$ 2.10
Variable manufacturing overhead per machine-hour

```

Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
```

Direct materials \$ 675

```
Direct labor cost \$1,050

The amount of overhead applied to Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 315\)
B) \(\$ 252\)
C) \(\$ 378\)
D) \(\$ 63\)
149) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
30,500
Total fixed manufacturing overhead cost \$610,000
Variable manufacturing overhead per machine-hour \$ 6

```

Recently, Job T687 was completed with the following characteristics:
```

Number of units in the job 10

```
Total machine-hours 30
Direct materials \$ 690
Direct labor cost \$1,370

The total job cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,150\)
B) \(\$ 2,060\)
C) \(\$ 1,470\)
D) \(\$ 2,840\)
150) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
30,000
Total fixed manufacturing overhead cost

Variable manufacturing overhead per machine-hour
Recently, Job T687 was completed with the following characteristics:
```

Number of units in the job 10

```
Total machine-hours 30
Direct materials \$ 675
Direct labor cost \$1,050

The total job cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,365\)
B) \(\$ 1,725\)
C) \(\$ 990\)
D) \(\$ 2,040\)
151) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
Total fixed manufacturing overhead cost \$195,600
Variable manufacturing overhead per machine-hour \$ 4
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$ 550
Direct labor cost \$1,100
The unit product cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 85.00\)
B) \(\$ 65.00\)
C) \(\$ 165.00\)
D) \(\$ 195.00\)
152) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job T687 was completed with the following characteristics:

```
```

Number of units in the job 10

```
Number of units in the job 10
Total machine-hours 30
Total machine-hours 30
Direct materials $675
Direct materials $675
Direct labor cost $1,050
```

Direct labor cost \$1,050

```
    30,000
\$252,000
    \$ 2.10

The unit product cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 99.00\)
B) \(\$ 68.00\)
C) \(\$ 172.50\)
D) \(\$ 204.00\)
153) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
32,700
Total fixed manufacturing overhead cost
\$294,300
Variable manufacturing overhead per machine-hour \$ 2.00

```

Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 20
Direct materials \$ 545
Direct labor cost \$1,090
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job T687 is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 74.20\)
B) \(\$ 209.00\)
C) \(\$ 259.70\)
D) \(\$ 228.90\)
154) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
30,000
Total fixed manufacturing overhead cost
\$252,000
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$675
Direct labor cost \$1,050
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job T687 is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 81.60\)
B) \(\$ 305.60\)
C) \(\$ 285.60\)
D) \(\$ 241.50\)
155) Ronson Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Customizing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 27,500\) & \(\$ 10,500\) & \(\$ 38,000\) \\
overhead cost & \(\$ 1.70\) & \(\$ 2.60\) & \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job G. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job C & \multicolumn{1}{l}{\begin{tabular}{r} 
Job G \\
\(\$ 10,600\)
\end{tabular}} \\
\(\$ 23,700\) & \(\$ 6,800\) \\
3,400 & 1,600 \\
2,000 & 3,000
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 10,600\) & \(\$ 6,800\) \\
Direct labor cost & \(\$ 23,700\) & \(\$ 7,900\) \\
Casting machine-hours & 3,400 & 1,600 \\
Customizing machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 32,130\)
B) \(\$ 11,900\)
C) \(\$ 20,230\)
D) \(\$ 20,520\)
156) Ronson Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Customizing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 27,500\) & \(\$ 10,500\) & \(\$ 38,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.60\) &
\end{tabular} overhead cost per machine-hour
During the most recent month, the company started and completed two jobs--Job C and Job G. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job C & Job G \\
Direct materials & \(\$ 10,600\) & \(\$ 6,800\) \\
Direct labor cost & \(\$ 23,700\) & \(\$ 7,900\) \\
Casting machine-hours & 3,400 & 1,600 \\
Customizing machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job G is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 42,070\)
B) \(\$ 27,370\)
C) \(\$ 6,800\)
D) \(\$ 7,900\)
157) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job M598 was completed with the following characteristics:

```
```

Number of units in the job 60

```
Number of units in the job 60
Total machine-hours 300
Total machine-hours 300
Direct materials $ 645
Direct materials $ 645
Direct labor cost $9,000
```

Direct labor cost \$9,000

```
    80,000
\$624,000
\$ 3.10

The amount of overhead applied to Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 930\)
B) \(\$ 4,200\)
C) \(\$ 2,340\)
D) \(\$ 3,270\)
158) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
80,000
Total fixed manufacturing overhead cost
\$624,000
Variable manufacturing overhead per machine-hour \$ 3.10

```

Recently, Job M598 was completed with the following characteristics:
```

Number of units in the job 60
Total machine-hours 300
Direct materials \$ 645
Direct labor cost \$9,000

```

The total job cost for Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 12,270\)
B) \(\$ 9,645\)
C) \(\$ 3,915\)
D) \(\$ 12,915\)
159) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
80,000
Total fixed manufacturing overhead cost \$624,000
Variable manufacturing overhead per machine-hour
\$ 3.10

```

Recently, Job M598 was completed with the following characteristics:
\begin{tabular}{lr} 
Number of units in the job & 60 \\
Total machine-hours & 300 \\
Direct materials & \(\$ 645\) \\
Direct labor cost & \(\$ 9,000\)
\end{tabular}

The unit product cost for Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 65.25\)
B) \(\$ 160.75\)
C) \(\$ 215.25\)
D) \(\$ 43.05\)
160) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job M598 was completed with the following characteristics:

```
```

Number of units in the job 60

```
Number of units in the job 60
Total machine-hours 300
Total machine-hours 300
Direct materials $645
Direct materials $645
Direct labor cost $9,000
```

Direct labor cost \$9,000

```
    80,000
\$624,000
    \$ 3.10

If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 321.35\)
B) \(\$ 225.05\)
C) \(\$ 86.10\)
D) \(\$ 301.35\)
161) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
```

Number of units in the job20
Total machine-hours 80
Direct materials
\$ 500
Direct labor cost \$2,640

```

The predetermined overhead rate is closest to:
A) \(\$ 2.90\) per machine-hour
B) \(\$ 2.00\) per machine-hour
C) \(\$ 4.90\) per machine-hour
D) \(\$ 6.90\) per machine-hour
162) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:

Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost \$2,640
The amount of overhead applied to Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 232\)
B) \(\$ 160\)
C) \(\$ 392\)
D) \(\$ 552\)
163) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
```

Number of units in the job20

```
Total machine-hours ..... 80
Direct materials ..... \(\$ 500\)
Direct labor cost ..... \$2, 640

The total job cost for Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,140\)
B) \(\$ 892\)
C) \(\$ 3,532\)
D) \(\$ 3,032\)
164) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost \$2,640

```

The unit product cost for Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 176.60\)
B) \(\$ 157.00\)
C) \(\$ 44.60\)
D) \(\$ 44.15\)
165) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:

Number of units in the job 20
Total machine-hours 80
Direct materials \(\quad \$ 500\)
Direct labor cost \$2,640
If the company marks up its unit product costs by \(30 \%\) then the selling price for a unit in Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 249.58\)
B) \(\$ 229.58\)
C) \(\$ 204.10\)
D) \(\$ 52.98\)
166) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$294,000
Variable manufacturing overhead per machine-hour
\$ 2.30

```

Recently, Job M825 was completed with the following characteristics:
```

Number of units in the job20
Total machine-hours 80
Direct materials \$665
Direct labor cost \$1,840

```

The predetermined overhead rate is closest to:
A) \(\$ 8.80\) per machine-hour
B) \(\$ 6.50\) per machine-hour
C) \(\$ 2.30\) per machine-hour
D) \(\$ 4.20\) per machine-hour
167) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$294,000
Variable manufacturing overhead per machine-hour \$ 2.30

```

Recently, Job M825 was completed with the following characteristics:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$665
Direct labor cost \$1,840

```

The amount of overhead applied to Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 184\)
B) \(\$ 520\)
C) \(\$ 704\)
D) \(\$ 336\)
168) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
70,000
Total fixed manufacturing overhead cost \$294,000
Variable manufacturing overhead per machine-hour
\$ 2.30

```

Recently, Job M825 was completed with the following characteristics:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 665
Direct labor cost \$1,840
The total job cost for Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,360\)
B) \(\$ 2,505\)
C) \(\$ 1,185\)
D) \(\$ 3,025\)
169) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job M825 was completed with the following characteristics:
Number of units in the job 20
Total machine-hours 80

```
    70,000
\$294,000
    \$ 2.30
```

Direct materials \$ 665
Direct labor cost \$1,840

```

The unit product cost for Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 37.81\)
B) \(\$ 59.25\)
C) \(\$ 151.25\)
D) \(\$ 125.25\)
170) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
70,000
Total fixed manufacturing overhead cost \$294,000
Variable manufacturing overhead per machine-hour \$ 2.30

```

Recently, Job M825 was completed with the following characteristics:
\begin{tabular}{lr} 
Number of units in the job & 20 \\
Total machine-hours & 80 \\
Direct materials & \(\$ 65\) \\
Direct labor cost & \(\$ 1,840\)
\end{tabular}

If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 60.50\)
B) \(\$ 175.35\)
C) \(\$ 211.75\)
D) \(\$ 231.75\)
171) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$940
Direct labor cost \$2,240

```

The amount of overhead applied to Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 176\)
B) \(\$ 792\)
C) \(\$ 968\)
D) \(\$ 616\)
172) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$940
Direct labor cost \$2,240

```

The total job cost for Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,972\)
B) \(\$ 1,732\)
C) \(\$ 3,180\)
D) \(\$ 3,032\)
173) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:

Number of units in the job
```

Total machine-hours 80
Direct materials \$ 940
Direct labor cost \$2,240

```

The unit product cost for Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 86.60\)
B) \(\$ 159.00\)
C) \(\$ 198.60\)
D) \(\$ 49.65\)
174) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 433,100\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 61,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
```

Number of units in the job 10
Total machine-hours 80
Direct materials \$770
Direct labor cost \$1,540

```

If the company marks up its unit product costs by \(25 \%\) then the selling price for a unit in Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 406.75\)
B) \(\$ 305.40\)
C) \(\$ 76.35\)
D) \(\$ 381.75\)
175) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
```

Number of units in the job20

```
Total machine-hours ..... 80

Direct materials \$940
Direct labor cost \$2,240
If the company marks up its unit product costs by \(20 \%\) then the selling price for a unit in Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 258.32\)
B) \(\$ 190.80\)
C) \(\$ 39.72\)
D) \(\$ 238.32\)
176) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
```

Number of units in the job20
Total machine-hours 80
Direct materials
\$ 500
Direct labor cost \$2,160

```

The amount of overhead applied to Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,256\)
B) \(\$ 632\)
C) \(\$ 944\)
D) \(\$ 312\)
177) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:

Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500

Direct labor cost
The total job cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,660\)
B) \(\$ 3,104\)
C) \(\$ 3,604\)
D) \(\$ 1,444\)
178) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 468,000\), variable manufacturing overhead of \(\$ 2.10\) per machine-hour, and 72,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:

Number of units in the job 10
Total machine-hours 80
Direct materials \$ 930
Direct labor cost \$1,860
The unit product cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 279.00\)
B) \(\$ 34.88\)
C) \(\$ 43.48\)
D) \(\$ 347.80\)
179) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
```

Number of units in the job20

```
Total machine-hours ..... 80
Direct materials ..... \$ 500
Direct labor cost ..... \$2,160

The unit product cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 133.00\)
B) \(\$ 72.20\)
C) \(\$ 45.05\)
D) \(\$ 180.20\)
180) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost \$2,160

```

If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 186.20\)
B) \(\$ 272.28\)
C) \(\$ 72.08\)
D) \(\$ 252.28\)
181) Halbur Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccc} 
& Machining & Customizing & Total \\
\begin{tabular}{lll} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 6,000 & 4,000 & 10,000 \\
\begin{tabular}{ll} 
Estimated total fixed \\
manufacturing overhead cost
\end{tabular} & \(\$ 33,600\) & \(\$ 10,000\) & \(\$ 43,600\)
\end{tabular}
```

Estimated variable manufacturing \$ 1.80 \$ 2.80
overhead cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job C and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job C & Job J \\
Direct materials & \(\$ 11,300\) & \(\$ 8,100\) \\
Direct labor cost & \(\$ 18,500\) & \(\$ 6,300\) \\
Machining machine-hours & 4,100 & 1,900 \\
Customizing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job J is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 28,208\)
B) \(\$ 18,748\)
C) \(\$ 12,464\)
D) \(\$ 15,744\)
182) Halbur Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
\begin{tabular}{lcc} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 6,000 & 4,000 & 10,000 \\
\begin{tabular}{ll} 
Estimated total fixed \\
manufacturing overhead cost
\end{tabular} & \(\$ 33,600\) & \(\$ 10,000\) & \(\$ 43,600\) \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & \(\$ 1.80\) & \(\$ 2.80\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job C & Job J \\
Direct materials & \(\$ 11,300\) & \(\$ 8,100\) \\
Direct labor cost & \(\$ 18,500\) & \(\$ 6,300\) \\
Machining machine-hours & 4,100 & 1,900 \\
Customizing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 18,500\)
B) \(\$ 67,192\)
C) \(\$ 11,300\)
D) \(\$ 37,392\)
183) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
50,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
\$285,000
\$ 3.80

```

Recently, Job P513 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 20
Direct materials \$710
Direct labor cost \$500
The estimated total manufacturing overhead is closest to:
A) \(\$ 475,000\)
B) \(\$ 285,000\)
C) \(\$ 190,000\)
D) \(\$ 285,004\)
184) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
50,000
Total fixed manufacturing overhead cost
\$285,000
Variable manufacturing overhead per direct labor-hour
\$ 3.80
Recently, Job P513 was completed with the following characteristics:
Number of units in the job ..... 10
Total direct labor-hours ..... 20
Direct materials ..... \$710
Direct labor cost ..... \$500
The predetermined overhead rate is closest to:
A) \(\$ 13.30\) per direct labor-hour
B) \(\$ 3.80\) per direct labor-hour
C) \(\$ 9.50\) per direct labor-hour
D) \(\$ 5.70\) per direct labor-hour
185) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
50,000
Total fixed manufacturing overhead cost
\$285,000
Variable manufacturing overhead per direct labor-hour
\$ 3.80

```

Recently, Job P513 was completed with the following characteristics:
```

Number of units in the job 10
Total direct labor-hours 20
Direct materials \$710
Direct labor cost \$500

```

The amount of overhead applied to Job P513 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 76\)
B) \(\$ 190\)
C) \(\$ 266\)
D) \(\$ 114\)
186) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total fixed manufacturing overhead cost
\$285,000
Variable manufacturing overhead per direct labor-hour
\$ 3.80

```

Recently, Job P513 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 20
Direct materials \$710
Direct labor cost \$500
The total job cost for Job P513 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 690\)
B) \(\$ 900\)
C) \(\$ 1,400\)
D) \(\$ 1,210\)
187) Kubes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 90,000\), variable manufacturing overhead of \(\$ 3.50\) per direct labor-hour, and 30,000 direct labor-hours. The company has provided the following data concerning Job A477 which was recently completed:
```

Total direct labor-hours 100
Direct materials
\$ 520
Direct labor cost
\$2,800

```

The amount of overhead applied to Job A477 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 300\)
B) \(\$ 350\)
C) \(\$ 650\)
D) \(\$ 1,000\)
188) Kubes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 90,000\), variable manufacturing overhead of \(\$ 3.50\) per direct labor-hour, and 30,000 direct labor-hours. The company has provided the following data concerning Job A477 which was recently completed:
```

Total direct labor-hours 100
Direct materials \$ 520
Direct labor cost \$2,800

```

The total job cost for Job A477 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,450\)
B) \(\$ 1,170\)
C) \(\$ 3,970\)
D) \(\$ 3,320\)
189) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 77,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour & &
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
```

Job T288: Forming
Machine-hours
80
Assembly
10
40

```
```

Direct materials \$730
Direct labor cost \$900
\$1,200

```

The estimated total manufacturing overhead for the Assembly Department is closest to:
A) \(\$ 77,600\)
B) \(\$ 101,600\)
C) \(\$ 56,674\)
D) \(\$ 24,000\)
190) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 77,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
```

Job T288
Machine-hours
Direct labor-hours 30
Direct materials \$730
\$900

```

Assembly
10
40
\(\$ 380\)
\$1,200

The predetermined overhead rate for the Assembly Department is closest to:
A) \(\$ 3.00\) per direct labor-hour
B) \(\$ 12.70\) per direct labor-hour
C) \(\$ 9.70\) per direct labor-hour
D) \(\$ 5.35\) per direct labor-hour
191) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 77,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & 380 \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The amount of overhead applied in the Assembly Department to Job T288 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 508.00\)
B) \(\$ 101,600.00\)
C) \(\$ 388.00\)
D) \(\$ 120.00\)
192) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 77,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job \(\boldsymbol{T 2 8 8 :}\) & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The total amount of overhead applied in both departments to Job T288 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 508\)
B) \(\$ 672\)
C) \(\$ 1,688\)
D) \(\$ 1,180\)
193) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 77,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job \(\mathbf{T 2 8 8}\) : & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The total job cost for Job T288 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 672\)
B) \(\$ 2,088\)
C) \(\$ 2,302\)
D) \(\$ 4,390\)
194) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
\(\left.\begin{array}{lrl}\text { Direct labor-hours } & 4,000 & 8,000 \\
\text { Total fixed manufacturing overhead cost } & \$ 129,200 & \$ 77,600 \\
\text { Variable manufacturing overhead per machine- } & \$ 1.60 & \\
\text { hour } & \end{array}\right)\)
\end{tabular}

\section*{Variable manufacturing overhead per direct}

During the current month the company started and finished Job T288. The following data were recorded for this job:
```

Job T288:
Machine-hours 80
Forming
Assembly
10
Direct labor-hours 30 40
Direct materials \$730 \$ 380
Direct labor cost \$900 \$1,200

```

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job T288 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 4,390.00\)
B) \(\$ 878.00\)
C) \(\$ 5,268.00\)
D) \(\$ 5,795.00\)
195) Macnamara Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{|c|c|c|c|}
\hline & Casting & Finishing & Total \\
\hline Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
\hline Estimated total fixed manufacturing overhead cost & \$4,800 & \$8,800 & \$13,600 \\
\hline Estimated variable manufacturing overhead cost per machine-hour & \$ 1.80 & \$ 2.90 & \\
\hline
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
Direct materials & \(\$ 11,500\) & \(\$ 9,000\) \\
Direct labor cost & \(\$ 18,400\) & \(\$ 7,400\) \\
Casting machine-hours & 700 & 300 \\
Finishing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job F is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,620\)
B) \(\$ 12,780\)
C) \(\$ 12,420\)
D) \(\$ 8,160\)
196) Macnamara Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Finishing & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 8,800\) & \(\$ 13,600\) \\
overhead cost & & & \\
\begin{tabular}{lrl} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & \(\$ 1.80\) & \(\$ 2.90\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job \(\mathbf{F}\) & Job M \\
Direct materials & \(\$ 11,500\) & \(\$ 9,000\) \\
Direct labor cost & \(\$ 18,400\) & \(\$ 7,400\) \\
Casting machine-hours & 700 & 300 \\
Finishing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 15,310\)
B) \(\$ 47,767\)
C) \(\$ 30,620\)
D) \(\$ 45,930\)
197) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Finishing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 96,900\) & \(\$ 65,800\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.60 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & 350 \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The predetermined overhead rate for the Forming Department is closest to:
A) \(\$ 5.70\) per machine-hour
B) \(\$ 7.70\) per machine-hour
C) \(\$ 2.00\) per machine-hour
D) \(\$ 18.70\) per machine-hour
198) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Forming Finishing

```
\begin{tabular}{lrr} 
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 96,900\) & \(\$ 65,800\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
Variable manufacturing overhead per direct & \(\$ .60\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & 350 \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 9.40\) per direct labor-hour
B) \(\$ 13.00\) per direct labor-hour
C) \(\$ 3.60\) per direct labor-hour
D) \(\$ 5.35\) per direct labor-hour
199) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Finishing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 96,900\) & \(\$ 65,800\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.60 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & \(\$ 350\) \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The total job cost for Job M381 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,206\)
B) \(\$ 616\)
C) \(\$ 4,076\)
D) \(\$ 1,870\)
200) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machining
Finishing

```
\begin{tabular}{lrr} 
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per & \(\$ 1.80\) & \\
machine-hour & & \(\$ .20\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour & &
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job K928:
Machine-hours
Direct labor-hours 30
30 50
Direct materials \$775
\$ 415
Direct labor cost \$630
\$1,050

```

The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 136,800\)
B) \(\$ 34,200\)
C) \(\$ 171,000\)
D) \(\$ 359,100\)
201) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per & \(\$ 1.80\) & \\
machine-hour & & \(\$ .20\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job K928:
Machining
Finishing
Machine-hours
90
1 0
Direct labor-hours 30
5 0
Direct materials \$775
\$ 415
Direct labor cost \$630
\$1,050

```

The predetermined overhead rate for the Machining Department is closest to:
A) \(\$ 7.20\) per machine-hour
B) \(\$ 9.00\) per machine-hour
C) \(\$ 21.38\) per machine-hour
D) \(\$ 1.80\) per machine-hour
202) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.20 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job K928:
Machine-hours
Machining
90
Finishing
1 0
Direct labor-hours 30
5 0
Direct materials \$775
\$ 415
Direct labor cost \$630
\$1,050

```

The amount of overhead applied in the Machining Department to Job K928 is closest to:
A) \(\$ 783.00\)
B) \(\$ 810.00\)
C) \(\$ 162.00\)
D) \(\$ 171,000.00\)
203) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.20 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job K928: & Machining & Finishing \\
Machine-hours & 90 & 10 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 775\) & \(\$ 415\) \\
Direct labor cost & \(\$ 630\) & \(\$ 1,050\)
\end{tabular}

The total amount of overhead applied in both departments to Job K928 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,405\)
B) \(\$ 2,000\)
C) \(\$ 810\)
D) \(\$ 595\)
204) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & &
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job k928:
Machine-hours
Machining
Finishing
90
10
Direct labor-hours 30
30 50
Direct materials \$775
\$ 415
Direct labor cost \$630
\$1,050

```

The total job cost for Job K928 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 810\)
B) \(\$ 4,275\)
C) \(\$ 2,060\)
D) \(\$ 2,215\)
205) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours 2,000 8,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct
19,000 12,000
\$136,800 \$69,600
\$ 3.20
labor-hour

```
Machining Finishing

During the current month the company started and finished Job K928. The following data were recorded for this job:

Job K928:
Machine-hours
Machining
Finishing

Direct labor-hours
90
10
30
50
```

Direct materials \$775
\$630

```
\$ 415
\$1,050
```

Direct labor cost \$630

```

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job K928 would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,275.00\)
B) \(\$ 5,643.00\)
C) \(\$ 5,130.00\)
D) \(\$ 855.00\)
206) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
\begin{tabular}{lll} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 1,000 & 9,000 & 10,000 \\
\begin{tabular}{ll} 
Estimated total fixed \\
manufacturing overhead cost
\end{tabular} & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & \(\$ 1.10\) & \(\$ 2.50\)
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 90,707\)
B) \(\$ 27,487\)
C) \(\$ 82,461\)
D) \(\$ 54,974\)
207) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
\begin{tabular}{lll} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 1,000 & 9,000 & 10,000 \\
\begin{tabular}{ll} 
Estimated total fixed \\
manufacturing overhead cost
\end{tabular} & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & \(\$ 1.10\) & \(\$ 2.50\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job A & Job J \\
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job J is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 71,983\)
B) \(\$ 65,439\)
C) \(\$ 43,626\)
D) \(\$ 21,813\)
208) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
\begin{tabular}{lll} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 1,000 & 9,000 & 10,000 \\
Estimated total fixed & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
manufacturing overhead cost & \(\$ 1.10\) & \(\$ 2.50\) & \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job J
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 27,595\)
B) \(\$ 87,752\)
C) \(\$ 82,785\)
D) \(\$ 55,190\)
209) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
\begin{tabular}{lll} 
Estimated total machine-hours \\
(MHs)
\end{tabular} & 1,000 & 9,000 & 10,000 \\
\begin{tabular}{ll} 
Estimated total fixed \\
manufacturing overhead cost
\end{tabular} & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\)
\end{tabular}
```

Estimated variable manufacturing \$ 1.10 \$ 2.50
overhead cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job A & Job J \\
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job J is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 65,115\)
B) \(\$ 67,720\)
C) \(\$ 21,705\)
D) \(\$ 43,410\)
210) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 18,000 & 13,000 \\
Direct labor-hours & 4,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 113,400\) & \(\$ 64,400\) \\
Variable manufacturing overhead per & \(\$ 1.60\) & \\
machine-hour & & \\
Variable manufacturing overhead per direct & & 3.90 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
```

Job A319:
Machine-hours
Direct labor-hours 20
Direct materials \$655
Direct labor cost \$400

```

Customizing
10
60
\(\$ 305\)
\$1,200

The amount of overhead applied in the Milling Department to Job A319 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 142,200.00\)
B) \(\$ 552.00\)
C) \(\$ 96.00\)
D) \(\$ 474.00\)
211) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 18,000 & 13,000 \\
Direct labor-hours & 4,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 113,400\) & \(\$ 64,400\) \\
Variable manufacturing overhead per & \(\$ 1.60\) & \\
machine-hour & & \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job A319: & Milling & Customizing \\
Machine-hours & 60 & 10 \\
Direct labor-hours & 20 & 60 \\
Direct materials & \(\$ 655\) & \(\$ 305\) \\
Direct labor cost & \(\$ 400\) & \(\$ 1,200\)
\end{tabular}

The amount of overhead applied in the Customizing Department to Job A319 is closest to:

\section*{(Round your intermediate calculations to 2 decimal places.)}
A) \(\$ 234.00\)
B) \(\$ 786.00\)
C) \(\$ 552.00\)
D) \(\$ 91,700.00\)
212) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 25,000 & 10,000 \\
Direct labor-hours & 15,000 & 4,000 \\
Total fixed manufacturing overhead cost & \(\$ 132,500\) & \(\$ 22,000\) \\
Variable manufacturing overhead per & \(\$ 1.80\) & \\
machine-hour & & 3.90 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
```

Job A319:
Machine-hours
Direct labor-hours 30
Direct materials \$630
Direct labor cost \$740
Customizing40
\$170
\$510

```

If the company marks up its manufacturing costs by \(10 \%\) then the selling price for Job A319 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 3,537\)
B) \(\$ 3,215\)
C) \(\$ 2,923\)
D) \(\$ 292\)
213) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 18,000 & 13,000 \\
Direct labor-hours & 4,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 113,400\) & \(\$ 64,400\) \\
Variable manufacturing overhead per & \(\$ 1.60\) & \\
machine-hour & & 3.90 \\
Variable manufacturing overhead per & &
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job A319: & Milling & Customizing \\
Machine-hours & 60 & 10 \\
Direct labor-hours & 20 & 60 \\
Direct materials & \(\$ 655\) & \(\$ 305\) \\
Direct labor cost & \(\$ 400\) & \(\$ 1,200\)
\end{tabular}

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job A319 would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 5,042.00\)
B) \(\$ 4,584.00\)
C) \(\$ 3,820.00\)
D) \(\$ 764.00\)
214) Sanderlin Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 26,500\) & \(\$ 13,500\) & \(\$ 40,000\)
\end{tabular}
```

overhead cost
Estimated variable manufacturing \$ 2.00 \$ 3.00
overhead cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job C and Job L. There were no beginning inventories. Data concerning those two jobs follow:
```

Direct materials
Direct labor cost
Machining machine-hours
Finishing machine-hours
A) $\$ 29,900$
B) $\$ 11,680$
C) $\$ 28,780$
D) $\$ 17,100$

```
Job C
\$12,500 ..... \(\$ 8,200\)
\(\$ 20,200 \quad \$ 6,400\)
    3,400 1,600
    \(2,000 \quad 3,000\)

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job \(L\) is closest to: (Round your intermediate calculations to 2 decimal places.)
215) Sanderlin Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Finishing & Total \\
& & & & \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 26,500\) & \(\$ 13,500\) & \(\$ 40,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 2.00\) & \(\$ 3.00\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job L. There were no beginning inventories. Data concerning those two jobs follow:
Job C Job L
```

Direct materials
Direct labor cost
Machining machine-hours

```
```

\$ 12,500
\$ 20,200 \$ 6,400
3,400 1,600

```

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 87,666\)
B) \(\$ 68,920\)
C) \(\$ 13,784\)
D) \(\$ 82,704\)
216) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,000\) & \(\$ 61,200\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & 4.10 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T268. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T268: & Machining & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 720\) & \(\$ 80\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,500\)
\end{tabular}

The total amount of overhead applied in both departments to Job T268 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 616\)
B) \(\$ 715\)
C) \(\$ 2,046\)
D) \(\$ 1,331\)
217) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:




Machining
Customizing

During the current month the company started and finished Job T268. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T268: & Machining & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 720\) & \(\$ 80\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,500\)
\end{tabular}

The total job cost for Job T268 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,595\)
B) \(\$ 616\)
C) \(\$ 4,831\)
D) \(\$ 2,236\)
218) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,000\) & \(\$ 61,200\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & 4.10 \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job T268. The following data were recorded for this job:
```

Job T268:
Machining
Machine-hours 80
Direct labor-hours 30 50
Direct materials \$720 \$ 380
Direct labor cost \$900 \$1,500

```

If the company marks up its manufacturing costs by \(40 \%\) then the selling price for Job T268 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 1,932.40\)
B) \(\$ 6,763.40\)
C) \(\$ 4,831.00\)
D) \(\$ 7,440.00\)
219) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,500\) & \(\$ 20,300\) & \(\$ 36,800\)
\end{tabular}
```

overhead cost
Estimated variable manufacturing \$ 1.70 \$ 2.50
overhead cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:
```

Direct materials
Direct labor cost
Forming machine-hours
Customizing machine-hours

```

Job A
\$12, 800
\(\$ 24,300 \quad \$ 7,800\)
2,000 1,000
2,800 4,200

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 28,512\)
B) \(\$ 16,632\)
C) \(\$ 11,880\)
D) \(\$ 17,664\)
220) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,500\) & \(\$ 20,300\) & \(\$ 36,800\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job H
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,800\) & \(\$ 6,700\) \\
Direct labor cost & \(\$ 24,300\) & \(\$ 7,800\) \\
Forming machine-hours & 2,000 & 1,000
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 19,136\)
B) \(\$ 5,940\)
C) \(\$ 30,888\)
D) \(\$ 24,948\)
221) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,500\) & \(\$ 20,300\) & \(\$ 36,800\) \\
overhead cost & & & \\
\begin{tabular}{lrl} 
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & \(\$ 1.70\) & \(\$ 2.50\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job A & Job H \\
Direct materials & \(\$ 12,800\) & \(\$ 6,700\) \\
Direct labor cost & \(\$ 24,300\) & \(\$ 7,800\) \\
Forming machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 2,800 & 4,200
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job A is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 14,400\)
B) \(\$ 15,120\)
C) \(\$ 28,512\)
D) \(\$ 29,520\)
222) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,500\) & \(\$ 20,300\) & \(\$ 36,800\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) \\
overhead cost per machine-hour
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:
```

Direct materials
Direct labor cost
Forming machine-hours
Customizing machine-hours

```
\begin{tabular}{rr} 
Job A & \multicolumn{1}{l}{ Job H } \\
\(\$ 12,800\) & \(\$ 6,700\) \\
\(\$ 24,300\) & \(\$ 7,800\) \\
2,000 & 1,000 \\
2,800 & 4,200
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 22,680\)
B) \(\$ 30,888\)
C) \(\$ 29,880\)
D) \(\$ 7,200\)
223) Tiff Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Assembly \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 1,000 & 5,000
\end{tabular}
```

Total fixed manufacturing overhead cost \$129,200 \$46,500
Variable manufacturing overhead per machine-
\$ 1.80
hour
Variable manufacturing overhead per direct \$ 3.80
labor-hour

```

During the current month the company started and finished Job P131. The following data were recorded for this job:
```

Job P131: Casting Assembly
Machine-hours
Direct labor-hours
20

```

20
60

The predetermined overhead rate for the Casting Department is closest to:
A) \(\$ 9.40\) per machine-hour
B) \(\$ 7.60\) per machine-hour
C) \(\$ 1.80\) per machine-hour
D) \(\$ 31.96\) per machine-hour
224) Tiff Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Assembly \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 1,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 46,500\) \\
Variable manufacturing overhead per machine-hour & \(\$ 1.80\) & \\
Variable manufacturing overhead per direct & & \(\$ .80\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job P131. The following data were recorded for this job:
```

Job P131:
Machine-hours
Casting Assembly
9020
Direct labor-hours 20 60

```

The amount of overhead applied in the Assembly Department to Job P131 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 228.00\)
B) \(\$ 558.00\)
C) \(\$ 65,500.00\)
D) \(\$ 786.00\)
225) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:


The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 127,200\)
B) \(\$ 79,200\)
C) \(\$ 48,000\)
D) \(\$ 129,200\)
226) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 56,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.30 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60
30
Direct labor-hours 10
6 0

```

The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 137,600\)
B) \(\$ 104,000\)
C) \(\$ 33,600\)
D) \(\$ 310,933\)
227) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000
\end{tabular}
```

Total fixed manufacturing overhead cost \$104,000 \$56,400
Variable manufacturing overhead per machine- \$ 2.10
hour
Variable manufacturing overhead per direct \$ 3.30
labor-hour

```

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60 30
Direct labor-hours 10
6 0

```

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 40,950\)
B) \(\$ 19,800\)
C) \(\$ 56,400\)
D) \(\$ 76,200\)
228) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 56,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.30 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272:
Machine-hours
Machining
Customizing
6 030
Direct labor-hours 10 60

```

The predetermined overhead rate for the Machining Department is closest to:
A) \(\$ 22.93\) per machine-hour
B) \(\$ 6.50\) per machine-hour
C) \(\$ 2.10\) per machine-hour
D) \(\$ 8.60\) per machine-hour
229) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 56,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 3.30\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 10 & 60
\end{tabular}

The predetermined overhead rate for the Customizing Department is closest to:
A) \(\$ 3.30\) per direct labor-hour
B) \(\$ 12.70\) per direct labor-hour
C) \(\$ 9.40\) per direct labor-hour
D) \(\$ 4.76\) per direct labor-hour
230) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 56,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.30 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60
30
Direct labor-hours 10
6 0

```

The amount of overhead applied in the Machining Department to Job T272 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 137,600.00\)
B) \(\$ 126.00\)
C) \(\$ 516.00\)
D) \(\$ 564.00\)
231) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lcc} 
& Machining Customizing \\
Machine-hours & 16,000 & 11,000
\end{tabular}
```

Direct labor-hours 2,000 6,000
Total fixed manufacturing overhead cost \$104,000 \$56,400
Variable manufacturing overhead per machine- \$ 2.10
hour
Variable manufacturing overhead per direct \$ 3.30
labor-hour

```

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60
30
Direct labor-hours 10 60

```

The amount of overhead applied in the Customizing Department to Job T272 is closest to:
(Round your intermediate calculations to 2 decimal places.)
A) \(\$ 76,200.00\)
B) \(\$ 762.00\)
C) \(\$ 564.00\)
D) \(\$ 198.00\)
232) Stoke Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 20,000 & 15,000 \\
Direct labor-hours & 2,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 138,000\) & \(\$ 58,100\) \\
Variable manufacturing overhead per machine- & \(\$ 2.30\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A460. The following data were recorded for this job:

Assembly

Direct labor-hours 30
The amount of overhead applied in the Forming Department to Job A460 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 184,000.00\)
B) \(\$ 184.00\)
C) \(\$ 736.00\)
D) \(\$ 664.00\)
233) Stoke Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 20,000 & 15,000 \\
Direct labor-hours & 2,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 138,000\) & \(\$ 58,100\) \\
Variable manufacturing overhead per machine- & \(\$ 2.30\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A460. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job A460: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 50
\end{tabular}

The amount of overhead applied in the Assembly Department to Job A460 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 415.00\)
B) \(\$ 150.00\)
C) \(\$ 565.00\)
D) \(\$ 79,100.00\)
234) Vanliere Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 11,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 138,700\) & \(\$ 52,800\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ 3.80\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job A803. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job A803: & Machining & Finishing \\
Machine-hours & 90 & 20 \\
Direct labor-hours & 20 & 60
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 8.80\) per direct labor-hour
B) \(\$ 3.98\) per direct labor-hour
C) \(\$ 12.60\) per direct labor-hour
D) \(\$ 3.80\) per direct labor-hour
235) Vanliere Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 11,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 138,700\) & \(\$ 52,800\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ 3.80\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A803. The following data were recorded for this job:
```

Job A803:
Machine-hours
Direct labor-hours

Machining	Finishing
90	20
20	60

```

The amount of overhead applied in the Machining Department to Job A803 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 828.00\)
B) \(\$ 792.00\)
C) \(\$ 171.00\)
D) \(\$ 174,800.00\)
236) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{|c|c|c|}
\hline & Forming & Assembly \\
\hline Machine-hours & 16,000 & 15,000 \\
\hline
\end{tabular}
```

Direct labor-hours 2,000 6,000
Total fixed manufacturing overhead cost \$102,400 \$55,200
Variable manufacturing overhead per machine- \$ 2.30
hour
Variable manufacturing overhead per direct \$ 4.50
labor-hour

```

During the current month the company started and finished Job T924. The following data were recorded for this job:
```

Job T924:
Machine-hours

Forming	Assembly
70	20
30	40
$\$ 870$	$\$ 385$
$\$ 630$	$\$ 840$

```

The estimated total manufacturing overhead for the Forming Department is closest to:
A) \(\$ 36,800\)
B) \(\$ 102,400\)
C) \(\$ 309,867\)
D) \(\$ 139,200\)
237) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 15,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,400\) & \(\$ 55,200\) \\
Variable manufacturing overhead per machine- & \(\$ 2.30\) & \\
hour & & \(\$ .50\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T924. The following data were recorded for this job:
\begin{tabular}{lcr} 
Job T924: & Forming & Assembly \\
Machine-hours & 70 & 20 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 870\) & \(\$ 385\) \\
Direct labor cost & \(\$ 630\) & \(\$ 840\)
\end{tabular}

The estimated total manufacturing overhead for the Assembly Department is closest to:
A) \(\$ 27,000\)
B) \(\$ 55,200\)
C) \(\$ 82,200\)
D) \(\$ 47,700\)
238) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 15,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,400\) & \(\$ 55,200\) \\
Variable manufacturing overhead per machine-hour & \(\$ 2.30\) & \\
Variable manufacturing overhead per direct & & \(\$ .50\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T924. The following data were recorded for this job:
\begin{tabular}{lcr} 
Job T924: & Forming & Assembly \\
Machine-hours & 70 & 20 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 870\) & \(\$ 385\) \\
Direct labor cost & \(\$ 630\) & \(\$ 840\)
\end{tabular}

The total amount of overhead applied in both departments to Job T924 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,157\)
B) \(\$ 548\)
C) \(\$ 609\)
D) \(\$ 1,705\)
239) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 28,000\) & \(\$ 10,500\) & \(\$ 38,500\) \\
overhead cost & & & \\
Estimated variable manufacturing overhead & \(\$ 1.80\) & \(\$ 2.60\) & \\
cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:

Job B Job L
\begin{tabular}{lll} 
Forming machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Forming Department is closest to:
A) \(\$ 5.60\)
B) \(\$ 7.40\)
C) \(\$ 1.80\)
D) \(\$ 6.05\)
240) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
```

Estimated total machine-hours(MHs) 5,000 5,000 10,000
Estimated total fixed manufacturing \$28,000 \$10,500 \$38,500
overhead cost
Estimated variable manufacturing overhead \$ 1.80 \$ 2.60
cost per machine-hour

```

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{cr} 
Job B & Job L \\
& \\
3,400 & 1,600 \\
2,000 & 3,000
\end{tabular}
Forming machine-hours 3,400 1,600
Assembly machine-hours 2,000 3,000

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) \(\$ 2.60\)
B) \(\$ 4.70\)
C) \(\$ 6.05\)
D) \(\$ 2.10\)
241) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 28,000\) & \(\$ 10,500\) & \(\$ 38,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.80\) & \(\$ 2.60\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
```

Job B Job L

```
Forming machine-hours
    3,400 1,600
Assembly machine-hours 2,000 3,000

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 9,400\)
B) \(\$ 25,160\)
C) \(\$ 32,670\)
D) \(\$ 34,560\)
242) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 28,000\) & \(\$ 10,500\) & \(\$ 38,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.80\) & \(\$ 2.60\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
```

```
Job B Job L
```

```
```

```
Job B Job L
```

```
\(\begin{array}{lll}\text { Forming machine-hours } & 3,400 & 1,600 \\ \text { Assembly machine-hours } & 2,000 & 3,000\end{array}\)
\(\begin{array}{lll}\text { Forming machine-hours } & 3,400 & 1,600 \\ \text { Assembly machine-hours } & 2,000 & 3,000\end{array}\)
Assembly machine-hours

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job L is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 27,830\)
B) \(\$ 11,840\)
C) \(\$ 25,940\)
D) \(\$ 14,100\)
243) Barbeau Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 13,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 119,000\) & \(\$ 42,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A492. The following data were recorded for this job:
```

Job A492: Milling Customizing
Machine-hours 90
Direct labor-hours 20 50

```

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 63,500\)
B) \(\$ 21,500\)
C) \(\$ 42,000\)
D) \(\$ 33,853\)
244) Barbeau Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 13,000 \\
Direct labor-hours & 2,000 & 5,000
\end{tabular}
```

Total fixed manufacturing overhead cost \$119,000
Variable manufacturing overhead per machine- \$ 1.60
hour
Variable manufacturing overhead per direct \$ 4.30
labor-hour

```

During the current month the company started and finished Job A492. The following data were recorded for this job:
```

Job A492: Milling Customizing
Machine-hours 90
Direct labor-hours 20

```

Customizing
20
50

The amount of overhead applied in the Milling Department to Job A492 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 146,200.00\)
B) \(\$ 144.00\)
C) \(\$ 756.00\)
D) \(\$ 774.00\)
245) Kroeker Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 12,000 \\
Direct labor-hours & 1,000 & 9,000 \\
Total fixed manufacturing overhead cost & \(\$ 112,200\) & \(\$ 81,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & 4.30 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T898. The following data were recorded for this job:
```

Job T898: Milling
Machine-hours

```

Milling 80

Customizing
30

The estimated total manufacturing overhead for the Milling Department is closest to:
A) \(\$ 240,833\)
B) \(\$ 141,100\)
C) \(\$ 28,900\)
D) \(\$ 112,200\)
246) Kroeker Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 12,000 \\
Direct labor-hours & 1,000 & 9,000 \\
Total fixed manufacturing overhead cost & \(\$ 112,200\) & \(\$ 81,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 4.30 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T898. The following data were recorded for this job:
```

Job T898:
Machine-hours
Direct labor-hours 20

```

Customizing
30
80
50

The amount of overhead applied in the Customizing Department to Job T898 is closest to:
(Round your intermediate calculations to 2 decimal places.)
A) \(\$ 450.00\)
B) \(\$ 119,700.00\)
C) \(\$ 665.00\)
D) \(\$ 215.00\)
247) Petty Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Finishing \\
Machine-hours & 20,000 & 14,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 148,000\) & \(\$ 88,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ 3.60\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

The estimated total manufacturing overhead for the Milling Department is closest to:
A) \(\$ 408,000\)
B) \(\$ 38,000\)
C) \(\$ 148,000\)
D) \(\$ 186,000\)
248) Petty Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Finishing \\
Machine-hours & 20,000 & 14,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 148,000\) & \(\$ 88,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ .60\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 5.84\) per direct labor-hour
B) \(\$ 3.60\) per direct labor-hour
C) \(\$ 11.00\) per direct labor-hour
D) \(\$ 14.60\) per direct labor-hour
249) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Customizing \\
Machine-hours & 11,000 & 17,000 \\
Direct labor-hours & 5,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 37,400\) & \(\$ 19,200\) \\
Variable manufacturing overhead per machine- & \(\$ 1.40\) & \\
hour & & \(\$ .60\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 55,400\)
B) \(\$ 21,600\)
C) \(\$ 40,800\)
D) \(\$ 19,200\)
250) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 20,000 & 13,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 152,000\) & \(\$ 68,600\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 4.30\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 54,110\)
B) \(\$ 30,100\)
C) \(\$ 98,700\)
D) \(\$ 68,600\)
251) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Customizing \\
Machine-hours & 20,000 & 13,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 152,000\) & \(\$ 68,600\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & 4.30 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

The predetermined overhead rate for the Casting Department is closest to:
A) \(\$ 9.70\) per machine-hour
B) \(\$ 7.60\) per machine-hour
C) \(\$ 2.10\) per machine-hour
D) \(\$ 27.71\) per machine-hour
252) Marciante Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Finishing \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 105,400\) & \(\$ 52,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & \(\$ 3.90\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

The estimated total manufacturing overhead for the Casting Department is closest to:
A) \(\$ 387,260\)
B) \(\$ 134,300\)
C) \(\$ 28,900\)
D) \(\$ 105,400\)
253) Marciante Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Finishing \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 105,400\) & \(\$ 52,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.90 \\
labor-hour
\end{tabular}

The estimated total manufacturing overhead for the Finishing Department is closest to:
A) \(\$ 71,500\)
B) \(\$ 52,000\)
C) \(\$ 34,794\)
D) \(\$ 19,500\)
254) Jurica Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Customizing \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 100,700\) & \(\$ 63,000\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & 3.90 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

The predetermined overhead rate for the Forming Department is closest to:
A) \(\$ 23.12\) per machine-hour
B) \(\$ 2.00\) per machine-hour
C) \(\$ 5.30\) per machine-hour
D) \(\$ 7.30\) per machine-hour
255) Jurica Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 100,700\) & \(\$ 63,000\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \(\$ 3.90\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

The predetermined overhead rate for the Customizing Department is closest to:
A) \(\$ 4.55\) per direct labor-hour
B) \(\$ 3.90\) per direct labor-hour
C) \(\$ 10.50\) per direct labor-hour
D) \(\$ 14.40\) per direct labor-hour
256) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per machine-hour & & &
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) \(\$ 4.70\)
B) \(\$ 7.40\)
C) \(\$ 6.48\)
D) \(\$ 3.70\)
257) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per machine-hour & & &
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Casting Department is closest to:
A) \(\$ 1.50\)
B) \(\$ 7.40\)
C) \(\$ 5.90\)
D) \(\$ 6.48\)
258) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per machine-hour & &
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) \(\$ 2.90\)
B) \(\$ 6.48\)
C) \(\$ 5.10\)
D) \(\$ 2.20\)
259) Feauto Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, I63E and E76I, about which it has provided the following data:
\begin{tabular}{lrr} 
& I63E & E76I \\
Direct materials per unit & \(\$ 19.40\) & \(\$ 58.20\) \\
Direct labor per unit & \(\$ 17.90\) & \(\$ 53.70\) \\
Direct labor-hours per unit & 0.90 & 2.70 \\
Annual production (units) & 90,000 & 30,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 4,467,600\) and the company's estimated total direct labor-hours for the year is 162,000 .

The company is considering using a form of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
Activities and Activity Measures
Assembling products (direct labor-hours)
Preparing batches (batches)
Product support (product variations)
Total


Costimated Overhead
Cost

The manufacturing overhead that would be applied to a unit of product I63E under the company's traditional costing system is closest to:
A) \(\$ 27.58\)
B) \(\$ 74.46\)
C) \(\$ 49.64\)
D) \(\$ 24.82\)
260) Feauto Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, I63E and E76I, about which it has provided the following data:
\begin{tabular}{lrr} 
& I63E & E76I \\
Direct materials per unit & \(\$ 19.90\) & \(\$ 54.40\) \\
Direct labor per unit & \(\$ 12.00\) & \(\$ 31.50\) \\
Direct labor-hours per unit & 0.80 & 2.10 \\
Annual production (units) & 30,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,063,250\) and the company's estimated total direct labor-hours for the year is 45,000 .The company is considering using a form of activity-based costing to determine its unit product costs for external reports.
Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures Estimated
Overhead Cost
Assembling products (direct labor- \$ 720,000
hours)
Preparing batches (batches)
263,250
Product support (product
1,080,000
variations)
Total

$\$ 2,063,250$ Expected Activity I63E		
24,000	21,000	E76I
1,080	675	1,755
2,115	1,485	3,600

```

The manufacturing overhead that would be applied to a unit of product I63E under the company's traditional costing system is closest to:
A) \(\$ 12.80\)
B) \(\$ 39.35\)
C) \(\$ 76.03\)
D) \(\$ 36.68\)
261) Feauto Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, I63E and E76I, about which it has provided the following data:
\begin{tabular}{lrr} 
& I63E & E76I \\
Direct materials per unit & \(\$ 19.40\) & \(\$ 88.20\) \\
Direct labor per unit & \(\$ 17.90\) & \(\$ 53.70\) \\
Direct labor-hours per unit & 0.90 & 2.70 \\
Annual production (units) & 90,000 & 30,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 4,467,600\) and the company's estimated total direct labor-hours for the year is 162,000 .The company is considering using a form of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{|c|c|c|}
\hline Activities and Activity Measures & \multicolumn{2}{|r|}{Estimated Overhead Cost} \\
\hline Assembling products (direct labor-hours) & & 240,000 \\
\hline Preparing batches (batches) & & 223,200 \\
\hline Product support (product variations) & & 04,400 \\
\hline Total & & 67,600 \\
\hline \multicolumn{3}{|c|}{Expected Activity} \\
\hline I63E & E76I & Total \\
\hline Direct labor-hours 81,000 & 81,000 & 162,000 \\
\hline Batches 1,200 & 650 & 1,850 \\
\hline Product variations 2,400 & 1,300 & 3,700 \\
\hline
\end{tabular}

The manufacturing overhead that would be applied to a unit of product E76I under the activitybased costing system is closest to:
A) \(\$ 68.38\)
B) \(\$ 27.58\)
C) \(\$ 148.92\)
D) \(\$ 25.32\)
262) Feauto Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, I63E and E76I, about which it has provided the following data:
\begin{tabular}{rr} 
I63E & \multicolumn{1}{l}{ E76I } \\
\(\$ 19.90\) & \(\$ 54.40\) \\
\(\$ 12.00\) & \(\$ 31.50\) \\
0.80 & 2.10 \\
30,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,063,250\) and the company's estimated total direct labor-hours for the year is 45,000 .

The company is considering using a form of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:


The manufacturing overhead that would be applied to a unit of product E76I under the activitybased costing system is closest to:
A) \(\$ 88.28\)
B) \(\$ 96.29\)
C) \(\$ 184.57\)
D) \(\$ 10.13\)
263) Coudriet Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, P93S and N40S, about which it has provided the following data:
\begin{tabular}{lrr} 
& P93S & N40S \\
Direct materials per unit & \(\$ 21.90\) & \(\$ 54.80\) \\
Direct labor per unit & \(\$ 8.80\) & \(\$ 13.20\) \\
Direct labor-hours per unit & 0.80 & 1.20 \\
Annual production (units) & 35,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,172,580\) and the company's estimated total direct labor-hours for the year is 46,000 . The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Direct labor support (direct
\$ 552,000
labor-hours)
Setting up machines (setups)
419,980
Part administration (part types)
Total
Direct labor-hours
28,000 18,000 46,000
Setups 2,162 1,656 3,818
Part types 1,886 2,116 4,002

```

The unit product cost of product P93S under the company's traditional costing system is closest to:
A) \(\$ 68.48\)
B) \(\$ 63.26\)
C) \(\$ 30.70\)
D) \(\$ 40.30\)
264) Coudriet Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, P93S and N40S, about which it has provided the following data:
\begin{tabular}{lrrr} 
& P93S & N40S \\
Direct materials per unit & \(\$ 21.90\) & \(\$ 54.80\) \\
Direct labor per unit & \(\$ 8.80\) & \(\$ 13.20\) \\
Direct labor-hours per unit & 0.80 & 1.20 \\
Annual production (units) & 35,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,172,580\) and the company's estimated total direct labor-hours for the year is 46,000 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Estimated
Direct labor support (direct
\$ 552,000
labor-hours)
Setting up machines (setups)
419,980
Part administration (part types)
Total
Direct labor-hours
28,000 18,000 46,000
Setups 2,162 1,656 3,818
Part types 1,886 2,116 4,002

```

The unit product cost of product N40S under the activity-based costing system is closest to:
A) \(\$ 68.00\)
B) \(\$ 68.86\)
C) \(\$ 124.68\)
D) \(\$ 136.86\)
265) Poma Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, R78S and N32Y, about which it has provided the following data:
\begin{tabular}{lrr} 
& R78S & N32Y \\
Direct materials per unit & \(\$ 27.20\) & \(\$ 54.70\) \\
Direct labor per unit & \(\$ 8.80\) & \(\$ 22.00\) \\
Direct labor-hours per unit & 0.4 & 1.0 \\
Annual production (units) & 35,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,427,040\) and the company's estimated total direct labor-hours for the year is 24,000 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Estimated
Overhead Cost
Assembling products (direct labor- \$ 672,000
hours)
Preparing batches (batches) 255,840
Product support (product 499,200
variations)
Total

$\$ 1,427,040$		
Expected Activity		
R78S	N32Y	Total
14,000	10,000	24,000
816	1,152	1,968
840	408	1,248

```

The unit product cost of product R78S under the company's traditional costing system is closest to:
A) \(\$ 36.00\)
B) \(\$ 59.83\)
C) \(\$ 47.20\)
D) \(\$ 59.78\)
266) Poma Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, R78S and N32Y, about which it has provided the following data:
\begin{tabular}{lrr} 
& R78S & N32Y \\
Direct materials per unit & \(\$ 27.20\) & \(\$ 54.70\) \\
Direct labor per unit & \(\$ 8.80\) & \(\$ 22.00\) \\
Direct labor-hours per unit & 0.4 & 1.0 \\
Annual production (units) & 35,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,427,040\) and the company's estimated total direct labor-hours for the year is 24,000 . The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Estimated
Overhead Cost
Assembling products (direct labor- \$ 672,000
hours)
Preparing batches (batches)
255,840
Product support (product 499,200
variations)
Total

	Expected Activity		
	R38S		
Direct labor-hours	14,000	10,000	24,000
Batches	816	1,152	1,968
Product variations	840	408	1,248

```

The unit product cost of product N32Y under the activity-based costing system is closest to:
A) \(\$ 136.00\)
B) \(\$ 76.70\)
C) \(\$ 59.30\)
D) \(\$ 136.16\)
267) Adelberg Corporation makes two products: Product A and Product B. Annual production and sales are 500 units of Product A and 1,000 units of Product B. The company has traditionally used direct labor-hours as the basis for applying all manufacturing overhead to products. Product A requires 0.4 direct labor-hours per unit and Product \(B\) requires 0.2 direct labor-hours per unit. The total estimated overhead for next period is \(\$ 68,756\). The company is considering switching to an activity-based costing system for the purpose of computing unit product costs for external reports. The new activity-based costing system would have three overhead activity cost pools-Activity 1, Activity 2, and General Factory--with estimated overhead costs and expected activity as follows:
Activity Cost Pool
Activity Cost Pool
Activity
Activity
Activity 2
Activity 2
General Factory
General Factory
Total
Total
(Note: The General Factory activity cost pool's costs are allocated on the basis of direct laborhours.)The predetermined overhead rate under the traditional costing system is closest to:
A) \(\$ 11.71\)
B) \(\$ 38.69\)
C) \(\$ 171.89\)
D) \(\$ 23.87\)
268) Adelberg Corporation makes two products: Product A and Product B. Annual production and sales are 500 units of Product A and 1,000 units of Product B. The company has traditionally used direct labor-hours as the basis for applying all manufacturing overhead to products. Product A requires 0.4 direct labor-hours per unit and Product \(B\) requires 0.2 direct labor-hours per unit. The total estimated overhead for next period is \(\$ 68,756\).The company is considering switching to an activity-based costing system for the purpose of computing unit product costs for external reports. The new activity-based costing system would have three overhead activity cost pools-Activity 1, Activity 2, and General Factory--with estimated overhead costs and expected activity as follows:
\begin{tabular}{lccccc} 
Activity Cost Pool & Estimated & \multicolumn{3}{c}{ Expected Activity } \\
\cline { 3 - 5 } & Overhead Costs & Product A & Product B & Total \\
Activity 1 & \(\$ 31,031\) & 1,000 & 300 & 1,300 \\
Activity 2 & 22,249 & 1,600 & 300 & 1,900
\end{tabular}

(Note: The General Factory activity cost pool's costs are allocated on the basis of direct laborhours.)

The overhead cost per unit of Product B under the traditional costing system is closest to:
A) \(\$ 2.34\)
B) \(\$ 7.74\)
C) \(\$ 4.77\)
D) \(\$ 34.38\)
269) Adelberg Corporation makes two products: Product A and Product B. Annual production and sales are 500 units of Product A and 1,000 units of Product B. The company has traditionally used direct labor-hours as the basis for applying all manufacturing overhead to products. Product A requires 0.4 direct labor-hours per unit and Product \(B\) requires 0.2 direct labor-hours per unit. The total estimated overhead for next period is \(\$ 68,756\). The company is considering switching to an activity-based costing system for the purpose of computing unit product costs for external reports. The new activity-based costing system would have three overhead activity cost pools-Activity 1, Activity 2, and General Factory--with estimated overhead costs and expected activity as follows:

\begin{tabular}{cccc} 
Estimated & \multicolumn{3}{c}{ Expected Activity } \\
\cline { 2 - 4 } Overhead Costs & Product A & Product B & Total \\
\(\$ 31,031\) & 1,000 & 300 & 1,300 \\
22,249 & 1,600 & 300 & 1,900 \\
15,476 & 200 & 200 & 400
\end{tabular}
(Note: The General Factory activity cost pool's costs are allocated on the basis of direct laborhours.)

The predetermined overhead rate (i.e., activity rate) for Activity 2 under the activity-based costing system is closest to:
A) \(\$ 13.91\)
B) \(\$ 11.71\)
C) \(\$ 74.16\)
D) \(\$ 36.19\)
270) Adelberg Corporation makes two products: Product A and Product B. Annual production and sales are 2,000 units of Product A and 2,000 units of Product B. The company has traditionally used direct labor-hours as the basis for applying all manufacturing overhead to products. Product A requires 0.4 direct labor-hours per unit and Product B requires 0.2 direct labor-hours per unit. The total estimated overhead for next period is \(\$ 107,650\). The company is considering switching to an activity-based costing system for the purpose of computing unit product costs for external reports. The new activity-based costing system would have three overhead activity cost pools--Activity 1, Activity 2, and General Factory--with estimated overhead costs and expected activity as follows:
Activity Cost Pool
Activity Cost Pool
\(\begin{array}{lr}\text { Activity } 1 & \$ 45,150 \\ \text { Activity } 2 & 21,700 \\ \text { General Factory } & 40,800 \\ & \$ 107,650\end{array}\)
(Note: The General Factory activity cost pool's costs are allocated on the basis of direct laborhours.) The overhead cost per unit of Product B under the activity-based costing system is closest to:
A) \(\$ 37.00\)
B) \(\$ 19.20\)
C) \(\$ 26.00\)
D) \(\$ 18.20\)
271) Adelberg Corporation makes two products: Product A and Product B. Annual production and sales are 500 units of Product A and 1,000 units of Product B. The company has traditionally used direct labor-hours as the basis for applying all manufacturing overhead to products. Product A requires 0.4 direct labor-hours per unit and Product \(B\) requires 0.2 direct labor-hours per unit. The total estimated overhead for next period is \(\$ 68,756\).The company is considering switching to an activity-based costing system for the purpose of computing unit product costs for external reports. The new activity-based costing system would have three overhead activity cost pools-Activity 1, Activity 2, and General Factory--with estimated overhead costs and expected activity as follows:
\begin{tabular}{lcccc} 
Activity Cost Pool & Estimated & \multicolumn{3}{c}{ Expected Activity } \\
\cline { 3 - 5 } & Overhead Costs & \multicolumn{3}{c}{ Product A } \\
Product B & Total \\
Activity 1 & \(\$ 31,031\) & 1,000 & 300 & 1,300 \\
Activity 2 & 22,249 & 1,600 & 300 & 1,900 \\
General Factory & 15,476 & & 200 & 200 \\
Total & \(\$ 68,756\) & & & 400
\end{tabular}
(Note: The General Factory activity cost pool's costs are allocated on the basis of direct laborhours.)

The overhead cost per unit of Product B under the activity-based costing system is closest to:
A) \(\$ 45.84\)
B) \(\$ 7.74\)
C) \(\$ 34.38\)
D) \(\$ 18.41\)
272) Njombe Corporation manufactures a variety of products. In the past, Njombe has been using a traditional costing system in which the predetermined overhead rate was \(150 \%\) of direct labor cost. Selling prices had been set by multiplying total product cost by \(200 \%\). Sensing that this system was distorting costs and selling prices, Njombe has decided to switch to an activitybased costing system for manufacturing overhead costs that uses the three activity cost pools listed below. Selling prices are still to be set at \(200 \%\) of unit product cost under the new system. Information on these cost pools for next year are as follows:
\begin{tabular}{cccc} 
Activity Cost Pool & Activity & Estimated & Estimated \\
Machine Setups & Measure & Activity & Overhead Cost \\
& Number of & 400 & \(\$ 150,000\)
\end{tabular}
```

Quality Control Number of 1,500 \$ 180,000
inspections
Machine 30,000 \$ 480,000
hours

```

Information (on a per unit basis) related to three popular products at Njombe are as follows:
Model \#19 Model \#36 Model \#58
\begin{tabular}{lrrrr} 
Direct material cost & \(\$ 400\) & \(\$ 540\) & \(\$ 10\) \\
Direct labor cost & \(\$ 810\) & \(\$ 600\) & \(\$ 20\) \\
Number of setups & 2 & 3 & 1 \\
Number of inspections & 1 & 3 & 1 \\
Number of machine hours & 4 & 8 & 10
\end{tabular}

Under the traditional costing system, what would be the selling price of one unit of Model \#36?
A) \(\$ 2,536\)
B) \(\$ 2,712\)
C) \(\$ 4,080\)
D) \(\$ 5,506\)
273) Njombe Corporation manufactures a variety of products. In the past, Njombe has been using a traditional costing system in which the predetermined overhead rate was \(150 \%\) of direct labor cost. Selling prices had been set by multiplying total product cost by \(200 \%\). Sensing that this system was distorting costs and selling prices, Njombe has decided to switch to an activitybased costing system for manufacturing overhead costs that uses the three activity cost pools listed below. Selling prices are still to be set at \(200 \%\) of unit product cost under the new system. Information on these cost pools for next year are as follows:
\begin{tabular}{clcr} 
Activity Cost Pool & \begin{tabular}{l} 
Activity \\
Measure
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Activity
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Overhead Cost
\end{tabular} \\
Machine Setups & \begin{tabular}{l} 
Number of \\
setups
\end{tabular} & 400 & \(\$ 150,000\) \\
Quality Control & \begin{tabular}{l} 
Number of \\
inspections \\
Other Overhead
\end{tabular} & \begin{tabular}{l} 
Machine \\
hours
\end{tabular} & 1,500
\end{tabular}

Information (on a per unit basis) related to three popular products at Njombe are as follows:
\begin{tabular}{lrrrr} 
Direct material cost & \(\$ 400\) & \(\$ 540\) & \(\$ 10\) \\
Direct labor cost & \(\$ 810\) & \(\$ 600\) & \(\$ 20\) \\
Number of setups & 2 & 3 & 1 \\
Number of inspections & 1 & 3 & 1 \\
Number of machine hours & 4 & 8 & 10
\end{tabular}

Under the activity-based costing system, what would be the selling price of one unit of Model \#36?
A) \(\$ 2,536\)
B) \(\$ 2,712\)
C) \(\$ 4,080\)
D) \(\$ 5,506\)
274) Njombe Corporation manufactures a variety of products. In the past, Njombe has been using a traditional costing system in which the predetermined overhead rate was \(150 \%\) of direct labor cost. Selling prices had been set by multiplying total product cost by \(200 \%\). Sensing that this system was distorting costs and selling prices, Njombe has decided to switch to an activitybased costing system for manufacturing overhead costs that uses the three activity cost pools listed below. Selling prices are still to be set at \(200 \%\) of unit product cost under the new system. Information on these cost pools for next year are as follows:
\begin{tabular}{clcr} 
Activity Cost Pool & \begin{tabular}{c} 
Activity \\
Measure
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Activity
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Overhead Cost
\end{tabular} \\
Machine Setups & \begin{tabular}{l} 
Number of \\
setups
\end{tabular} & 400 & \(\$ 150,000\) \\
Quality Control & \begin{tabular}{l} 
Number of \\
inspections
\end{tabular} & 1,500 & \(\$ 180,000\) \\
Other Overhead & \begin{tabular}{l} 
Machine \\
hours
\end{tabular} & 30,000 & \(\$ 480,000\)
\end{tabular}

Information (on a per unit basis) related to three popular products at Njombe are as follows:
Model \#19 Model \#36 Model \#58
\begin{tabular}{lrrrr} 
Direct material cost & \(\$ 400\) & \(\$ 540\) & \(\$ 10\) \\
Direct labor cost & \(\$ 810\) & \(\$ 600\) & \(\$ 220\) \\
Number of setups & 2 & 3 & 1 \\
Number of inspections & 1 & 3 & 1 \\
Number of machine hours & 4 & 8 & 10
\end{tabular}

In comparing the traditional system with the activity-based costing system, which of Njombe's Models had higher unit product costs under the traditional system?
A) \(\# 19\)
B) \#58
C) \#19 and \#58
D) \#36 and \#58
275) Look Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, N06D and M09K, about which it has provided the following data:
\begin{tabular}{lrr} 
& N06D & M09K \\
Direct materials per unit & \(\$ 27.20\) & \(\$ 62.40\) \\
Direct labor per unit & \(\$ 11.00\) & \(\$ 29.00\) \\
Direct labor-hours per unit & 0.20 & 1.00 \\
Annual production (units) & 54,000 & 19,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,807,648\) and the company's estimated total direct labor-hours for the year is 29,800 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{lll} 
Activities and Activity Measures & \multicolumn{2}{c}{\(\begin{array}{c}\text { Estimated } \\
\text { Overhead } \\
\text { Cost }\end{array}\)} \\
Supporting direct labor (direct & \(\$ 834,400\)
\end{tabular}\(]\)

The manufacturing overhead that would be applied to a unit of product N06D under the company's traditional costing system is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 23.66\)
B) \(\$ 12.13\)
C) \(\$ 15.65\)
D) \(\$ 7.12\)
276) Look Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, N06D and M09K, about which it has provided the following data:
\begin{tabular}{lrr} 
& N06D & M09K \\
Direct materials per unit & \(\$ 17.70\) & \(\$ 62.50\) \\
Direct labor per unit & \(\$ 5.00\) & \(\$ 16.00\) \\
Direct labor-hours per unit & 0.50 & 1.60 \\
Annual production (units) & 40,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,532,200\) and the company's estimated total direct labor-hours for the year is 44,000 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
        Estimated
        Overhead
        Cost
Supporting direct labor (direct \$880,000
labor-hours)
labor-hours)
Setting up machines (setups)
Setting up machines (setups)
    376,200
Parts administration (part types)
Parts administration (part types)
Total
Total
Direct labor-hours
\begin{tabular}{ccc}
\hline \hline \multicolumn{3}{c}{ Expected Activity } \\
\hline N06D & M09K & Total \\
20,000 & 24,000 & 44,000 \\
1,408 & 1,100 & 2,508 \\
1,540 & 1,012 & 2,552
\end{tabular}

The manufacturing overhead that would be applied to a unit of product N06D under the company's traditional costing system is closest to:
A) \(\$ 28.78\)
B) \(\$ 10.00\)
C) \(\$ 63.31\)
D) \(\$ 34.53\)
277) Look Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, N06D and M09K, about which it has provided the following data:
\begin{tabular}{lrr} 
& N06D & M09K \\
Direct materials per unit & \(\$ 31.80\) & \(\$ 63.30\) \\
Direct labor per unit & \(\$ 10.00\) & \(\$ 27.00\) \\
Direct labor-hours per unit & 0.20 & 1.00 \\
Annual production (units) & 45,600 & 21,100
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,632,986\) and the company's estimated total direct labor-hours for the year is 30,220 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{|c|c|c|c|}
\hline Activities and Activity Measures & Estimated Overhead Cost & & \\
\hline Supporting direct labor (direct labor-hours) & \$ 695,060 & & \\
\hline Setting up machines (setups) & 551,702 & & \\
\hline Parts administration (part types) & 386,224 & & \\
\hline Total & \$ 1,632,986 & & \\
\hline & Expe & d Activ & \\
\hline & N06D & M09K & Total \\
\hline Direct labor-hours & 9,120 & 21,100 & 30,220 \\
\hline Setups & 1,450 & 1,024 & 2,474 \\
\hline Part types & 677 & 279 & 956 \\
\hline
\end{tabular}

The manufacturing overhead that would be applied to a unit of product M09K under the activitybased costing system is closest to:
A) \(\$ 39.16\)
B) \(\$ 49.71\)
C) \(\$ 16.76\)
D) \(\$ 80.22\)
278) Look Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, N06D and M09K, about which it has provided the following data:
\begin{tabular}{lrr} 
& N06D & M09K \\
Direct materials per unit & \(\$ 17.70\) & \(\$ 62.50\) \\
Direct labor per unit & \(\$ 5.00\) & \(\$ 16.00\) \\
Direct labor-hours per unit & 0.50 & 1.60 \\
Annual production (units) & 40,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,532,200\) and the company's estimated total direct labor-hours for the year is 44,000 .The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{lll} 
Activities and Activity Measures & \multicolumn{2}{c}{\(\begin{array}{c}\text { Estimated } \\
\text { Overhead } \\
\text { Cost }\end{array}\)} \\
Supporting direct labor (direct & \(\$ 880,000\)
\end{tabular}\(]\)

The manufacturing overhead that would be applied to a unit of product M09K under the activitybased costing system is closest to:
A) \(\$ 76.73\)
B) \(\$ 92.08\)
C) \(\$ 11.00\)
D) \(\$ 168.81\)
279) Risser Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$19,988
Capacity of the jointer 380 hours
Actual results:
Sales \$62,400
Direct materials \$16,900
Direct labor \$15,260
Actual total fixed manufacturing overhead \$19,988
Selling and administrative expense \$11,400
Actual hours of jointer use 340 hours

```

The gross margin that would be reported on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 956\)
B) \(\$ 12,356\)
C) \(\$ 23,756\)
D) \(\$ 62,400\)
280) Risser Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer. Additional information is provided below for the most recent month:

Estimates at the beginning of the month:
```

 Estimated total fixed manufacturing overhead $14,256
 Capacity of the jointer
 Actual results:
Sales
\$62,310
Direct materials \$14,100
Direct labor
\$16,000
Actual total fixed manufacturing overhead \$14,256
Selling and administrative expense \$8,900
Actual hours of jointer use 220 hours

```

The gross margin that would be reported on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 10,242\)
B) \(\$ 19,142\)
C) \(\$ 17,954\)
D) \(\$ 62,310\)
281) The management of Garn Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated activity for the coming year. The Corporation's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated activity for the upcoming year is 60,400 machine-hours. Capacity is 76,400 machine-hours. All of the manufacturing overhead is fixed and is \(\$ 3,361,600\) per year within the range of 60,400 to 76,400 machine-hours. If the Corporation bases its predetermined overhead rate on capacity but the actual level of activity for the year turns out to be 61,200 machine-hours, the cost of unused capacity shown on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 43,942\)
B) \(\$ 712,742\)
C) \(\$ 668,800\)
D) \(\$ 44,525\)
282) The management of Garn Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated activity for the coming year. The Corporation's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated activity for the upcoming year is 69,000 machine-hours. Capacity is 85,000 machine-hours. All of the manufacturing overhead is fixed and is \(\$ 4,105,500\) per year within the range of 69,000 to 85,000 machine-hours. If the Corporation bases its predetermined overhead rate on capacity but the actual level of activity for the year turns out to be 69,700 machine-hours, the cost of unused capacity shown on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 772,800\)
B) \(\$ 780,640\)
C) \(\$ 738,990\)
D) \(\$ 41,650\)
283) The management of Krach Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 10,000 machine-hours. Capacity is 16,000 machine-hours and the actual level of activity for the year is assumed to be 8,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 40,000\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 6,000\)
B) \(\$ 20,000\)
C) \(\$ 5,000\)
D) \(\$ 25,000\)
284) The management of Krach Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 10,000 machine-hours. Capacity is 12,000 machine-hours and the actual level of activity for the year is assumed to be 9,500 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 12,000\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year. If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 2,000\)
B) \(\$ 2,500\)
C) \(\$ 1,900\)
D) \(\$ 600\)
285) The management of Winterroth Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The Corporation's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours.
\begin{tabular}{lcrr} 
& \begin{tabular}{c} 
Estimated at the \\
Beginning of the \\
Year
\end{tabular} & Capacity & Actual \\
Machine-hours & 76,000 & 86,000 & 72,000 \\
Manufacturing & \(\$ 1,820,620\) & \(\$ 1,820,620\) & \(\$ 1,820,620\) \\
overhead & & &
\end{tabular}

If the Corporation bases its predetermined overhead rate on capacity, then as shown on the income statement prepared for internal management purposes, the cost of unused capacity would be closest to:
A) \(\$ 211,700\)
B) \(\$ 296,380\)
C) \(\$ 234,000\)
D) \(\$ 95,822\)
286) The management of Winterroth Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The Corporation's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours.
\begin{tabular}{rrr}
\begin{tabular}{c} 
Estimated at the \\
Beginning of the
\end{tabular} & Capacity & Actual \\
Year & \\
53,000 & 63,000 & 49,000 \\
\(\$ 1,803,060\) & \(\$ 1,803,060\) & \(\$ 1,803,060\)
\end{tabular}
\begin{tabular}{lrrr} 
Machine-hours & 53,000 & 63,000 & 49,000 \\
Manufacturing & \(\$ 1,803,060\) & \(\$ 1,803,060\) & \(\$ 1,803,060\)
\end{tabular}

If the Corporation bases its predetermined overhead rate on capacity, then as shown on the income statement prepared for internal management purposes, the cost of unused capacity would be closest to:
A) \(\$ 286,200\)
B) \(\$ 400,680\)
C) \(\$ 264,600\)
D) \(\$ 136,080\)
287) Dowty Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated lathe. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$19,964
Capacity of the lathe 280 hours
Actual results:
Actual total fixed manufacturing overhead \$19,964
Actual hours of lathe use 230 hours
The manufacturing overhead applied is closest to:

```
A) \(\$ 19,964\)
B) \(\$ 16,399\)
C) \(\$ 7,639\)
D) \(\$ 9,300\)
288) Rapier Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer. Additional information is provided below for the most recent month:

Estimates at the beginning of the month:
```

 Estimated total fixed manufacturing overhead $3,496
 Capacity of the jointer 190 hours
 Actual results:

```
    Actual total fixed manufacturing overhead \$3,496
    Actual hours of jointer use
    160 hours

The predetermined overhead rate based on hours at capacity is closest to:
A) \(\$ 59.35\) per hour
B) \(\$ 50.10\) per hour
C) \(\$ 21.85\) per hour
D) \(\$ 18.40\) per hour
289) Rapier Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$3,740
Capacity of the jointer 200 hours
Actual results:
Actual total fixed manufacturing overhead \$3,740

```

Actual hours of jointer use
The predetermined overhead rate based on hours at capacity is closest to:
A) \(\$ 58.24\) per hour
B) \(\$ 49.50\) per hour
C) \(\$ 22.00\) per hour
D) \(\$ 18.70\) per hour
290) Traeger Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated bandsaw. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$26,460
Capacity of the bandsaw 360 hours
Actual results:
Actual total fixed manufacturing overhead \$26,460
Actual hours of bandsaw use 340 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 1,470\)
B) \(\$ 13,230\)
C) \(\$ 0\)
D) \(\$ 14,700\)
291) Traeger Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated bandsaw. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$26,936
Capacity of the bandsaw 280
280 hours

```

\section*{Actual results:}
```

Actual total fixed manufacturing overhead
\$26,936
Actual hours of bandsaw use
260 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 1,924\)
B) \(\$ 18,136\)
C) \(\$ 0\)
D) \(\$ 18,765\)
292) Mausser Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$24,885
Capacity of the jointer
Actual results:
Sales \$64,500
Direct materials \$13,000
Direct labor \$13,160
Actual total fixed manufacturing overhead \$24,885
Selling and administrative expense \$10,800
Actual hours of jointer use 410 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 0\)
B) \(\$ 14,085\)
C) \(\$ 2,212\)
D) \(\$ 16,297\)
293) Mausser Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$11,648
Capacity of the jointer
Actual results:
Sales
\$52,760
Direct materials
Direct labor
\$13,300
\$16,000
Actual total fixed manufacturing overhead \$11,648
Selling and administrative expense \$9,300
Actual hours of jointer use
260 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 0\)
B) \(\$ 2,348\)
C) \(\$ 832\)
D) \(\$ 3,012\)
294) Mausser Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$11,648
Capacity of the jointer 280 hours
Actual results:
Sales \$52,760
Direct materials \$13,300
Direct labor \$16,000
Actual total fixed manufacturing overhead \$11,648

```
```

Selling and administrative expense
\$9,300

```

Actual hours of jointer use
260 hours
The gross margin that would be reported on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 52,760\)
B) \(\$ 3,344\)
C) \(\$ 12,644\)
D) \(\$ 11,812\)
295) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
\(\begin{array}{lr}\text { Estimates at the beginning of the month: } \\ \text { Estimated total fixed manufacturing overhead } & \\ \text { Capacity of the shaper } & \$ 33,075 \\ \text { Actual results: } & 270 \text { hours } \\ \text { Sales } & \$ 79,268 \\ \text { Direct materials } & \$ 12,200 \\ \text { Direct labor } & \$ 17,400 \\ \text { Actual total fixed manufacturing overhead } & \$ 33,075 \\ \text { Selling and administrative expense } & \$ 8,100 \\ \text { Actual hours of shaper use }\end{array}\)
The predetermined overhead rate based on hours at capacity is closest to:
A) \(\$ 30.00\) per hour
B) \(\$ 122.50\) per hour
C) \(\$ 32.40\) per hour
D) \(\$ 132.30\) per hour
296) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:

Estimates at the beginning of the month:

Estimated total fixed manufacturing overhead
Capacity of the shaper
Actual results:

\section*{Sales}

Direct materials
Direct labor
Actual total fixed manufacturing overhead
Selling and administrative expense
Actual hours of shaper use
\(\$ 47,100\)
300 hours

The manufacturing overhead applied is closest to:
A) \(\$ 16,933\)
B) \(\$ 47,100\)
C) \(\$ 3,200\)
D) \(\$ 40,820\)
297) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$33,075
Capacity of the shaper 270 hours
Actual results:
Sales
\$79,268
Direct materials \$12,200
Direct labor
Actual total fixed manufacturing overhead \$33,075
Selling and administrative expense \$8,100

```

\section*{Actual hours of shaper use}

The manufacturing overhead applied is closest to:
A) \(\$ 7,500\)
B) \(\$ 33,075\)
C) \(\$ 8,100\)
D) \(\$ 30,625\)
298) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$36,900
Capacity of the shaper 300 hours
Actual results:
Sales
\$104,000
Direct materials \$11,500
Direct labor \$16,500
Actual total fixed manufacturing overhead \$36,900
Selling and administrative expense \$4,900
Actual hours of shaper use
270 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 3,690\)
B) \(\$ 0\)
C) \(\$ 32,000\)
D) \(\$ 36,900\)
299) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$33,075
Capacity of the shaper 270 hours
Actual results:
Sales \$79,268
Direct materials \$12,200
Direct labor
Actual total fixed manufacturing overhead \$33,075
Selling and administrative expense \$8,100
Actual hours of shaper use
250 hours

```

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 2,450\)
B) \(\$ 0\)
C) \(\$ 24,975\)
D) \(\$ 25,575\)
300) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
\begin{tabular}{lr} 
Estimates at the beginning of the month: \\
Estimated total fixed manufacturing overhead & \\
Capacity of the shaper & 270 hours \\
Actual results: & \\
Sales & \(\$ 127,000\) \\
Direct materials & \(\$ 11,600\) \\
Direct labor & \(\$ 16,600\) \\
Actual total fixed manufacturing overhead & \(\$ 43,470\) \\
Selling and administrative expense & \(\$ 3,100\) \\
Actual hours of shaper use
\end{tabular}

The gross margin that would be reported on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 58,550\)
B) \(\$ 52,230\)
C) \(\$ 55,450\)
D) \(\$ 127,000\)
301) Coble Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated shaper. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$33,075
Capacity of the shaper 270 hours
Actual results:
Sales \$79,268
Direct materials \$12,200
Direct labor \$17,400
Actual total fixed manufacturing overhead \$33,075
Selling and administrative expense \$8,100
Actual hours of shaper use 250 hours

```

The gross margin that would be reported on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 19,043\)
B) \(\$ 16,593\)
C) \(\$ 10,943\)
D) \(\$ 79,268\)
302) Dunnings Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated router.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:

```
```

Estimated total fixed manufacturing overhead \$10,998
Capacity of the router 180 hours

```
Actual results:
Actual total fixed manufacturing overhead \(\$ 10,998\)
Actual hours of router use 130 hours

The predetermined overhead rate based on hours at capacity is closest to:
A) \(\$ 84.60\) per hour
B) \(\$ 61.10\) per hour
C) \(\$ 61.54\) per hour
D) \(\$ 44.44\) per hour
303) Dunnings Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated router.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$10,998
Capacity of the router 180 hours
Actual results:
Actual total fixed manufacturing overhead \$10,998
Actual hours of router use 130 hours

```

The manufacturing overhead applied is closest to:
A) \(\$ 7,943\)
B) \(\$ 8,000\)
C) \(\$ 5,778\)
D) \(\$ 10,998\)
304) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 11,000 machine-hours. Capacity is 14,000 machine-hours and the actual level of activity for the year is assumed to be 9,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 15,070\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the predetermined overhead rate is closest to:
A) \(\$ 1.37\) per machine-hour
B) \(\$ 1.54\) per machine-hour
C) \(\$ 1.08\) per machine-hour
D) \(\$ 1.55\) per machine-hour
305) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 9,000 machine-hours. Capacity is 12,000 machine-hours and the actual level of activity for the year is assumed to be 7,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 11,880\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the predetermined overhead rate is closest to:
A) \(\$ 1.32\) per machine-hour
B) \(\$ 1.49\) per machine-hour
C) \(\$ 0.99\) per machine-hour
D) \(\$ 1.54\) per machine-hour
306) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 20,000 machine-hours. Capacity is 23,000 machine-hours and the actual level of activity for the year is assumed to be 18,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 29,000\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 1.55\) per machine-hour
B) \(\$ 1.45\) per machine-hour
C) \(\$ 1.62\) per machine-hour
D) \(\$ 1.26\) per machine-hour
307) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 9,000 machine-hours. Capacity is 12,000 machine-hours and the actual level of activity for the year is assumed to be 7,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 11,880\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 1.54\) per machine-hour
B) \(\$ 1.32\) per machine-hour
C) \(\$ 1.49\) per machine-hour
D) \(\$ 0.99\) per machine-hour
308) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 28,000 machine-hours. Capacity is 31,000 machine-hours and the actual level of activity for the year is assumed to be 26,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 42,560\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes? (Round intermediate calculations to 2 decimal places.)
A) \(\$ 3,540.00\)
B) \(\$ 4,005.00\)
C) \(\$ 1,976.00\)
D) \(\$ 5,981.00\)
309) The management of Bullinger Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 9,000 machine-hours. Capacity is 12,000 machine-hours and the actual level of activity for the year is assumed to be 7,700 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 11,880\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 2,970\)
B) \(\$ 2,541\)
C) \(\$ 1,716\)
D) \(\$ 4,257\)
310) Zackery Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated lathe.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$7,452
Capacity of the lathe 230 hours
Actual results:
Actual total fixed manufacturing overhead
\$7,452
Actual hours of lathe use
180 hours

```

The manufacturing overhead applied is closest to:
A) \(\$ 9,900\)
B) \(\$ 5,832\)
C) \(\$ 7,748\)
D) \(\$ 7,452\)
311) Zackery Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated lathe.
Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$7,452
Capacity of the lathe 230 hours
Actual results:

```
    Actual total fixed manufacturing overhead
    \$7,452
    Actual hours of lathe use
    180 hours

The cost of unused capacity that would be reported as a period expense on the income statement prepared for internal management purposes would be closest to:
A) \(\$ 2,448\)
B) \(\$ 296\)
C) \(\$ 0\)
D) \(\$ 1,620\)
312) The management of Holdaway Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 71,100 machine-hours. Capacity is 80,100 machine-hours and the actual level of activity for the year is assumed to be 67,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 5,701,518\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 80.19\) per machine-hour
B) \(\$ 78.00\) per machine-hour
C) \(\$ 85.10\) per machine-hour
D) \(\$ 71.18\) per machine-hour
313) The management of Holdaway Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 79,000 machine-hours. Capacity is 88,000 machine-hours and the actual level of activity for the year is assumed to be 74,900 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 5,700,640\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 72.16\) per machine-hour
B) \(\$ 70.38\) per machine-hour
C) \(\$ 76.11\) per machine-hour
D) \(\$ 64.78\) per machine-hour
314) The management of Holdaway Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 79,000 machine-hours. Capacity is 88,000 machine-hours and the actual level of activity for the year is assumed to be 74,900 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 5,700,640\) per year. For simplicity, it is assumed that this is the estimated manufacturing overhead for the year as well as the manufacturing overhead at capacity. It is further assumed that this is also the actual amount of manufacturing overhead for the year.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 295,856\)
B) \(\$ 848,618\)
C) \(\$ 583,020\)
D) \(\$ 552,762\)
315) The management of Featheringham Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 52,200 machine-hours. Capacity is 65,200 machine-hours and the actual level of activity for the year is assumed to be 49,200 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 2,836,852\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Z77W which required 570 machine-hours. If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 54.35\) per machine-hour
B) \(\$ 43.51\) per machine-hour
C) \(\$ 58.34\) per machine-hour
D) \(\$ 52.34\) per machine-hour
316) The management of Featheringham Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 62,000 machine-hours. Capacity is 75,000 machine-hours and the actual level of activity for the year is assumed to be 59,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 2,836,500\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Z77W which required 410 machine-hours.If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 48.08\) per machine-hour
B) \(\$ 37.82\) per machine-hour
C) \(\$ 48.91\) per machine-hour
D) \(\$ 45.75\) per machine-hour
317) The management of Featheringham Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 58,400 machine-hours. Capacity is 71,400 machine-hours and the actual level of activity for the year is assumed to be 55,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 2,836,008\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Z77W which required 340 machine-hours.If the company bases its predetermined overhead rate on capacity, then the amount of manufacturing overhead charged to job Z77W is closest to:
A) \(\$ 13,504.80\)
B) \(\$ 16,799.40\)
C) \(\$ 17,744.95\)
D) \(\$ 17,405.10\)
318) The management of Featheringham Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 62,000 machine-hours. Capacity is 75,000 machine-hours and the actual level of activity for the year is assumed to be 59,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 2,836,500\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Z77W which required 410 machine-hours.If the company bases its predetermined overhead rate on capacity, then the amount of manufacturing overhead charged to job Z77W is closest to:
A) \(\$ 15,506.20\)
B) \(\$ 19,065.00\)
C) \(\$ 20,051.12\)
D) \(\$ 19,711.27\)
319) The management of Featheringham Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 62,000 machine-hours. Capacity is 75,000 machine-hours and the actual level of activity for the year is assumed to be 59,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 2,836,500\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Z77W which required 410 machine-hours.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 137,250\)
B) \(\$ 605,120\)
C) \(\$ 491,660\)
D) \(\$ 467,870\)
320) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 60,000 machine-hours. Capacity is 80,000 machine-hours and the actual level of activity for the year is assumed to be 65,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 662,400\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 310 machine-hours.

If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the predetermined overhead rate is closest to:
A) \(\$ 10.19\) per machine-hour
B) \(\$ 7.64\) per machine-hour
C) \(\$ 11.04\) per machine-hour
D) \(\$ 8.28\) per machine-hour
321) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 82,000 machine-hours and the actual level of activity for the year is assumed to be 72,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,130,340\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 470 machine-hours.If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the predetermined overhead rate is closest to:
A) \(\$ 57.05\) per machine-hour
B) \(\$ 60.83\) per machine-hour
C) \(\$ 59.86\) per machine-hour
D) \(\$ 50.37\) per machine-hour
322) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 50,000 machine-hours. Capacity is 63,000 machine-hours and the actual level of activity for the year is assumed to be 55,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 1,858,500\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 340 machine-hours.If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the amount of manufacturing overhead charged to Job Q20L is closest to:
A) \(\$ 10,030.00\)
B) \(\$ 11,488.91\)
C) \(\$ 9,118.18\)
D) \(\$ 12,637.80\)
323) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 82,000 machine-hours and the actual level of activity for the year is assumed to be 72,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,130,340\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 470 machine-hours.If the company bases its predetermined overhead rate on the estimated amount of the allocation base for the upcoming year, then the amount of manufacturing overhead charged to Job Q20L is closest to:
A) \(\$ 23,673.90\)
B) \(\$ 26,812.98\)
C) \(\$ 28,589.98\)
D) \(\$ 28,134.20\)
324) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 82,000 machine-hours and the actual level of activity for the year is assumed to be 72,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,130,340\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 470 machine-hours. If the company bases its predetermined overhead rate on capacity, then the predetermined overhead rate is closest to:
A) \(\$ 57.05\) per machine-hour
B) \(\$ 59.86\) per machine-hour
C) \(\$ 50.37\) per machine-hour
D) \(\$ 60.83\) per machine-hour
325) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 58,000 machine-hours. Capacity is 78,000 machine-hours and the actual level of activity for the year is assumed to be 75,500 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,704,960\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 440 machine-hours.If the company bases its predetermined overhead rate on capacity, then the amount of manufacturing overhead charged to Job Q20L is closest to:
A) \(\$ 35,692.80\)
B) \(\$ 20,388.96\)
C) \(\$ 27,419.63\)
D) \(\$ 26,540.80\)
326) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 82,000 machine-hours and the actual level of activity for the year is assumed to be 72,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,130,340\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 470 machine-hours.If the company bases its predetermined overhead rate on capacity, then the amount of manufacturing overhead charged to Job Q20L is closest to:
A) \(\$ 28,589.98\)
B) \(\$ 26,592.60\)
C) \(\$ 26,812.98\)
D) \(\$ 23,673.90\)
327) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 92,000 machine-hours and the actual level of activity for the year is assumed to be 75,000 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 772,800\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 380 machine-hours.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 193,200\)
B) \(\$ 67,200\)
C) \(\$ 61,824\)
D) \(\$ 142,800\)
328) The management of Plitt Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 69,000 machine-hours. Capacity is 82,000 machine-hours and the actual level of activity for the year is assumed to be 72,400 machine-hours. All of the manufacturing overhead is fixed and both the estimated amount at the beginning of the year and the actual amount at the end of the year are assumed to be \(\$ 4,130,340\) per year. It is assumed that a number of jobs were worked on during the year, one of which was Job Q20L which required 470 machine-hours.If the company bases its predetermined overhead rate on capacity, what would be the cost of unused capacity reported on the income statement prepared for internal management purposes?
A) \(\$ 654,810\)
B) \(\$ 687,076\)
C) \(\$ 547,669\)
D) \(\$ 483,552\)

ESSAY. Write your answer in the space provided or on a separate sheet of paper.
329) Linnear Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
30,000
Total fixed manufacturing overhead cost \$144,000

```
Variable manufacturing overhead per machine-hour \$ 4.00

Required:Calculate the estimated total manufacturing overhead for the year.
330) Dallman Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 287,000\), and a variable manufacturing overhead rate of \(\$ 3.50\) per machinehour.Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.
331) Henkes Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 69,000 labor-hours. The estimated variable manufacturing overhead was \(\$ 7.30\) per labor-hour and the estimated total fixed manufacturing overhead was \(\$ 1,380,000\). The actual labor-hours for the year turned out to be 73,000 laborhours.Required:Compute the company's predetermined overhead rate for the recently completed year. (Round your answer to 2 decimal places.)
332) Crowson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total fixed manufacturing overhead cost \$390,000
Variable manufacturing overhead per machine-hour
    \(\$ 3.60\)

Required:Calculate the predetermined overhead rate for the year.
333) Cannizzaro Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 248,000\), and a variable manufacturing overhead rate of \(\$ 3.80\) per machinehour.Required:Calculate the predetermined overhead rate for the year.
334) Quiet Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 152,000\), and a variable manufacturing overhead rate of \(\$ 3.10\) per machine-hour.Required:Calculate the estimated total manufacturing overhead for the year.
335) Florek Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total fixed manufacturing overhead cost
\$31,000
Variable manufacturing overhead per direct labor-hour \$ 2.50

```

Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.
336) Meenach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 54,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 54,000\), and a variable manufacturing overhead rate of \(\$ 2.40\) per direct laborhour. Recently Job X387 was completed and required 210 direct labor-hours.Required:Calculate the amount of overhead applied to Job X387. (Do not round intermediate calculations.)
337) Meenach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 80,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 160,000\), and a variable manufacturing overhead rate of \(\$ 2.30\) per direct laborhour. Recently Job X387 was completed and required 120 direct labor-hours.Required:Calculate the amount of overhead applied to Job X387. (Do not round intermediate calculations.)
338) Weakley Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of \(\$ 358,000\) and 20,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of \(\$ 382,000\) and 18,300 total machine-hours during the period.Required:Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
339) Fillmore Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 60,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 96,000\), and a variable manufacturing overhead rate of \(\$ 3.30\) per direct laborhour. Recently Job X809 was completed and required 100 direct labor-hours.Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job X809.
340) Thrall Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
10,000
Total fixed manufacturing overhead cost \$50,000
Variable manufacturing overhead per machine-hour
\$ 3.90

```

Recently Job K125 was completed and required 160 machine-hours.Required:Calculate the amount of overhead applied to Job K125.
341) Verry Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
60,000
Total fixed manufacturing overhead cost
\$342,000
Variable manufacturing overhead per direct labor-hour \$ 2.40

```

Recently Job X711 was completed and required 90 direct labor-hours.Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job X711.
342) Trevigne Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
```

Estimated total fixed manufacturing overhead from the \$ 114,000
beginning of the year
Estimated activity level from the beginning of the year 10,000 machine-r
Actual total fixed manufacturing overhead \$ 104,000
Actual activity level
9,400 machine-r

```

Required:Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
343) Luarca Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Customizing & Total \\
Estimated total machine-hours (MHs) & 2,000 & 3,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 11,600\) & \(\$ 7,200\) & \(\$ 18,800\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.90\) & \(\$ 2.80\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job L. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job \(\mathbf{F}\) & Job L \\
Direct materials & \(\$ 10,600\) & \(\$ 6,600\) \\
Direct labor cost & \(\$ 24,400\) & \(\$ 8,600\) \\
Casting machine-hours & 1,400 & 600 \\
Customizing machine-hours & 1,200 & 1,800
\end{tabular}

Required:Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job F and Job L.
344) Lamberson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
50,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour

Recently Job P647 was completed with the following characteristics:
Number of units in the job
50

```
Total machine-hours 150
Direct materials $ 740
Direct labor cost $6,000
```

Required:a. Calculate the amount of overhead applied to Job P647.b. Calculate the total job cost for Job P647.c. Calculate the unit product cost for Job P647.
345) Mcewan Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 45,000 direct labor-hours, total fixed manufacturing overhead cost of $\$ 315,000$, and a variable manufacturing overhead rate of $\$ 3.80$ per direct laborhour. Job X941, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

```
Total direct labor-hours 300
Direct materials
    $ 600
Direct labor cost
$6,400
```

Required:Calculate the selling price for Job X941 if the company marks up its unit product costs by 20%. (Round intermediate calculations and final answer to 2 decimal places.)
346) Mcewan Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 20,000 direct labor-hours, total fixed manufacturing overhead cost of $\$ 182,000$, and a variable manufacturing overhead rate of $\$ 2.50$ per direct laborhour. Job X941, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

```
Total direct labor-hours250
Direct materials $ 740
```

Required:Calculate the selling price for Job X941 if the company marks up its unit product costs by 20%. (Round intermediate calculations and final answer to 2 decimal places.)
347) Teasley Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of $\$ 630,000$, and a variable manufacturing overhead rate of $\$ 3.40$ per machine-hour. Job X159 was recently completed. The job cost sheet for the job contained the following data:

```
Total machine-hours
    200
Direct materials
Direct labor cost
    $ 670
$7,800
```

Required:Calculate the total job cost for Job X159.
348) Alsobrooks Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
```

Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
\$156,000
\$ 2.20

```
Recently Job M242 was completed with the following characteristics:
```20
```

```
Number of units in the job
```

```
Number of units in the job
```

Total machine-hours ..... 60
Direct materials ..... \$ 725
Direct labor cost ..... \$1,680

Required:a. Calculate the total job cost for Job M242.b. Calculate the unit product cost for Job M242.
349) Ryans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
 10,000
Total fixed manufacturing overhead cost
$71,000
Variable manufacturing overhead per machine-hour
 $ 2.50
```

Recently Job P512 was completed with the following characteristics:

```
Number of units in the job 30
Total machine-hours 60
Direct materials $ 870
Direct labor cost $2,400
```

Required:a. Calculate the predetermined overhead rate for the year.b. Calculate the amount of overhead applied to Job P512.c. Calculate the total job cost for Job P512.d. Calculate the unit product cost for Job P512.
350) Lezo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of $\$ 136,000$, and a variable manufacturing overhead rate of $\$ 2.90$ per machine-hour. Job A290, which was for 60 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

Direct materials \$ 585
Direct labor cost \$7,200
Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job A290.d. Calculate the total job cost for Job A290.
351) Whitlatch Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
 60,000
Total fixed manufacturing overhead cost $342,000
Variable manufacturing overhead per machine-hour $ 2.70
```

Recently Job M238 was completed with the following characteristics:

Number of units in the job	70
Total machine-hours	140
Direct materials	$\$ 945$
Direct labor cost	$\$ 2,800$

Required:Calculate the total job cost for Job M238.
352) Obermeyer Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 10,000 direct labor-hours, total fixed manufacturing overhead cost of $\$ 96,000$, and a variable manufacturing overhead rate of $\$ 3.60$ per direct laborhour. Job A735, which was for 40 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

```
Total direct labor-hours 200
Direct materials $ 540
Direct labor cost $6,400
```

Required:a. Calculate the amount of overhead applied to Job A735.b. Calculate the total job cost for Job A735.c. Calculate the unit product cost for Job A735.
353) Olmscheid Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:

	Molding	Customizing	Total
Estimated total machine-hours (MHs)	5,000	5,000	10,000
Estimated total fixed manufacturing	$\$ 21,000$	$\$ 14,000$	$\$ 3,000$
overhead cost			
Estimated variable manufacturing	$\$ 1.50$	$\$ .40$	
overhead cost per MH			

During the period, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:

```
Job F Job K
$ 12,700 $ 6,400
```

Direct labor cost $\quad \$ 19,100 \quad \$ 7,900$
Molding machine-hours 3,400 1,600
Customizing machine-hours 2,000

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate.b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job F.c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K.d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job F.e. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job K.f. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of $30 \%$ on manufacturing cost to establish selling prices. Calculate the selling price for Job F.g. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of $30 \%$ on manufacturing cost to establish selling prices. Calculate the selling price for Job K.h. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. If both jobs were sold during the month, what was the company's cost of goods sold for the month?
354) Cardosa Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of $\$ 308,000$, and a variable manufacturing overhead rate of $\$ 2.10$ per machine-hour. Job M556, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

Total machine-hours	100
Direct materials	$\$ 555$
Direct labor cost	$\$ 2,700$

Required:a. Calculate the total job cost for Job M556.b. Calculate the unit product cost for Job M556.
355) Dietzen Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Finishing	Total
Estimated total machine-hours (MHs)	4,000	6,000	10,000
Estimated total fixed manufacturing	$\$ 18,000$	$\$ 18,000$	$\$ 6,000$
overhead cost			
Estimated variable manufacturing	$\$ 1.50$	2.30	
overhead cost per machine-hour			

During the most recent month, the company started and completed two jobs--Job D and Job J. There were no beginning inventories. Data concerning those two jobs follow:

	Job D	Job J
Direct materials	$\$ 14,300$	$\$ 6,800$
Direct labor cost	$\$ 21,700$	$\$ 8,800$
Casting machine-hours	2,700	1,300
Finishing machine-hours	2,400	3,600

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job D.b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job J.
356) Posson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 20,000 machine-hours, total fixed manufacturing overhead cost of $\$ 130,000$, and a variable manufacturing overhead rate of $\$ 3.00$ per machine-hour. Job K789, which was for 10 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

```
Total machine-hours 30
Direct materials $775
Direct labor cost $1,170
```

Required:a. Calculate the predetermined overhead rate for the year.b. Calculate the amount of overhead applied to Job K789.c. Calculate the total job cost for Job K789.d. Calculate the unit product cost for Job K789
357) Rondo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour $ 2.90
Recently Job T506 was completed with the following characteristics:
```

```
Number of units in the job 70
```

Number of units in the job 70
Total machine-hours 210
Total machine-hours 210
Direct materials \$ 665
Direct materials \$ 665
Direct labor cost \$6,720

```
Direct labor cost $6,720
```

    30,000
    Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job T506.d. Calculate the total job cost for Job T506.e. Calculate the unit product cost for Job T506.f. Calculate the selling price for Job T506 if the company marks up its unit product costs by $20 \%$.
358) Leadley Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total direct labor-hours

Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour \$ 2.10
Recently Job X701 was completed with the following characteristics:
```

Number of units in the job90

```
Total direct labor-hours 270
Direct materials \$ 590
Direct labor cost \$6,480

Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job X701.d. Calculate the total job cost for Job X701
359) Pasko Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours30,000Total fixed manufacturing overhead cost\$258, 000

```
Variable manufacturing overhead per direct labor-hour \(\$ 2.00\)
Recently Job P660 was completed with the following characteristics:
Number of units in the job 50
Total direct labor-hours 250

Required:Calculate the selling price for Job P660 if the company marks up its unit product costs by \(20 \%\).
360) Leeds Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
\begin{tabular}{lr}
Total machine-hours & 50,000 \\
Total fixed manufacturing overhead cost & \(\$ 215,000\) \\
Variable manufacturing overhead per machine-hour & \(\$ 3.80\)
\end{tabular}

Recently Job T496 was completed with the following characteristics:
Number of units in the job 80
Total machine-hours 240
Direct materials \$ 735
Direct labor cost \(\quad \$ 8,880\)
Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job T496.d. Calculate the total job cost for Job T496.e. Calculate the unit product cost for Job T496.
361) Petru Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$525,000
Variable manufacturing overhead per machine-hour

Recently Job P987 was completed with the following characteristics:
```

Number of units in the job 20
Total machine-hours 80
Direct materials \$630
Direct labor cost \$2,080

```

Required:Calculate the unit product cost for Job P987.
362) Franta Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 70,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 238,000\), and a variable manufacturing overhead rate of \(\$ 2.70\) per direct laborhour. Job P873, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

Total direct labor-hours 200
Direct materials \$ 630
Direct labor cost \(\$ 4,800\)
Required:Calculate the unit product cost for Job P873.
363) Temby Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 10,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 88,000\), and a variable manufacturing overhead rate of \(\$ 3.20\) per machine-hour. Job K418, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
```

Total machine-hours 150
Direct materials \$ 580
Direct labor cost \$3,900

```

Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job K418.d. Calculate the total job cost for Job K418.e. Calculate the unit product cost for Job K418.f. Calculate the selling price for Job K418 if the company marks up its unit product costs by \(30 \%\).
364) Saxon Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 10,000 machine-hours, total fixed manufacturing overhead cost of \$91,000, and a variable manufacturing overhead rate of \(\$ 2.40\) per machine-hour. Job K373, which was for 60 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:

Total machine-hours 120
Direct materials \$ 645
Direct labor cost \$3, 720

Required:a. Calculate the estimated total manufacturing overhead for the year.b. Calculate the predetermined overhead rate for the year.c. Calculate the amount of overhead applied to Job K373.d. Calculate the total job cost for Job K373.e. Calculate the unit product cost for Job K373
365) Kluth Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
Estimated total machine-hours (MHs) & 9,000 & 2,600 & 11,600 \\
Estimated total fixed manufacturing & \(\$ 36,000\) & \(\$ 9,360\) & \(\$ 45,360\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 2.50\) & \(\$ 5.00\) \\
overhead cost per machine-hour & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job C & Job M \\
Direct materials & \(\$ 15,500\) & \(\$ 9,100\) \\
Direct labor cost & \(\$ 22,300\) & \(\$ 9,300\) \\
Molding machine-hours & 1,250 & 7,750 \\
Customizing machine-hours & 2,100 & 500
\end{tabular}

Required:Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job C and for Job M. (Do not round intermediate calculations.)
366) Kluth Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Molding & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 15,900\) & \(\$ 4,200\) & \(\$\) \\
overhead cost & & & 20,100 \\
Estimated variable manufacturing & \(\$ 1.20\) & \(\$ 2.40\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr}
Direct materials & \(\$ 15,600\) & \(\$ 8,600\) \\
Direct labor cost & \(\$ 25,100\) & \(\$ 8,300\) \\
Molding machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 800 & 1,200
\end{tabular}

Required:Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job C and for Job M. (Do not round intermediate calculations.)
367) Amason Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Forming & Assembly \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,400\) & \(\$ 66,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.80 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A950. The following data were recorded for this job:
```

Job A950:
Forming Assembly
Machine-hours 50
20
Direct labor-hours 20 40

```
```

Direct materials \$ 665 \$ 415
Direct labor cost \$ 520 \$1,040

```

Required:Calculate the selling price for Job A950 if the company marks up its unit product costs by \(30 \%\) to determine selling prices.
368) Dancel Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Milling & Finishing \\
Machine-hours & 17,000 & 14,000 \\
Direct labor-hours & 1,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 91,800\) & \(\$ 64,200\) \\
Variable manufacturing overhead per machine-hour & \(\$ 2.00\) & \\
Variable manufacturing overhead per direct & & \(\$.40\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M565. The following data were recorded for this job:
```

Job M565:
Machine-hours
7 0
20
Direct labor-hours 40
Direct materials \$ 750
Direct labor cost \$ 340 \$1,360
\$ 360

```

Required:a. Calculate the total amount of overhead applied to Job M565 in both departments.b. Calculate the total job cost for Job M565.c. Calculate the selling price for Job M565 if the company marks up its unit product costs by \(20 \%\) to determine selling prices.
369) Pangle Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Forming & Customizing \\
Machine-hours & 16,000 & 12,000 \\
Direct labor-hours & 4,000 & 9,000 \\
Total fixed manufacturing overhead cost & \(\$ 91,200\) & \(\$ 99,000\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 3.10\) \\
Variable manufacturing overhead per direct & & \\
labor-hour & &
\end{tabular}

During the current month the company started and finished Job M109. The following data were recorded for this job:
\begin{tabular}{lrr}
Job M109: & Forming & Customizing \\
Machine-hours & 50 & 30 \\
Direct labor-hours & 20 & 50 \\
Direct materials & \(\$ 915\) & \(\$ 355\) \\
Direct labor cost & \(\$ 620\) & \(\$ 1,550\)
\end{tabular}

Required:Calculate the total job cost for Job M109.
370) Vasilopoulos Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Casting & Assembly \\
Machine-hours & 17,000 & 11,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 119,000\) & \(\$ 51,000\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.10 \\
labor-hour & &
\end{tabular}

During the current month the company started and finished Job A182. The following data were recorded for this job:
\begin{tabular}{lrr}
Job A182: & Casting & Assembly \\
Machine-hours & 50 & 20 \\
Direct labor-hours & 10 & 50 \\
Direct materials & \(\$ 895\) & \(\$ 365\) \\
Direct labor cost & \(\$ 240\) & \(\$ 1,200\)
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Casting Department.b. Calculate the estimated total manufacturing overhead for the Assembly Department.c. Calculate the predetermined overhead rate for the Casting Department.d. Calculate the predetermined overhead rate for the Assembly Department.e. Calculate the total amount of overhead applied to Job A182 in both departments.f. Calculate the total job cost for Job A182.g. Calculate the selling price for Job A182 if the company marks up its unit product costs by \(20 \%\) to determine selling prices.
371) Hultquist Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 8,000 & 2,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,800\) & \(\$ 7,400\) & \(\$ 24,200\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 3.00\) & \(\$ 6.00\) \\
overhead cost per machine-hour & &
\end{tabular}

During the period, the company started and completed two jobs--Job C and Job L. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job C & Job L \\
Direct materials & \(\$ 14,900\) & \(\$ 8,600\) \\
Direct labor cost & \(\$ 21,800\) & \(\$ 8,800\) \\
Forming machine-hours & 1,250 & 6,750 \\
Customizing machine-hours & 1,250 & 750
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job L. (Do not round intermediate calculations.)c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job L. (Do not round intermediate calculations.)d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.) e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Forming department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Customizing department? (Round your answer to 2 decimal places.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job L? (Do not round intermediate calculations.)h. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
372) Hultquist Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 9,000 & 1,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 50,400\) & \(\$ 2,600\) & \(\$ 53,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.10\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the period, the company started and completed two jobs--Job C and Job L. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job C & Job L \\
Direct materials & \(\$ 15,100\) & \(\$ 6,900\) \\
Direct labor cost & \(\$ 20,800\) & \(\$ 8,500\) \\
Forming machine-hours & 6,100 & 2,900 \\
Customizing machine-hours & 400 & 600
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job L. (Do not round intermediate calculations.) c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job L. (Do not round intermediate calculations.)d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.) e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Forming department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Customizing department? (Round your answer to 2 decimal places.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job L? (Do not round intermediate calculations.)h. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
373) Carcana Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,200\) & \(\$ 8,800\) & \(\$\) \\
overhead cost & & & 13,000 \\
Estimated variable manufacturing & \(\$ 1.90\) & \(\$ 2.90\) & \\
overhead cost per MH
\end{tabular}

During the period, the company started and completed two jobs--Job E and Job G. Data concerning those two jobs follow:
\begin{tabular}{lrr}
Direct materials & \(\$ 11,800\) & \(\$ 8,000\) \\
Direct labor cost & \(\$ 19,200\) & \(\$ 6,700\) \\
Machining machine-hours & 700 & 300 \\
Finishing machine-hours & 1,600 & 2,400
\end{tabular}

Required:a. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department?b. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department?c. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E?d. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job G? e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job E.f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job G.g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. If both jobs were sold during the month, what was the company's cost of goods sold for the month?
374) Braegelmann Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct
20,000
4,000
\$110,000
$\$ 1.60$
Variable manufacturing overhead per direct labor-hour
14,000
6,000
\$65,400

```

Casting

Assembly

During the current month the company started and finished Job K246. The following data were recorded for this job:
\begin{tabular}{lrr}
Job K246: & Casting & Assembly \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 20 & 40 \\
Direct materials & \(\$ 950\) & \(\$ 305\) \\
Direct labor cost & \(\$ 460\) & \(\$ 920\)
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Casting Department.b. Calculate the estimated total manufacturing overhead for the Assembly Department.c. Calculate the predetermined overhead rate for the Casting Department.d. Calculate the predetermined overhead rate for the Assembly Department.e. Calculate the amount of overhead applied in the Casting Department to Job K246.f. Calculate the amount of overhead applied in the Assembly Department to Job K246.g. Calculate the total job cost for Job K246.h. Calculate the selling price for Job K246 if the company marks up its unit product costs by \(40 \%\) to determine selling prices.
375) Matrejek Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
Estimated total machine-hours (MHs) & 8,000 & 2,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 36,800\) & \(\$ 4,800\) & \(\$ 41,600\) \\
overhead cost \\
Estimated variable manufacturing & \(\$ 1.60\) & \(\$ 2.90\) \\
overhead cost per MH & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job D and Job K. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr}
Job D & \multicolumn{1}{l}{\begin{tabular}{r}
Job K \\
\(\$ 15,600\)
\end{tabular}} \\
\(\$ 19,100\) & \(\$ 6,900\) \\
5,400 & 2,600 \\
800 & 1,200
\end{tabular}

Direct materials
\begin{tabular}{rrr}
Forming & Customizing & Total \\
8,000 & 2,000 & 10,000 \\
\(\$ 36,800\) & \(\$ 4,800\) & \(\$ 41,600\) \\
\(\$ 1.60\) & \(\$ 2.90\) &
\end{tabular}

Direct labor cost
Forming machine-hours 2,600
Customizing machine-hours 800 1,200
Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job D.b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job K.c. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job D.d. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job K.
376) Harnett Corporation has two manufacturing departments--Molding and Assembly. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Molding & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 29,000\) & \(\$ 13,500\) & \(\$ 42,500\) \\
overhead cost & \(\$ 1.20\) & \(\$ 2.30\) & \\
Estimated variable manufacturing & & & \\
overhead cost per machine-hour & & &
\end{tabular}

During the period, the company started and completed two jobs--Job E and Job M. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job \(\mathbf{E}\) & Job M \\
Direct materials & \(\$ 14,300\) & \(\$ 9,400\) \\
Direct labor cost & \(\$ 22,800\) & \(\$ 8,900\) \\
Molding machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job E. (Do not round intermediate calculations.)c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job E. (Do not round intermediate calculations.)d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(60 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.) e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Molding department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Assembly department? (Round your answer to 2 decimal places.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E? (Do not round intermediate calculations.) h. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(60 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
377) Harnett Corporation has two manufacturing departments--Molding and Assembly. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Molding & Assembly & Total \\
Estimated total machine-hours (MHs) & 4,000 & 6,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 20,400\) & \(\$ 37,800\) & \(\$ 58,200\) \\
overhead cost & \(\$ 3.00\) & \(\$ 6.00\) & \\
Estimated variable manufacturing & & & \\
overhead cost per machine-hour
\end{tabular}

During the period, the company started and completed two jobs--Job E and Job M. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job E & Job M \\
Direct materials & \(\$ 13,700\) & \(\$ 8,000\) \\
Direct labor cost & \(\$ 21,200\) & \(\$ 8,100\) \\
Molding machine-hours & 2,500 & 1,500 \\
Assembly machine-hours & 2,500 & 3,500
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job E. (Do not round intermediate calculations.)c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job E. (Do not round intermediate calculations.)d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.) e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Molding department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Assembly department? (Round your answer to 2 decimal places.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E? (Do not round intermediate calculations.)h. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(80 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
378) Bulla Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Machining & Customizing \\
Machine-hours & 19,000 & 13,000 \\
Direct labor-hours & 2,000 & 9,000 \\
Total fixed manufacturing overhead cost & \(\$ 98,800\) & \(\$ 84,600\) \\
Variable manufacturing overhead per & \(\$ 2.10\) & \\
machine-hour & & \(\$.60\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K369. The following data were recorded for this job:
```

Job K369: Machining Customizing
Machine-hours 90 10
Direct labor-hours 20 50

```

Required:Calculate the total amount of overhead applied to Job K369 in both departments. (Do not round intermediate calculations.)
379) Bulla Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{ccc}
Machine-hours & Machining Customizing \\
Ma,000
\end{tabular}
```

Direct labor-hours 1,000 2,000
Total fixed manufacturing overhead cost \$90,000 \$88,000
Variable manufacturing overhead per \$ 2.00
machine-hour
Variable manufacturing overhead per direct \$ 4.00
labor-hour

```

During the current month the company started and finished Job K369. The following data were recorded for this job:
```

Job K369:
Machine-hours
Machining
Customizing
7 0
4 0
Direct labor-hours
4 060

```

Required:Calculate the total amount of overhead applied to Job K369 in both departments. (Do not round intermediate calculations.)
380) Bierce Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 1,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 20,000\) & \(\$ 2,100\) & \(\$ 22,100\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.40\) & \(\$ 2.80\) & \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job B Job K
Direct materials
Direct labor cost
Machining machine-hours
Finishing machine-hours
```

\$ 12,800
\$ 24,700
2,700
400
\$ 7,900
\$ 6,400
1,300600

```

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job B. (Do not round intermediate calculations.)c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K. (Do not round intermediate calculations. Round your answer to the nearest whole dollar amount.)d. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department? (Round your answer to 2 decimal places.)e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job B? (Do not round intermediate calculations.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job K? (Do not round intermediate calculations.)
381) Bierce Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 6,000 & 4,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 15,600\) & \(\$ 21,600\) & \(\$ 37,200\) \\
overhead cost & \(\$ 1.50\) & \(\$ 5.00\) & \\
\begin{tabular}{lrl}
Estimated variable manufacturing \\
overhead cost per machine-hour
\end{tabular} & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr}
& Job B & Job K \\
Direct materials & \(\$ 13,700\) & \(\$ 7,800\) \\
Direct labor cost & \(\$ 23,500\) & \(\$ 1,250\) \\
Machining machine-hours & 4,000 & 2,000 \\
Finishing machine-hours & 500 & 3,500
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job B. (Do not round intermediate calculations.)c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K. (Do not round intermediate calculations. Round your answer to the nearest whole dollar amount.)d. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department? (Round your answer to 2 decimal places.)e. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department? (Round your answer to 2 decimal places.)f. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job B? (Do not round intermediate calculations.)g. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job K? (Do not round intermediate calculations.)
382) Gercak Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Forming & Assembly \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 100,800\) & \(\$ 76,300\) \\
Variable manufacturing overhead per machine- & \(\$ 1.70\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.10 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job X560. The following data were recorded for this job:
\begin{tabular}{lrr}
Job X560 & Forming & Assembly \\
Machine-hours & 50 & 30 \\
Direct labor-hours & 30 & 40
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Assembly Department.b. Calculate the predetermined overhead rate for the Forming Department.c. Calculate the total amount of overhead applied to Job X560 in both departments.
383) Sonneborn Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr}
& Molding & Customizing & Total \\
Estimated total machine-hours (MHs) & 1,000 & 9,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 5,100\) & \(\$ 23,400\) & \(\$ 28,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.50\) \\
overhead cost per machine-hour & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job D and Job G. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr}
Direct labor cost & 18,800 & \(\$ 8,300\) \\
Molding machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Required:a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job D.b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job G.c. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job D?d. Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job G?
384) Rocher Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Casting & Finishing \\
Machine-hours & 17,000 & 13,000 \\
Direct labor-hours & 4,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 124,100\) & \(\$ 52,200\) \\
Variable manufacturing overhead per machine- & \(\$ 2.30\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 4.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A394. The following data were recorded for this job:
\begin{tabular}{lcc}
Job A394 & Casting & Finishing \\
Machine-hours & 80 & 20 \\
Direct labor-hours & 10 & 40
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Casting Department.b. Calculate the predetermined overhead rate for the Casting Department.c. Calculate the amount of overhead applied in the Casting Department to Job A394.
385) Marius Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr}
& Casting & Finishing \\
Machine-hours & 18,000 & 12,000 \\
Direct labor-hours & 4,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 118,800\) & \(\$ 57,600\) \\
Variable manufacturing overhead per machine- & \(\$ 2.20\) & \\
hour & & 4.00 \\
Variable manufacturing overhead per direct & \\
labor-hour & & \\
During the current month the company started and finished Job K895. The following data were \\
recorded for this job: & Casting & Finishing \\
Job K895: & 70 & 30 \\
Machine-hours & 20 & 60
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Finishing Department.b. Calculate the predetermined overhead rate for the Finishing Department.c. Calculate the amount of overhead applied in the Finishing Department to Job K895.
386) Madole Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{|c|c|c|}
\hline & Forming & Customizing \\
\hline Machine-hours & 19,000 & 12,000 \\
\hline Direct labor-hours & 4,000 & 8,000 \\
\hline Total fixed manufacturing overhead cost & \$119,700 & \$67,200 \\
\hline Variable manufacturing overhead per machinehour & \$ 2.00 & \\
\hline Variable manufacturing overhead per direct labor-hour & & \$ 4.20 \\
\hline During the current month the company started and finished J recorded for this job: & K973. The fo & wing data were \\
\hline Job K973: & Forming & Customizing \\
\hline Machine-hours & 50 & 20 \\
\hline Direct labor-hours & 20 & 50 \\
\hline
\end{tabular}

Required:a. Calculate the estimated total manufacturing overhead for the Forming Department.b. Calculate the predetermined overhead rate for the Customizing Department.c. Calculate the total overhead applied to Job K973 in both departments.
387) Sullen Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
```

Predetermined overhead rate
Estimated total fixed manufacturing
overhead from the beginning of the

```
```

    year
    Estimated activity level from the 40,000 machine-hours
beginning of the year
Actual total fixed manufacturing \$605,000
overhead
Actual activity level 36,700 machine-hours

```

Required:Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
388) Levi Corporation uses a predetermined overhead rate of \(\$ 23.40\) per direct labor-hour. This predetermined overhead rate was based on estimated total fixed manufacturing overhead of \(\$ 702,000\) and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$738,000 and 27,100 total direct labor-hours during the period.Required:Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
389) Henkes Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 66,000 labor-hours. The estimated variable manufacturing overhead was \(\$ 8.41\) per labor-hour and the estimated total fixed manufacturing overhead was \(\$ 1,533,180\). The actual labor-hours for the year turned out to be 68,400 laborhours.Required:Compute the company's predetermined overhead rate for the recently completed year.
390) Mccaughan Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. Data for the most recently completed year appear below:
```

Estimates made at the beginning of the
year:
Estimated labor-hours
Estimated variable manufacturing
overhead
Estimated total fixed manufacturing \$705,220
overhead
Actual labor-hours for the year 32,100

```

Required:Compute the company's predetermined overhead rate for the recently completed year.
391) Moscone Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 78,000 labor-hours. The estimated variable manufacturing overhead was \(\$ 9.99\) per labor-hour and the estimated total fixed manufacturing overhead was \(\$ 985,920\).Required:Compute the company's predetermined overhead rate.
392) Lightner Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:
```

Estimated machine-hours
50,000
Estimated variable manufacturing overhead
\$ 8.82per mach
Estimated total fixed manufacturing overhead
\$1,077,000

```

Required:Compute the company's predetermined overhead rate.
393) Job 243 was recently completed. The following data have been recorded on its job cost sheet:
```

Direct materials \$48,870
Direct labor-hours
405labor-hou
Direct labor wage rate
Machine-hours
\$ 13 per labor
486machine-h
Number of units completed
2,700units

```

The company applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is \(\$ 11\) per machine-hour.Required:Compute the unit product cost that would appear on the job cost sheet for this job.
394) Job 652 was recently completed. The following data have been recorded on its job cost sheet:

Direct materials
\$59,400
Direct labor-hours
1,224 direct l
Direct labor wage rate
\$ 15per dire
Number of units completed
3,600units
The company applies manufacturing overhead on the basis of direct labor-hours. The predetermined overhead rate is \(\$ 35\) per direct labor-hour.Required:Compute the unit product cost that would appear on the job cost sheet for this job.
395) Werger Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, W82R and L48S, about which it has provided the following data:
\begin{tabular}{lrr}
& W82R & L48S \\
Direct materials per unit & \(\$ 22.80\) & \(\$ 6.60\) \\
Direct labor per unit & \(\$ 26.10\) & \(\$ 0.70\) \\
Direct labor-hours per unit & 0.70 & 2.40 \\
Annual production (units) & 34,400 & 20,600
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 3,293,458\) and the company's estimated total direct labor-hours for the year is 73,520 . The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activities and Activity Measures} & Estimated & & \\
\hline & Overhead Cost & & \\
\hline Supporting direct labor (direct & \$ 808,720 & & \\
\hline labor-hours) & & & \\
\hline Setting up machines (setups) & 861,498 & & \\
\hline Parts administration (part types) & 1,623,240 & & \\
\hline Total & \$ 3,293,458 & & \\
\hline Activities & W82R & L48S & Total \\
\hline Supporting direct labor & 24,080 & 49,440 & 73,520 \\
\hline Setting up machines & 861 & 3,490 & 4,351 \\
\hline Parts administration & 2,090 & 1,250 & 3,340 \\
\hline
\end{tabular}

Required:a. Determine the unit product cost of each of the company's two products under the traditional costing system.b. Determine the unit product cost of each of the company's two products under activity-based costing system.(For all requirements, round your intermediate calculations and final answers to 2 decimal places.)
396) Bullie Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, D31X and U75X, about which it has provided the following data:
\begin{tabular}{lrr}
& D31X & U75X \\
Direct materials per unit & \(\$ 29.20\) & \(\$ 47.40\) \\
Direct labor per unit & \(\$ 1.10\) & \(\$ 23.10\) \\
Direct labor-hours per unit & 0.10 & 2.10 \\
Annual production (units) & 35,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,147,650\) and the company's estimated total direct labor-hours for the year is 35,000 .

The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{|c|c|c|c|}
\hline Activities and Activity Measures & Estimated Overhead Cost & & \\
\hline Assembling products (direct & \$ 140,000 & & \\
\hline labor-hours) & & & \\
\hline Preparing batches (batches) & 241,150 & & \\
\hline Axial milling (machine-hours) & 766,500 & & \\
\hline Total & \$ 1,147,650 & & \\
\hline & D31X & U75x & Total \\
\hline Assembling products & 3,500 & 31,500 & 35,000 \\
\hline Preparing batches & 560 & 1,295 & 1,855 \\
\hline Axial milling & 1,540 & 1,015 & 2,555 \\
\hline
\end{tabular}

Required:a. Determine the manufacturing overhead cost per unit of each of the company's two products under the traditional costing system.b. Determine the manufacturing overhead cost per unit of each of the company's two products under activity-based costing system.
397) Torri Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, B40W and C63J, about which it has provided the following data:
\begin{tabular}{lrr}
& B40W & C63J \\
Direct materials per unit & \(\$ 34.90\) & \(\$ 63.70\) \\
Direct labor per unit & \(\$ 20.80\) & \(\$ 62.40\) \\
Direct labor-hours per unit & 0.80 & 2.40 \\
Annual production (units) & 35,000 & 15,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 2,656,000\) and the company's estimated total direct labor-hours for the year is 64,000 .

The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
\begin{tabular}{|c|c|c|c|}
\hline Activities and Activity Measures & Estimated Overhead Cost & & \\
\hline Assembling products (direct laborhours) & \$ 1,216,000 & & \\
\hline Preparing batches (batches) & 480,000 & & \\
\hline Milling (machine-hours) & 960,000 & & \\
\hline Total & \$ 2,656,000 & & \\
\hline Activities & B40W & C63J & Total \\
\hline Assembling products & 28,000 & 36,000 & 64,000 \\
\hline Preparing batches & 2,304 & 2,496 & 4,800 \\
\hline Milling & 1,088 & 2,112 & 3,200 \\
\hline
\end{tabular}

Required:a. Determine the unit product cost of each of the company's two products under the traditional costing system.b. Determine the unit product cost of each of the company's two products under activity-based costing system.
398) Cabigas Corporation manufactures two products, Product \(C\) and Product \(D\). The company estimated it would incur \(\$ 167,140\) in manufacturing overhead costs during the current period. Overhead currently is applied to the products on the basis of direct labor-hours. Data concerning the current period's operations appear below:
```

Estimated volume
Direct labor-hours per unit
Direct materials cost per unit
Direct labor cost per unit

```

Product C
2,000 units
2.00 hours
\(\$ 21.50\)
\(\$ 24.00\)

Product D
```

    2,700 units
        0.80 hour
    \$ 24.10
\$ 9.60

```

Required:a. Compute the predetermined overhead rate under the current method, and determine the unit product cost of each product for the current year.b. The company is considering using an activity-based costing system to compute unit product costs for external financial reports instead of its traditional system based on direct labor-hours. The activity-based costing system would use three activity cost pools. Data relating to these activities for the current period are given below:
\begin{tabular}{lcrcr}
Activity Cost Pool & Estimated & \multicolumn{3}{c}{ Expected Activity } \\
\cline { 3 - 5 } & Overhead Costs & Product C & Product D & Total \\
Machine setups & \(\$ 13,630\) & 130 & 160 & 290 \\
Purchase orders & 85,750 & 750 & 1,000 & 1,750 \\
General factory & 67,760 & & 4,000 & 2,160
\end{tabular}

Determine the unit product cost of each product for the current period using the activity-based costing approach. General factory overhead is allocated based on direct labor-hours.
399) Welk Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, H16Z and P25P, about which it has provided the following data:
\begin{tabular}{lrr}
& H16Z & P25P \\
Direct materials per unit & \(\$ 10.20\) & \(\$ 0.50\) \\
Direct labor per unit & \(\$ 8.40\) & \(\$ 25.20\) \\
Direct labor-hours per unit & 0.40 & 1.20 \\
Annual production (units) & 30,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,464,480\) and the company's estimated total direct labor-hours for the year is 24,000 . The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Supporting direct labor (direct
labor-hours)
Setting up machines (setups) 132,480
Parts administration (part types)
Total \$ 1,464,480
H16Z

```

P25P

12,000 24,000
240 1,104
960 1,560
```

Supporting direct labor	12,000	12,000	24,000
Setting up machines	864	240	1,104
Parts administration	600	960	1,560

```

Required:a. Determine the manufacturing overhead cost per unit of each of the company's two products under the traditional costing system.b. Determine the manufacturing overhead cost per unit of each of the company's two products under activity-based costing system.
400) Werger Manufacturing Corporation has a traditional costing system in which it applies manufacturing overhead to its products using a predetermined overhead rate based on direct labor-hours (DLHs). The company has two products, W82R and L48S, about which it has provided the following data:
\begin{tabular}{lrr}
& W82R & L48S \\
Direct materials per unit & \(\$ 11.50\) & \(\$ 62.90\) \\
Direct labor per unit & \(\$ 2.00\) & \(\$ 13.00\) \\
Direct labor-hours per unit & 0.20 & 1.30 \\
Annual production (units) & 45,000 & 10,000
\end{tabular}

The company's estimated total manufacturing overhead for the year is \(\$ 1,521,960\) and the company's estimated total direct labor-hours for the year is 22,000 . The company is considering using a variation of activity-based costing to determine its unit product costs for external reports. Data for this proposed activity-based costing system appear below:
```

Activities and Activity Measures
Supporting direct labor (direct
labor-hours)
Setting up machines (setups) 201,960
Parts administration (part types)
Total \$ 1,521,960
Activities % W82R
Supporting direct labor 9,000
Setting up machines 814 374 1,188
Parts administration 924 1,012 1,936

```

Required:a. Determine the unit product cost of each of the company's two products under the traditional costing system.b. Determine the unit product cost of each of the company's two products under activity-based costing system.
401) The management of Michaeli Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work.
```

Estimated activity for the upcoming year 43,000 machine-hours
Capacity
Actual activity for the year
Manufacturing overhead (all fixed)

```
```

    50,000 machine-hours
    ```
 50,000 machine-hours
 45,400 machine-hours
 45,400 machine-hours
$989,000 per year
```

\$989,000 per year

```

Required:Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.
402) The management of Michaeli Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work.
\begin{tabular}{lr}
Estimated activity for the upcoming year & 31,000 machine-hours \\
Capacity & 44,000 machine-hours \\
Actual activity for the year & 32,500 machine-hours \\
Manufacturing overhead (all fixed) & \(\$ 778,800\) per year
\end{tabular}

Required:Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.
403) Marder Woodworking Corporation produces fine cabinets. The company uses a job-order costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated jointer. Additional information is provided below for the most recent month:

Estimates at the beginning of the month:

Estimated total fixed manufacturing overhead \$24,500
Capacity of the jointer 250 hours
Actual results:

Sales
\$71,706
Direct materials
\$12,500
Direct labor
\$17,900
Actual total fixed manufacturing overhead \$24,500
Selling and administrative expense
\$ 9,700
Actual hours of jointer use
200 hours

Required:a. Calculate the predetermined overhead rate based on capacity.b. Calculate the manufacturing overhead applied.c. Determine the Gross Margin for the month.d. Calculate the cost of unused capacity.
404) Knipple Woodworking Corporation produces fine cabinets. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated bandsaw. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$24,288
Capacity of the bandsaw
240 hours
Actual results:
Sales
\$71,473
Direct materials \$10,400
Direct labor \$17,300

```
```

Actual total fixed manufacturing overhead
\$24,288
Selling and administrative expense \$ 9,100
Actual hours of bandsaw use 230 hours

```

Required:Prepare an income statement following the Example in Appendix 2B in which any cost of unused capacity is directly recorded on the income statement as a period expense.
405) Danaher Woodworking Corporation produces fine furniture. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated lathe. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$22,701
Capacity of the lathe 230 hours
Actual results:
Actual total fixed manufacturing overhead \$22,701
Actual hours of lathe use
210 hours

```

Required:a. Calculate the predetermined overhead rate based on capacity.b. Calculate the manufacturing overhead applied.c. Calculate the cost of unused capacity.
406) Danaher Woodworking Corporation produces fine furniture. The company uses a joborder costing system in which its predetermined overhead rate is based on capacity. The capacity of the factory is determined by the capacity of its constraint, which is an automated lathe. Additional information is provided below for the most recent month:
```

Estimates at the beginning of the month:
Estimated total fixed manufacturing overhead \$21,580
Capacity of the lathe 260 hours
Actual results:
Actual total fixed manufacturing overhead \$21,580
Actual hours of lathe use 210 hours

```

Required:a. Calculate the predetermined overhead rate based on capacity.b. Calculate the manufacturing overhead applied.c. Calculate the cost of unused capacity.
407) The management of Kotek Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 8,000 machine-hours. In addition, capacity is 10,000 machine-hours and the actual activity for the year is 8,700 machine-hours. All of the manufacturing overhead is fixed and is \(\$ 6,400\) per year. Job L77S, which required 220 machine-hours, is one of the jobs worked on during the year.Required:a. Determine the predetermined overhead rate if the predetermined overhead rate is based on activity at capacity.b. Determine how much overhead would be applied to Job L77S if the predetermined overhead rate is based on activity at capacity.c. Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.
408) The management of Schneiter Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 42,000 machine-hours. In addition, capacity is 46,000 machine-hours and the actual activity for the year is 43,000 machine-hours. All of the manufacturing overhead is fixed and is \(\$ 734,160\) per year.Required:a. Determine the predetermined overhead rate if the predetermined overhead rate is based on activity at capacity.b. Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.
409) The management of Bouyer Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work. In this example, the allocation base is machine-hours and the estimated amount of the allocation base for the upcoming year is 34,000 machine-hours. In addition, capacity is 37,000 machine-hours and the actual activity for the year is 34,700 machine-hours. All of the manufacturing overhead is fixed and is \(\$ 377,400\) per year.Required:Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.
410) The management of Buelow Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work.
```

Estimated activity for the upcoming year 76,000 machine-hours

```
```

Capacity
Actual activity for the year
Manufacturing overhead (all fixed)

```
```

    94,000 machine-hours
    82,800 machine-hours
    \$5,572,320 per year

```

Job Q58A, which required 130 machine-hours, is one of the jobs worked on during the year.Required:a. Determine the predetermined overhead rate if the predetermined overhead rate is based on the estimated activity for the upcoming year.b. Determine how much overhead would be applied to Job Q58A if the predetermined overhead rate is based on estimated activity for the upcoming year.c. Determine the predetermined overhead rate if the predetermined overhead rate is based on the activity at capacity.d. Determine how much overhead would be applied to Job Q58A if the predetermined overhead rate is based on activity at capacity.e. Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity. Garrison 16e Rechecks 2019-01-30
411) The management of Wrights Corporation would like to investigate the possibility of basing its predetermined overhead rate on activity at capacity rather than on the estimated amount of activity for the year. The company's controller has provided an example to illustrate how this new system would work.
```

Estimated activity for the upcoming year 15,000 machine-hours
Capacity 18,000 machine-hours
Actual activity for the year 15,800 machine-hours
Manufacturing overhead (all fixed) \$43,200 per year

```

Required:a. Determine the predetermined overhead rate if the predetermined overhead rate is based on the estimated activity for the upcoming year.b. Determine the cost of unused capacity for the year if the predetermined overhead rate is based on activity at capacity.

\section*{Answer Key}

Test name: chapter 2
1) FALSE
2) TRUE
3) TRUE
4) FALSE
5) FALSE
6) FALSE
7) TRUE
8) FALSE
9) FALSE
10) FALSE
11) FALSE
12) FALSE
13) FALSE
14) FALSE
15) TRUE
16) FALSE
17) TRUE
18) TRUE
19) FALSE
20) FALSE
21) TRUE
22) TRUE
23) TRUE
24) TRUE
25) FALSE
26) C
27) B
28) B
29) C
30) B
31) D
32) A
33) C
34) B
35) D
36) A
37) D
38) B
39) A
40) A
41) C
42) A
43) A
44) D
45) B
46) B
47) A
48) D
49) B
50) A
51) A
52) A
53) A
54) B
55) D
56) B
```

57) A
58) A
59) C
60) A
61) C
62) C
63) B
64) D
65) B
66) B
67) B
68) A
69) A
70) A
71) A
72) B
73) D
74) D
75) C
76) C
77) C
78) C
79) C
80) D
81) B
82) D
83) A
84) C
85) B
86) A
```
87) A
88) D
89) A
90) D
91) C
92) C
93) C
94) D
95) C
96) A
97) A
98) B
99) D
100) C
101) B
102) D
103) D
104) B
105) B
106) C
107) D
108) C
109) D
110) D
111) C
112) D
113) D
114) C
115) D
116) D
117) B
118) B
119) C
120) D
121) B
122) A
123) A
124) B
125) C
126) C
127) B
128) B
129) A
130) C
131) C
132) A
133) D
134) C
135) B
136) A
137) C
138) A
139) A
140) A
141) D
142) B
143) B
144) A
145) A
146) B
147) A
148) A
149) D
150) D
151) D
152) D
153) C
154) C
155) A
156) A
157) D
158) D
159) C
160) D
161) C
162) C
163) C
164) A
165) B
166) B
167) B
168) D
169) C
170) C
171) B
172) A
173) C
174) D
175) D
176) C
177) C
178) D
179) D
180) D
181) A
182) B
183) A
184) C
185) B
186) C
187) C
188) C
189) B
190) B
191) A
192) D
193) D
194) C
195) B
196) D
197) B
198) B
199) C
200) C
201) B
202) B
203) A
204) B
205) C
206) C
207) B
208) C
209) A
210) D
211) B
212) B
213) B
214) C
215) D
216) D
217) C
218) B
219) A
220) C
221) D
222) C
223) A
224) D
225) A
226) A
227) D
228) D
229) B
230) C
231) B
232) C
233) C
234) C
235) A
236) D
\[
\begin{aligned}
& \text { 237) C } \\
& \text { 238) A } \\
& \text { 239) B } \\
& \text { 240) B } \\
& \text { 241) D } \\
& \text { 242) C } \\
& \text { 243) A } \\
& \text { 244) D } \\
& \text { 245) B } \\
& \text { 246) C } \\
& \text { 247) D } \\
& \text { 248) D } \\
& \text { 249) C } \\
& \text { 250) C } \\
& \text { 251) A } \\
& \text { 252) B } \\
& \text { 253) A } \\
& \text { 254) D } \\
& \text { 255) D } \\
& \text { 256) C } \\
& \text { 257) B } \\
& \text { 258) C } \\
& \text { 259) D } \\
& \text { 260) D } \\
& \text { 261) A } \\
& \text { 262) A } \\
& \text { 263) A } \\
& \text { 264) D } \\
& \text { 265) D } \\
& \text { 266) A }
\end{aligned}
\]
\begin{tabular}{|c|}
\hline 267) C \\
\hline 269) B \\
\hline 270) D \\
\hline 271) D \\
\hline 272) C \\
\hline 273) D \\
\hline 274) A \\
\hline 275) B \\
\hline 276) A \\
\hline 277) A \\
\hline 278) A \\
\hline 279) B \\
\hline 280) B \\
\hline 281) C \\
\hline 282) C \\
\hline 283) B \\
\hline 284) B \\
\hline 285) B \\
\hline 286) B \\
\hline 287) B \\
\hline 288) D \\
\hline 289) D \\
\hline 290) A \\
\hline 291) A \\
\hline 292) C \\
\hline 293) C \\
\hline 294) C \\
\hline 295) B \\
\hline 296) D \\
\hline
\end{tabular}
```

297) D
298) A
299) A
300) A
301) A
302) B
303) A
304) A
305) A
306) D
307) D
308) D
309) D
310) B
311)D
312)D
313)D
311) B
312) B
313) B
314) A
315) A
316) B
317) C
318) C
319) D
320) D
321) C
322) D
323) D
```
329) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 144,000+(\$ 4.00\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 144,000+\$ 120,000=\$ 264,000\)
330) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 287,000+(\$ 3.50\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 287,000+\$ 245,000=\$ 532,000 \mathrm{~b}\). Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 532,000 \div 70,000\) machine-hours \(=\$ 7.60\) per machine-hour
331) Estimated total manufacturing overhead \(=\$\{\{[\mathrm{a}(3)]: \#, \# \# \#\}\}+\) (\$\{\{[a(2)]:\#,\#\#\#.00\}\} per labor-hour \(\times\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) labor-hours) \(=\) \(\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\}\) Predetermined overhead rate \(=\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\} \div\) \{\{[a(1)]:\#,\#\#\#\}\} labor-hours = \$\{\{[a(6)]:\#,\#\#\#.00\}\} per labor-hour 332) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 390,000+(\$ 3.60\) per machine-hour \(\times 50,000\) machine-hours \()=\) \(\$ 390,000+\$ 180,000=\$ 570,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 570,000 \div 50,000\) machine-hours \(=\$ 11.40\) per machine-hour
333) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 248,000+(\$ 3.80\) per machine-hour \(\times 40,000\) machine-hours \()=\) \(\$ 248,000+\$ 152,000=\$ 400,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 400,000 \div 40,000\) machine-hours \(=\$ 10.00\) per machine-hour
334) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 152,000+(\$ 3.10\) per machine-hour \(\times 40,000\) machine-hours \()=\) \(\$ 152,000+\$ 124,000=\$ 276,000\)
335) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 31,000+(\$ 2.50\) per direct labor-hour \(\times 10,000\) direct laborhours) \(=\$ 31,000+\$ 25,000=\$ 56,000\) b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 56,000 \div 10,000\) direct labor-hours \(=\$ 5.60\) per direct labor-hour
336) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}+(\$\{\{[\mathrm{a}(3)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) direct labor-hours \()=\$\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}+\) \(\$\{\{[\mathrm{a}(8)]: \#, \# \# \#\}\}=\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\}\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) direct labor-hours \(=\$\{\{[\mathrm{a}(6)]: \#, \# \# \# .00\}\}\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$\{\{[\mathrm{a}(6)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\{\{[\mathrm{a}(4)]: \#, \# \# \#\}\}\) direct labor-hours \(=\$\{\{[\mathrm{a}(7)]: \#, \# \# \#\}\}\) 337) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 160,000+(\$ 2.30\) per direct labor-hour \(\times 80,000\) direct laborhours) \(=\$ 160,000+\$ 184,000=\$ 344,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 344,000 \div 80,000\) direct labor-hours \(=\$ 4.30\) per direct labor-hourOverhead applied to a particular job \(=\)
Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.30\) per direct labor-hour \(\times 120\) direct labor-hours \(=\$ 516\) 338)

Estimated total fixed manufacturing overhead (a) Estimated activity level (b)
Predetermined overhead rate (a) \(\div(b)\)
Actual activity level
Manufacturing overhead applied
339) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.30\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 96,000+\$ 198,000=\$ 294,000\) b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 294,000 \div 60,000\) direct labor-hours \(=\$ 4.90\) per direct labor-hourc. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.90\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 490\) 340) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 50,000+(\$ 3.90\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 50,000+\$ 39,000=\$ 89,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 89,000 \div 10,000\) machine-hours \(=\$ 8.90\) per machinehourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.90\) per machine-hour \(\times 160\) machine-hours \(=\$ 1,424\)
341) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 342,000+(\$ 2.40\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 342,000+\$ 144,000=\$ 486,000 \mathrm{~b}\). Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 486,000 \div 60,000\) direct labor-hours \(=\) \(\$ 8.10\) per direct labor-hourc. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.10\) per direct labor-hour \(\times 90\) direct labor-hours \(=\$ 729\)
342)
\begin{tabular}{lc}
Estimated total fixed manufacturing overhead (a) & \(\$ 114,000\) \\
Estimated activity level (b) & 10,000 machine-hou \\
Predetermined overhead rate (a) \(\div\) (b) & \(\$ 11.40\) per machine \\
Actual activity level & 9,400 machine-hou \\
Manufacturing overhead applied & \(\$ 107,160\)
\end{tabular}
343) The first step is to calculate the estimated total overhead costs in the two departments.Casting
Estimated fixed manufacturing overhead \$11,600
Estimated variable manufacturing overhead (\$1.90 per machine- 3,800 hour \(\times 2,000\) machine-hours)
Estimated total manufacturing overhead cost
\$15,400
Customizing
Estimated fixed manufacturing overhead \$ 7,200
Estimated variable manufacturing overhead (\$2.80 per machine- 8,400 hour \(\times 3,000\) machine-hours)
Estimated total manufacturing overhead cost
\$15, 600
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 15,400+\$ 15,600=\$ 31,000)\) to calculate the plantwide predetermined overhead rate as follow:
\(\begin{array}{lr}\text { Estimated total manufacturing overhead cost } & \$ 31,000 \\ \text { Estimated total machine hours } & 5,000 \text { machine-hou } \\ \text { Predetermined overhead rate } & \$ 6.20 \text { per machine }\end{array}\)
The overhead applied to Job F is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 6.20\) per machine-hour \(\times(1,400\) machine-hours + \(1,200\) machine-hours \()=\$ 6.20\) per machine-hour \(\times(2,600\) machinehours) \(=\$ 16,120\) The overhead applied to Job L is calculated as follows:Overhead applied to a particular job = Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 6.20\) per machine-hour \(\times\) (600 machine-hours \(+1,800\) machine-hours) \(=\$ 6.20\) per machine-hour \(\times(2,400\) machine-hours \()=\$ 14,880\) Job F's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied

Job L's manufacturing cost:
Direct materials
\(\$ 6,600\)
Direct labor cost 8,600
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job F:
Total manufacturing cost
Markup (50\%)
Selling price
The selling price for Job L:
Total manufacturing cost
Markup (50\%)
Selling price
\$ 51,120
25,560
\$ 76,680
\$30,080
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{\$} \\
\hline \multirow[t]{2}{*}{\$} & 30,080 \\
\hline & 15,040 \\
\hline \$ & 45,120 \\
\hline
\end{tabular}
344) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 460,000+(\$ 3.10\) per machine-hour \(\times 50,000\) machine-hours \()=\) \(\$ 460,000+\$ 155,000=\$ 615,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 615,000 \div 50,000\) machine-hours \(=\$ 12.30\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 12.30\) per machine-hour \(\times 150\) machine-hours \(=\$ 1,845 \mathrm{~b}\).
Direct materials \(\quad \$ 740\)

Direct labor 6,000
Manufacturing overhead applied \(\quad 1,845\)
Total cost of Job P647 \(\quad \$ 8,585\)
C.

Total cost of Job P647 (a) \$ 8,585
Number of units (b)
50
Unit product cost (a) \(\div(b)\)
345) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base) \(=\$\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}+(\$\{\{[\mathrm{a}(3)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) direct labor-hours \()=\$\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}+\) \(\$\{\{[\mathrm{a}(16)]: \#, \# \# \#\}\}=\$\{\{[\mathrm{a}(9)]: \#, \# \# \#\}\}\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$\{\{[\mathrm{a}(9)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) direct labor-hours \(=\$\{\{[\mathrm{a}(10)]: \#, \# \# \# .00\}\}\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$\{\{[\mathrm{a}(10)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\}\) direct labor-hours \(=\) \$\{\{[a(11)]:\#,\#\#\#\}\}

Direct materials
Direct labor
Manufacturing overhead applied Total cost of Job X941

Total cost of Job X941 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)

Unit product cost for Job X941
Markup (\{\{[a(8)]:\#,\#\#\#\}\}\% x \$ \{ \{ [a (13)]: \#, \#\#\#. 00\} \})

Selling price
```

                                    $ {{[a(6)]:#,###}}
    {{[a(7)]:#,###}}
    {{[a(11)]:#,###}}
                                    ${{[a(12)]:#,###}}
    ```
346) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 182,000+(\$ 2.50\) per direct labor-hour \(\times 20,000\) direct laborhours) \(=\$ 182,000+\$ 50,000=\$ 232,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 232,000 \div 20,000\) direct labor-hours \(=\$ 11.60\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.60\) per direct labor-hour \(\times 250\) direct labor-hours \(=\) \$2,900
```

Direct materials
\$ 740

```
Direct labor 6,500
Manufacturing overhead applied
Total cost of Job X941

Total cost of Job X941 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)

Unit product cost for Job X941
\(\$ 202.80\)
Markup (20\% x \$202.80)
Selling price
347) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 630,000+(\$ 3.40\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 630,000+\$ 238,000=\$ 868,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 868,000 \div 70,000\) machine-hours \(=\$ 12.40\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 12.40\) per machine-hour \(\times 200\) machine-hours \(=\$ 2,480\)
Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job X159
348) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 156,000+(\$ 2.20\) per machine-hour \(\times 40,000\) machine-hours \()=\) \(\$ 156,000+\$ 88,000=\$ 244,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 244,000 \div 40,000\) machine-hours \(=\$ 6.10\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 6.10\) per machine-hour \(\times 60\) machine-hours \(=\$ 366\) Direct materials
\begin{tabular}{r}
\(\$ 725\) \\
1,680 \\
366 \\
\hline\(\$ 2,771\) \\
\hline
\end{tabular}
b.

Total cost of Job M242 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
349) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 71,000+(\$ 2.50\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 71,000+\$ 25,000=\$ 96,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 96,000 \div 10,000\) machine-hours \(=\$ 9.60\) per machinehourb. Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.60\) per machine-hour \(\times 60\) machine-hours \(=\$ 576 \mathrm{c}\).
```

Direct materials
Direct labor 2,400
Manufacturing overhead applied
Total cost of Job P512
d.
Total cost of Job P512 (a) \$ 3,846
Number of units (b)
Unit product cost (a) \div (b)
Unit product cost (a) $\div(b)$
$\$ 870$
350) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 136,000+(\$ 2.90$ per machine-hour $\times 40,000$ machine-hours $)=$ $\$ 136,000+\$ 116,000=\$ 252,000 \mathrm{~b}$. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 252,000 \div 40,000$ machine-hours $=\$ 6.30$ per machine-hourc. Overhead applied to a particular job $=$ Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 6.30$ per machine-hour $\times 300$ machine-hours $=\$ 1,890 \mathrm{~d}$.
Direct materials $\quad \$ 585$

Direct labor 7,200
Manufacturing overhead applied
Total cost of Job A290

1,890
\$9,675
351) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 342,000+(\$ 2.70$ per machine-hour $\times 60,000$ machine-hours $)=$ $\$ 342,000+\$ 162,000=\$ 504,000$ Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 504,000 \div 60,000$ machine-hours $=\$ 8.40$ per machine-hourOverhead applied to a particular job $=$ Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 8.40$ per machine-hour $\times 140$ machine-hours $=\$ 1,176$

Direct materials	$\$ 945$
Direct labor	2,800
Manufacturing overhead applied	1,176
Total cost of Job M238	$\$ 4,921$

352) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 96,000+(\$ 3.60$ per direct labor-hour $\times 10,000$ direct laborhours) $=\$ 96,000+\$ 36,000=\$ 132,000$ Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 132,000 \div 10,000$ direct labor-hours $=\$ 13.20$ per direct labor-hourOverhead applied to a particular job $=$
Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=\$ 13.20$ per direct labor-hour $\times 200$ direct labor-hours $=$ $\$ 2,640 \mathrm{~b}$.

Direct materials	$\$ 5$
Direct labor	6,46
Manufacturing overhead applied	2,64
Total cost of Job A735	$\$ 9,58$
C.	
Total cost of Job A735 (a)	

Unit product cost (a) $\div(b)$
\$ 239.50
353) a. The first step is to calculate the estimated total overhead costs in the two departments.Molding


The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 28,500+\$ 26,000=\$ 54,500)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total manufacturing overhead cost $54,500
Estimated total machine hours 10,000 MHs
Predetermined overhead rate $5.45 per MH
```

b. The overhead applied to Job F is calculated as follows:Overhead applied to a particular job $=$ Predetermined overhead rate $\times$ Machinehours incurred by the job $=\$ 5.45$ per $\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})$ $=\$ 5.45$ per $\mathrm{MH} \times(5,400 \mathrm{MHs})=\$ 29,430 \mathrm{c}$. The overhead applied to Job K is calculated as follows:Overhead applied to a particular job = Predetermined overhead rate $\times$ Machine-hours incurred by the job $=$ $\$ 5.45$ per $\mathrm{MH} \times(1,600 \mathrm{MHs}+3,000 \mathrm{MHs})=\$ 5.45$ per $\mathrm{MH} \times(4,600$ $\mathrm{MHs})=\$ 25,070 \mathrm{~d}$. Job F's manufacturing cost:
Direct materials
\$ 12,700
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
e. Job K's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied

Total manufacturing cost
f. The selling price for Job F:

Total manufacturing cost
Markup (30\%)
Selling price

$\$ 61,230$
18,369
$\$ 79,599$

g. The selling price for Job K:

Total manufacturing cost
\$ 39,370
Markup (30\%)
Selling price 11,811
h.

Total manufacturing cost assigned to Job $\mathbf{F}$
\$ 61,230
Total manufacturing cost assigned to Job K
Cost of goods sold

39, 370
$\$ 100,600$
354) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 308,000+(\$ 2.10$ per machine-hour $\times 70,000$ machine-hours $)=$ $\$ 308,000+\$ 147,000=\$ 455,000$ Predetermined overhead rate $=$
Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 455,000 \div 70,000$ machine-hours $=\$ 6.50$ per machine-hourOverhead applied to a particular job $=$ Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 6.50$ per machine-hour $\times 100$ machine-hours $=\$ 650$
Direct materials \$ 555

Direct labor 2,700
Manufacturing overhead applied
Total cost of Job M556
b.

Total cost of Job M556 (a)
$\$ 3,905$
Number of units (b)
Unit product cost (a) $\div(b)$
355) a.The first step is to calculate the estimated total overhead costs in the two departments.Casting
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.50 per machine-
6,000
hour $\times 4,000$ machine-hours)
Estimated total manufacturing overhead cost $\quad \$ 24,000$
Finishing
Estimated fixed manufacturing overhead
$\$ 18,000$
Estimated variable manufacturing overhead (\$2.30 per machine-
13, 800
hour $\times 6,000$ machine-hours)
Estimated total manufacturing overhead cost \$ 31,800
The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 24,000+\$ 31,800=\$ 55,800)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total manufacturing overhead cost
 $55,800
Estimated total machine hours
Predetermined overhead rate
```

10,000 machine-hou
$\$ 5.58$ per machine

The overhead applied to Job D is calculated as follows:Overhead applied to a particular job $=$ Predetermined overhead rate $\times$ Machine-hours incurred by the job $=\$ 5.58$ per machine-hour $\times(2,700$ machine-hours + $2,400$ machine-hours $)=\$ 5.58$ per machine-hour $\times(5,100$ machinehours) $=\$ 28,458$ Job D's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
b.The overhead applied to Job J is calculated as follows:Overhead applied to a particular job $=$ Predetermined overhead rate $\times$ Machinehours incurred by the job $=\$ 5.58$ per machine-hour $\times(1,300$ machinehours $+3,600$ machine-hours $)=\$ 5.58$ per machine-hour $\times(4,900$ machine-hours) $=\$ 27,342 \mathrm{Job}$ J's manufacturing cost:

Direct materials	$\$ 6,800$
Direct labor cost	8,800
Manufacturing overhead applied	27,342
Total manufacturing cost	$\$ 42,942$

356) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 130,000+(\$ 3.00$ per machine-hour $\times 20,000$ machine-hours $)=$ $\$ 130,000+\$ 60,000=\$ 190,000$ Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 190,000 \div 20,000$ machine-hours $=\$ 9.50$ per machine-hourb. Overhead applied to a particular job = Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 9.50$ per machine-hour $\times 30$ machine-hours $=\$ 285 \mathrm{c}$.
Direct materials
Direct labor 1,170
Manufacturing overhead applied
Total cost of Job K789
d.

Total cost of Job K789 (a) \$ 2, 230
Number of units (b)
Unit product cost (a) $\div(b)$
$\$ 223.00$
357) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 252,000+(\$ 2.90$ per machine-hour $\times 30,000$ machine-hours $)=$ $\$ 252,000+\$ 87,000=\$ 339,000 \mathrm{~b}$. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 339,000 \div 30,000$ machine-hours $=\$ 11.30$ per machine-hourc. Overhead applied to a particular job $=$ Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 11.30$ per machine-hour $\times 210$ machine-hours $=\$ 2,373 \mathrm{~d}$.
Direct materials
Direct labor 6,720
Manufacturing overhead applied
Total cost of Job T506
e.

```
Total cost of Job T506 (a)
\$ 9,758
```

Number of units (b)
Unit product cost (a) $\div(b)$
f.

Unit product cost for Job T506
\$ 139.40
Markup (20\% x \$139.40)
Selling price
358) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 76,000+(\$ 2.10$ per direct labor-hour $\times 10,000$ direct laborhours) $=\$ 76,000+\$ 21,000=\$ 97,000 \mathrm{~b}$. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 97,000 \div 10,000$ direct labor-hours $=\$ 9.70$ per direct labor-hourc. Overhead applied to a particular job = Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=$ $\$ 9.70$ per direct labor-hour $\times 270$ direct labor-hours $=\$ 2,619 \mathrm{~d}$.

Direct materials	$\$ 590$
Direct labor	6,480
Manufacturing overhead applied	2,619
Total cost of Job X701	$\$ 9,689$

359) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base $\times$ Estimated total amount of the allocation base $)=\$ 258,000+(\$ 2.00$ per direct labor-hour $\times 30,000$ direct laborhours) $=\$ 258,000+\$ 60,000=\$ 318,000$ Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 318,000 \div 30,000$ direct labor-hours $=\$ 10.60$ per direct labor-hourOverhead applied to a particular job $=$ Predetermined overhead rate $\times$ Amount of the allocation base incurred by the job $=\$ 10.60$ per direct labor-hour $\times 250$ direct labor-hours $=$ \$2,650
```
Direct materials

Direct labor
Manufacturing overhead applied
Total cost of Job P660

Total cost of Job P660 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)

Unit product cost for Job P 660
Markup (20\% x \$265.90)
53.18

Selling price
360) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 215,000+(\$ 3.80\) per machine-hour \(\times 50,000\) machine-hours \()=\) \(\$ 215,000+\$ 190,000=\$ 405,000 \mathrm{~b}\). Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 405,000 \div 50,000\) machine-hours \(=\$ 8.10\) per machine-hourc. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 8.10\) per machine-hour \(\times 240\) machine-hours \(=\$ 1,944 \mathrm{~d}\).
Direct materials
\(\$ 735\)
Direct labor 8,880
Manufacturing overhead applied
1,944
Total cost of Job T496
e.

Total cost of Job T496 (a) \$ 11,559
Number of units (b)
Unit product cost (a) \(\div(b)\)
361) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 525,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 525,000+\$ 161,000=\$ 686,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 686,000 \div 70,000\) machine-hours \(=\$ 9.80\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 9.80\) per machine-hour \(\times 80\) machine-hours \(=\$ 784\)
Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job P987

Number of units (b)
Unit product cost (a) \(\div(b)\)
362) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 238,000+(\$ 2.70\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 238,000+\$ 189,000=\$ 427,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 427,000 \div 70,000\) direct labor-hours \(=\$ 6.10\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.10\) per direct labor-hour \(\times 200\) direct labor-hours \(=\) \$1,220

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job P873
1,220
\(\$ 6,650\)

Total cost of Job P873 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
363) a.Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 88,000+(\$ 3.20\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 88,000+\$ 32,000=\$ 120,000 \mathrm{~b}\). Predetermined overhead rate \(=\)
Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 120,000 \div 10,000\) machine-hours \(=\$ 12.00\) per machine-hourc.Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 12.00\) per machine-hour \(\times 150\) machine-hours \(=\$ 1,800 \mathrm{~d}\).
Direct materials
Direct labor 3,900
Manufacturing overhead applied
Total cost of Job K418
e.

Total cost of Job K418 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
f.

Unit product cost for Job K418
Markup (\(30 \% \times \$ 125.60\))
Selling price
364) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 91,000+(\$ 2.40\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 91,000+\$ 24,000=\$ 115,000 \mathrm{~b}\). Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 115,000 \div 10,000\) machine-hours \(=\$ 11.50\) per machine-hourc. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 11.50\) per machine-hour \(\times 120\) machine-hours \(=\$ 1,380 \mathrm{~d}\).
Direct materials
Direct labor

Manufacturing overhead applied
Total cost of Job K373
1,380
e.

Total cost of Job K373 (a) \(\quad \$ 5,745\)
Number of units (b) 60
Unit product cost (a) \(\div(b)\)
\(\$ 5,745\)
365) Molding Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\$\{\{[a(2)]:\#,\#\#\#\}\}
Estimated variable manufacturing overhead
\{ \{ [a(34)]:\#,\#\#\#\}\}
(\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(x\)
\{\{[a(1)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div \quad \$\{\{[a(19)]: \#, \# \# \# .00\}\}\) per mach
(b)
Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\$ \{ \{ [a(5)]:\#,\#\#\#\}\}
Estimated variable manufacturing overhead
\{ \{ [a(35)]: \#, \#\#\#\} \}
(\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(x\)
\{\{[a(4)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div \quad \$\{\{[a(23)]: \#, \# \# \# .00\}\}\) per mach
(b)
```

\${{[a(22)]:\#,\#\#\#}}
{{[a(4)]:\#,\#\#\#}} machine-hou
\${{[a(23)]:\#,\#\#\#.00}} per mach

```
```

\${{[a(18)]:\#,\#\#\#}}
{{[a(1)]:\#,\#\#\#}} machine-hou
\${{[a(19)]:\#,\#\#\#.00}} per mach

```

Manufacturing overhead applied to Job C:
Molding (\$\{\{[a(19)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(13)]:\#,\#\#\#\}\} machine-hours)
Customizing (\$\{\{[a(23)]:\#,\#\#\#.00\}\} per machine-hour
\(\times\) \{\{[a(15)]:\#,\#\#\#\}\} machine-hours)
Total manufacturing overhead applied

The selling price for Job C would be calculated as follows:
Direct materials
Direct labor cost
\begin{tabular}{rl}
& \(\$\{\{[a(9)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(11)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(26)]: \#, \# \# \#\}\}\) \\
\hline\(\$\) & \(\{\{[a(28)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(29)]: \#, \# \# \#\}\}\) \\
\hline\(\$\) & \(\{\{[a(30)]: \#, \# \# \#\}\}\) \\
\hline
\end{tabular}

The selling price for Job M would be calculated as follows:
Direct materials
\begin{tabular}{rl}
\(\$\) & \(\{\{[a(10)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(12)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(27)]: \#, \# \# \#\}\}\) \\
\hline & \(\$\{\{a(31)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(32)]: \#, \# \# \#\}\}\) \\
\hline
\end{tabular}

Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (\{\{[a(17)]:\#,\#\#\#\}\}\%)
Selling price
\$\{\{[a(33)]:\#,\#\#\#\}\}
366) Molding Department predetermined overhead rate:

Estimated fixed manufacturing overhead
\$15,900
Estimated variable manufacturing overhead (\$1.20 per machine-hour \(\times 3,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
\$19,500
3,000 machine-hou
\(\$ 6.50\) per machine-

\section*{Customizing Department predetermined overhead rate:}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.40 per machine-hour \(\times 2,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
\(\$ 4,200\)
4,800
\$9,000
2,000 machine-hou
\(\$ 4.50\) per machine-

Manufacturing overhead applied to Job C:

Molding (\$6.50 per machine-hour \(\times 2,000\) machine-hours)

Manufacturing overhead applied to Job M:
\begin{tabular}{lr}
Molding \((\$ 6.50\) per machine-hour \(\times 1,000\) machine-hours \()\) & \(\$ 6,500\) \\
Customizing \((\$ 4.50\) per machine-hour \(\times 1,200\) machine-hours \()\) & 5,400 \\
\hline Total manufacturing overhead applied & \(\$ 11,900\) \\
\hline \hline
\end{tabular}

The selling price for Job C would be calculated as follows:
\begin{tabular}{lr}
Direct materials & \(\$ 15,600\) \\
Direct labor cost & 25,100 \\
Manufacturing overhead applied & 16,600 \\
\hline Total manufacturing cost & \(\$ 57,300\) \\
Markup (20\%) & 11,460 \\
Selling price & \(\$ 68,760\) \\
\hline
\end{tabular}

The selling price for Job M would be calculated as follows:
Direct materials
\$ 8,600
Direct labor cost
8,300
Manufacturing overhead applied
Total manufacturing cost
Markup (20\%)
Selling price
\begin{tabular}{r}
\(\$ 8,600\) \\
8,300 \\
11,900 \\
\hline\(\$ 28,800\) \\
5,760 \\
\hline\(\$ 34,560\) \\
\hline \hline
\end{tabular}
367) Forming Department:Forming Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machinehour \(\times\) Total machine-hours in the department \()=\$ 102,400+(\$ 1.90\) per machine-hour \(\times 16,000\) machine-hours \()=\$ 102,400+\$ 30,400=\) \(\$ 132,800\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 132,800 \div 16,000\) machine-hours \(=\$ 8.30\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.30\) per machine-hour \(\times 50\) machine-hours \(=\$ 415\) Assembly Department:Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 66,000+\) \((\$ 3.80\) per direct labor-hour \(\times 6,000\) direct labor-hours \()=\$ 66,000+\) \(\$ 22,800=\$ 88,800\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 88,800\) \(\div 6,000\) direct labor-hours \(=\$ 14.80\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 14.80\) per direct labor-hour \(\times\) 40 direct labor-hours \(=\$ 592\)

Overhead applied to Job A950
\begin{tabular}{lr}
Forming Department & \(\$ 415\) \\
Assembly Department & 592 \\
Total & \(\$ 1,007\) \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
& Forming & Assembly & Total \\
Direct materials & \(\$ 665\) & \(\$ 415\) & \(\$ 1,080\) \\
Direct labor & \(\$ 520\) & \(\$ 1,040\) & 1,560 \\
Manufacturing overhead applied & \(\$ 415\) & \(\$ 592\) & 1,007 \\
\hline
\end{tabular}
```

Total cost of Job A950
Markup (\$3,647.00 x 30%)
Selling price

```
 \(\$ 3,647.00\)
\begin{tabular}{r}
\(1,094.10\) \\
\hline\(\$ 4,741.10\)
\end{tabular}
368) a. Milling Department:

Milling Department overhead cost \(=\) Fixed manufacturing overhead cost \(+(\) Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 91,800+(\$ 2.00\) per machine-hour \(\times 17,000\) machine-hours \()\)
\(=\$ 91,800+\$ 34,000=\$ 125,800\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 125,800 \div 17,000\) machinehours \(=\$ 7.40\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.40\) per machinehour \(\times 70\) machine-hours \(=\$ 518\)

\section*{Finishing Department:}

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 64,200+(\$ 3.40\) per direct labor-hour \(\times 6,000\) direct labor-hours \()\)
\(=\$ 64,200+\$ 20,400=\$ 84,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 84,600 \div 6,000\) direct labor-hours \(=\$ 14.10\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 14.10\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 564\)

Overhead applied to Job M565
b.

Milling Finishing Total

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job M565
\begin{tabular}{lrr}
\(\$ 750\) & \(\$ 360\) & \(\$ 1,110\) \\
\(\$ 340\) & \(\$ 1,360\) & 1,700 \\
\(\$ 518\) & \(\$ 564\) & 1,082 \\
\cline { 3 - 4 } & & \(\$ 3,892\)
\end{tabular}
\(\bar{l}\)
C.

Total cost of Job M565
Markup (\$3,892.00×20\%)
Selling price
\(\$ 3,892.00\)
\(\begin{array}{r}778.40 \\ \hline \$ 4,670.40\end{array}\)
369) Forming Department:Forming Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machinehour \(\times\) Total machine-hours in the department \()=\$ 91,200+(\$ 2.10\) per machine-hour \(\times 16,000\) machine-hours) \(=\$ 91,200+\$ 33,600=\) \(\$ 124,800\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 124,800 \div 16,000\) machine-hours \(=\$ 7.80\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.80\) per machine-hour \(\times 50\) machine-hours = \$390
Customizing Department:Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department) \(=\$ 99,000+\) \((\$ 3.10\) per direct labor-hour \(\times 9,000\) direct labor-hours \()=\$ 99,000+\) \(\$ 27,900=\$ 126,900\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 126,900 \div 9,000\) direct labor-hours \(=\$ 14.10\) per direct laborhourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 14.10\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 705\)

Overhead applied to Job M109

\section*{Forming Department Customizing Department Total}
\begin{tabular}{lrrr}
& Forming & Customizing & Total \\
Direct materials & & & \\
Direct labor & \(\$ 915\) & \(\$ 355\) & \(\$ 1,270\) \\
& \(\$ 620\) & \(\$ 1,550\) & 2,170
\end{tabular}

Total cost of Job M109
370) a. Casting Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 119,000+(\$ 2.10\) per machine-hour \(\times 17,000\) machine-hours \()=\$ 119,000+\$ 35,700=\$ 154,700\)
b. Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 51,000+(\$ 3.10\) per direct laborhour \(\times 6,000\) direct labor-hours \()=\$ 51,000+\$ 18,600=\$ 69,600\)
c. Casting Department:Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 154,700 \div 17,000\) machine-hours \(=\$ 9.10\) per machine-hour d. Assembly Department:Predetermined overhead rate = Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 69,600\) \(\div 6,000\) direct labor-hours \(=\$ 11.60\) per direct labor-hour e. Casting Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.10\) per machine-hour \(\times 50\) machine-hours \(=\) \$455Assembly Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.60\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 580\) Overhead applied to Job A182
\begin{tabular}{lr}
Casting Department & \(\$ 455\) \\
Assembly Department & 580 \\
Total & \(\$ 1,035\) \\
\hline \hline
\end{tabular}
f.
\begin{tabular}{lrrr}
Direct materials & \(\$ 895\) & \(\$ 365\) & \(\$ 1,260\) \\
Direct labor & \(\$ 240\) & \(\$ 1,200\) & 1,440 \\
Manufacturing overhead applied & \(\$ 455\) & \(\$ 580\) & 1,035 \\
Total cost of Job A182 & & & \(\$ 3,735\)
\end{tabular}
g.

Total cost of Job A182 \$ 3,735.00
Markup (\(\$ 3,735.00 \times 20 \%\))
Selling price
\(\$ 4,482.00\)
371) a.The first step is to calculate the estimated total overhead costs in the two departments.Forming
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
(\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(x\)
\{\{[a(1)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost
```

\$ {{[a(2)]:\#,\#\#\#}}
{{[a(40)]:\#,\#\#\#}}

```
 —
\{\{[a(20)]:\#,\#\#\#\}\}
Customizing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(4)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost
\(\$\{\{[a(5)]: \#, \# \# \#\}\}\)
\{\{[a(41)]:\#,\#\#\#\}\}

\{\{[a(21)]:\#,\#\#\#\}\}

The second step is to combine the estimated manufacturing overhead costs in the two departments (\$ \{\{[a(20)]:\#,\#\#\#\}\} + \$\{\{[a(21)]:\#,\#\#\#\}\} \(=\$\{\{[\mathrm{a}(24)]: \#, \# \# \#\}\})\) to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost Estimated total machine hours Predetermined overhead rate
```

    ${{[a(24)]:#,###}}
    {{[a(7)]:#,###}} machine-hou
    \$ {{[a(25)]:\#,\#\#\#.00}} machine-hou

```
b.The overhead applied to Job L is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job= \(\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times\) (\(\{\{[\mathrm{a}(14)]: \#, \# \# \#\}\}\) machine-hours + \{\{[a(16)]:\#,\#\#\#\}\} machine-hours)= \(\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times(\{\{[\mathrm{a}(26)]: \#, \# \# \#\}\}\) machinehours \()=\$\{\{[\mathrm{a}(27)]: \#, \# \# \#\}\}\) c.Job L’s manufacturing cost:
Direct materials
\$ \{\{[a(10)]:\#,\#\#\#\}\}
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
\{\{[a(12)]:\#,\#\#\#\}\}
\{\{[a(27)]:\#,\#\#\#\}\}
d.The selling price for Job L:

Total manufacturing cost
Markup (\{\{[a(17)]:\#,\#\#\#\}\}\%)
Selling price
\$\{\{[a(28)]:\#,\#\#\#\}\}
e.Forming Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
(\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(1)]:\#,\#\#\#\}\} machine-hours)

Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
```

\$ {{[a(2)]:\#,\#\#\#}}

```
\(\{\{[a(18)]: \#, \# \# \#\}\}\)

\section*{\$\{\{[a(20)]:\#,\#\#\#\}\}}
\{\{[a(1)]:\#,\#\#\#\}\} machine-hou
\(\$\{\{[a(31)]: \#, \# \# \# .00\}\}\) machine
hou
f.Customizing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
(\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(\times\)
\(\{\{[a(4)]: \#, \# \# \#\}\}\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\)
(b) (b)
g.Manufacturing overhead applied to Job L:

Forming (\$\{\{[a(31)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(14)]:\#,\#\#\#\}\} machine-hours)
Customizing (\$\{\{[a(32)]:\#,\#\#\#.00\}\} per machine-hour \(\{\{[a(34)]: \#, \# \# \#\}\}\)
\$ \{ \{ [a(5)]:\#,\#\#\#\}\}
\{\{[a(19)]:\#,\#\#\#\}\}
\$\{\{[a(21)]:\#,\#\#\#\}\}
\(\{\{[a(4)]: \#, \# \# \#\}\}\) machine-hou
\(\$\{\{[a(32)]: \#, \# \# \# .00\}\}\) machine
\$
\{\{[a(33)]:\#,\#\#\#\}\}
h.The selling price for Job L would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (\{\{[a(17)]:\#,\#\#\#\}\}\%)
Selling price
\begin{tabular}{rl}
\(\$\) & \(\{\{[a(10)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(12)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(36)]: \#, \# \# \#\}\}\) \\
\hline\(\$\{\{[a(37)]: \#, \# \# \#\}\}\) \\
& \(\{\{[a(38)]: \#, \# \# \#\}\}\) \\
\hline & \(\$\{\{[a(39)]: \#, \# \# \#\}\}\) \\
\hline
\end{tabular}
372) a.The first step is to calculate the estimated total overhead costs in the two departments.Forming

Estimated fixed manufacturing overhead
\(\$ 50,400\)
Estimated variable manufacturing overhead (\$1.70 per machine- 15,300 hour \(\times\) 9,000 machine-hours)
Estimated total manufacturing overhead cost

Customizing
Estimated fixed manufacturing overhead \$ 2,600
Estimated variable manufacturing overhead (\$2.10 per machine- 2,100 hour \(\times 1,000\) machine-hours)
Estimated total manufacturing overhead cost
\$ 4,700
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 65,700+\$ 4,700=\$ 70,400)\) to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
Estimated total machine hours
Predetermined overhead rate
\$ 70,400
10,000 machine-hou
\(\$ 7.04\) per machine
b.The overhead applied to Job L is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$ 7.04\) per machine-hour \(\times(2,900\) machinehours +600 machine-hours \()=\$ 7.04\) per machine-hour \(\times(3,500\) machine-hours) \(=\$ 24,640\) c.Job L's manufacturing cost:
\begin{tabular}{lr}
Direct materials & \(\$ 6,900\) \\
Direct labor cost & 8,500 \\
Manufacturing overhead applied & 24,640
\end{tabular}

Total manufacturing cost
d.The selling price for Job L:

Total manufacturing cost
\(\$ 40,040\)
Markup (80\%)
Selling price

32,032
\$ 72,072
e.Forming Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.70 per machine-hour \(\times 9,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
\$ 50, 400
15,300
\$ 65,700
9,000 machine-hou
\(\$ 7.30\) per machine
f.Customizing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.10 per
machine-hour \(\times 1,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
g.Manufacturing overhead applied to Job L:

Forming (\(\$ 7.30\) per machine-hour \(\times 2,900\) machine-hours)
Customizing (\(\$ 4.70\) per machine-hour \(\times 600\) machine-hours)
Total manufacturing overhead applied
\$2,600
2,100
\$ 21,170
\$4,700
1,000 machine-hou
\$ 4.70 per machine
h.The selling price for Job L would be calculated as follows:
Direct materials
Direct labor cost
\(\$ 6,900\)
Manufacturing overhead applied
8,500
23,990
\(\$ 39,390\)
Markup (80\%)
Total manufacturing cost
\begin{tabular}{r}
\(\$ 6,900\) \\
8,500 \\
23,990 \\
\hline\(\$ 39,390\) \\
31,512 \\
\hline\(\$ 70,902\)
\end{tabular}
Selling price
373) a.Machining Department predetermined overhead rate:

Estimated fixed manufacturing overhead \$ 4,200
Estimated variable manufacturing overhead (\$1.90 per 1,900 MH \(\times 1,000 \mathrm{MHs}\))
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
\(1,000 \mathrm{MHs}\)

Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 6.10\) per MH
b. Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
\(\$ 8,800\)

Estimated variable manufacturing overhead (\$2.90 per 11,600
MH \(\times 4,000 \mathrm{MHs}\))
Estimated total manufacturing overhead cost (a) \(\$ 20,400\)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
4,000 MHs \(\$ 5.10\) per MH
c. Manufacturing overhead applied to Job E:

Machining (\(\$ 6.10\) per MH \(\times 700 \mathrm{MHs}\))
\$ 4, 270
Finishing (\$5.10 per MH \(\times 1,600 \mathrm{MHs})\)
Total manufacturing overhead applied
\begin{tabular}{r}
8,160 \\
\hline\(\$ 12,430\)
\end{tabular}
d. Manufacturing overhead applied to Job G:

Machining (\(\$ 6.10\) per MH \(\times 300 \mathrm{MHs}\))
\(\$ 1,830\)
Finishing (\$5.10 per MH \(\times 2,400 \mathrm{MHs})\)
Total manufacturing overhead applied
\begin{tabular}{r}
12,240 \\
\hline\(\$ 14,070\)
\end{tabular}
e.The selling price for Job E would be calculated as follows:

Direct materials \$ 11,800
Direct labor cost 19,200
Manufacturing overhead applied
Total manufacturing cost

Markup (80\%)
Selling price
\(\frac{34,744}{\$ 78,174}\)
f.The selling price for Job \(G\) would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied Total manufacturing cost
Markup (80\%)
Selling price
g.

Total manufacturing cost Job E
Total manufacturing cost Job G Cost of goods sold
\begin{tabular}{r}
\(\$ 8,000\) \\
6,700 \\
14,070 \\
\hline\(\$ 28,770\) \\
23,016 \\
\hline\(\$ 51,786\) \\
\hline
\end{tabular}

43,430
28,770
\(\$ 72,200\)
374) a. Casting Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 110,000+(\$ 1.60\) per machine-hour \(\times 20,000\) machine-hours \()=\$ 110,000+\$ 32,000=\$ 142,000 \mathrm{~b}\). Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 65,400+(\$ 4.50\) per direct labor-hour \(\times 6,000\) direct labor-hours \()=\$ 65,400+\$ 27,000=\$ 92,400\) c. Casting Department:Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 142,000 \div 20,000\) machine-hours \(=\$ 7.10\) per machine-hourd.Assembly Department:Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 92,400\) \(\div 6,000\) direct labor-hours \(=\$ 15.40\) per direct labor-houre. Casting Department:Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 7.10\) per machine-hour \(\times 60\) machine-hours \(=\$ 426\) f.Assembly Department:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 15.40\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 616 \mathrm{~g}\).
\begin{tabular}{|c|c|c|c|}
\hline & Casting & Assembly & Total \\
\hline Direct materials & \$ 950 & \$ 305 & \$ 1,255 \\
\hline Direct labor & \$ 460 & \$ 920 & 1,380 \\
\hline Manufacturing overhead applied & \$ 426 & \$ 616 & 1,042 \\
\hline Total cost of Job K246 & & & \$ 3,677 \\
\hline \multicolumn{4}{|l|}{h.} \\
\hline Total cost of Job K246 & & \$ & 3,677.00 \\
\hline Markup (\$3,677.00 \(\times 40 \%\)) & & & 1,470.80 \\
\hline Selling price & & \$ & 5,147.80 \\
\hline
\end{tabular}
375) a.The first step is to calculate the estimated total overhead costs in the two departments.Forming
\begin{tabular}{|c|c|}
\hline Estimated fixed manufacturing overhead & \$ 36,800 \\
\hline Estimated variable manufacturing overhead (\$1.60 per MH \(\times\) 8,000 MHs) & 12,800 \\
\hline Estimated total manufacturing overhead cost & \$ 49,600 \\
\hline \multicolumn{2}{|l|}{Customizing} \\
\hline Estimated fixed manufacturing overhead & \$ 4,800 \\
\hline Estimated variable manufacturing overhead (\$2.90 per MH \(\times\) 2,000 MHs) & 5,800 \\
\hline Estimated total manufacturing overhead cost & \$10,600 \\
\hline
\end{tabular}

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 49,600+\$ 10,600=\$ 60,200)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \(\$ 60,200\)
\begin{tabular}{ll}
Estimated total machine hours & \(10,000 \mathrm{MHs}\) \\
Predetermined overhead rate & \(\$ 6.02 \mathrm{per} \mathrm{MH}\)
\end{tabular}

The overhead applied to Job D is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 6.02\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs}+800 \mathrm{MHs})=\$ 6.02\) per \(\mathrm{MH} \times(6,200 \mathrm{MHs})=\$ 37,324 \mathrm{The}\) selling price for Job D:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price
b.The overhead applied to Job K is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$ 6.02\) per \(\mathrm{MH} \times(2,600 \mathrm{MHs}+1,200 \mathrm{MHs})=\) \(\$ 6.02\) per \(\mathrm{MH} \times(3,800 \mathrm{MHs})=\$ 22,876 \mathrm{Job}\) K's manufacturing cost:
Direct materials

Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job K:

Total manufacturing cost
Markup (50\%)
Selling price
\(\$ 38,476\)
19,238
\$ 57,714
c.Forming Department predetermined overhead rate:

Estimated fixed manufacturing overhead
\(\$ 36,800\)
Estimated variable manufacturing overhead (\$1.60 12,800
per \(\mathrm{MH} \times 8,000 \mathrm{MHs}\))
Estimated total manufacturing overhead cost (a) \$49,600
Estimated total machine-hours (b)
8,000 MHs
Departmental predetermined overhead rate (a) \(\div\) (b) \(\$ 6.20\) per MH
Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\(\$ 4,800\)
Estimated variable manufacturing overhead (\$2.90 5,800
per per \(\mathrm{MH} \times 2,000\) per MHs)
Estimated total manufacturing overhead cost (a) \$10,600
\begin{tabular}{l}
Estimated total machine-hours (b) \\
Departmental predetermined overhead rate (a) \(\div\) (b) \(\quad \$ 5.000 \mathrm{MHs}\) \\
\hline
\end{tabular}
Manufacturing overhead applied to Job D:
Forming (\(\$ 6.20\) per MH \(\times 5,400 \mathrm{MHs}\)) \(\quad \$ 33,480\)
Customizing (\$5.30 per MH \(\times 800 \mathrm{MHs}\))
Total manufacturing overhead applied
\begin{tabular}{r}
4,240 \\
\hline\(\$ 37,720\)
\end{tabular}

The selling price for Job D would be calculated as follows:
\begin{tabular}{lr}
Direct materials & \(\$ 15,600\) \\
Direct labor cost & 19,100 \\
Manufacturing overhead applied & 37,720 \\
Total manufacturing cost & \(\$ 72,420\) \\
Markup (50\%) & 36,210 \\
Selling price & \(\$ 108,630\)
\end{tabular}
d.Manufacturing overhead applied to Job K:

Forming (\(\$ 6.20\) per \(\mathrm{MH} \times 2,600 \mathrm{MHs}\))
\$ 16,120
Customizing (\$5.30 per MH \(\times 1,200 \mathrm{MHs}\))
\begin{tabular}{r}
6,360 \\
\hline\(\$ 22,480\)
\end{tabular}

Total manufacturing overhead applied
The selling price for Job K would be calculated as follows:
Direct materials
Direct labor cost 8,700

Manufacturing overhead applied
Total manufacturing cost
22,480

Markup (50\%)
Selling price

19,040
\$57,120
376) a.The first step is to calculate the estimated total overhead costs in the two departments.Molding
Estimated fixed manufacturing overhead \(\quad\) 29,000
Estimated variable manufacturing overhead (\$1.20 per machine- 6,000 hour \(\times 5,000\) machine-hours)
Estimated total manufacturing overhead cost \(\quad\) \$ 35,000
Assembly
Estimated fixed manufacturing overhead \$ 13,500
Estimated variable manufacturing overhead (\$2.30 per machine- 11,500 hour \(\times 5,000\) machine-hours)

Estimated total manufacturing overhead cost
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 35,000+\$ 25,000=\$ 60,000)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
Estimated total machine hours
Predetermined overhead rate
\$60,000
10,000 machine-hou
\(\$ 6.00\) per machine
b.The overhead applied to Job E is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$ 6.00\) per machine-hour \(\times(3,400\) machinehours \(+2,000\) machine-hours \()=\$ 6.00\) per machine-hour \(\times(5,400\) machine-hours) \(=\$ 32,400\) c.Job E's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
d.The selling price for Job E:

Total manufacturing cost \(\$ 69,500\)
Markup (60\%)
Selling price
e.Molding Department predetermined overhead rate:
\(\$ 14,300\)
22,800
32,400
\$ 69,500

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.20 per machine-hour \(\times 5,000\) machine-hours)

Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
f.Assembly Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.30 per machine-hour \(\times 5,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
g.Manufacturing overhead applied to Job E:

Molding (\(\$ 7.00\) per machine-hour \(\times 3,400\) machine-hours)
Assembly (\$5.00 per machine-hour \(\times 2,000\) machine-hours)
Total manufacturing overhead applied
\$29,000
6,000

\section*{\$35,000}

5,000 machine-hou
\(\$ 7.00\) per machine
\$13,500
11,500
\$25,000
5,000 machine-hou
\(\$ 5.00\) per machine
\$ 23, 800
\(\begin{array}{r}10,000 \\ \hline 33,800\end{array}\)
\$ 33,800
h.The selling price for Job E would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (60\%)
Selling price
\$ 14,300
22,800
33,800
\(\$ 70,900\)
42,540
\(\$ 113,440\)
377) a.The first step is to calculate the estimated total overhead costs in the two departments.Molding

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(1)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost
```

\$ {{[a(2)]:\#,\#\#\#}}

```
\{\{[a(18)]:\#,\#\#\#\}\}
\(\$\)
\{\{[a(20)]:\#,\#\#\#\}\}

\section*{Assembly}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(4)]:\#,\#\#\#\}\} machine-hours)
\[
\begin{array}{r}
\$ \quad\{\{[a(5)]: \#, \# \# \#\}\} \\
\{\{[a(19)]: \#, \# \# \#\}\}
\end{array}
\]

The second step is to combine the estimated manufacturing overhead costs in the two departments (\$\{\{[a(20)]:\#,\#\#\#\}\}+\$\{\{[a(21)]:\#,\#\#\#\}\}, \(=\$\{\{[\mathrm{a}(24)]: \#, \# \# \#\}\})\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
Estimated total machine hours
\$\{\{[a(24)]:\#,\#\#\#\}\}
\(\{\{[a(7)]: \#, \# \# \#\}\}\) machine-hou
Predetermined overhead rate
\$ \{ \{[a(25)]:\#,\#\#\#.00\}\} per machine
b.The overhead applied to Job E is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times\) (\{\{[a(13)]:\#,\#\#\#\}\} machine-hours + \{\{[a(15)]:\#,\#\#\#\}\} machine-hours)= \(\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times(\{\{[\mathrm{a}(26)]: \#, \# \# \#\}\}\) machinehours \()=\$\{\{[\mathrm{a}(27)]: \#, \# \# \#\}\}\) c.Job E's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
\begin{tabular}{r}
\(\$\{\{[a(9)]: \#, \# \# \#\}\}\) \\
\(\{\{[a(11)]: \#, \# \# \#\}\}\) \\
\\
\(\{\{[a(27)]: \#, \# \# \#\}\}\) \\
\hline\(\$\{\{[a(28)]: \#, \# \# \#\}\}\) \\
\hline
\end{tabular}
d.The selling price for Job E:

Total manufacturing cost
Markup (\{\{[a(17)]:\#,\#\#\#\}\}\%)
Selling price
\[
\begin{array}{r}
\$\{\{[a(28)]: \#, \# \# \#\}\} \\
\quad\{\{[a(29)]: \#, \# \# \#\}\} \\
\hline \$\{\{[a(30)]: \#, \# \# \#\}\}
\end{array}
\]
e.Molding Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
\{\{[a(1)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a) Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div \quad \$\{\{[a(31)]: \#, \# \# \# .00\}\}\) per macl
\$\{\{[a(2)]:\#,\#\#\#\}\}
\{ \{ [a(18)]:\#,\#\#\#\}\} (b)
f.Assembly Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(x\)
\$ \{ \{ [a(5)]:\#, \#\#\#\}\}
\{ \{ [a(19)]:\#,\#\#\#\}\}
\{\{[a(4)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div \quad \$\{\{[a(32)]: \#, \# \# \# .00\}\}\) per macl
(b)
```

\${{[a(21)]:\#,\#\#\#}}
{{[a(4)]:\#,\#\#\#}} machine-hou
\$ {{[a(32)]:\#,\#\#\#.00}} per macl

```
g.Manufacturing overhead applied to Job E:

Molding (\$\{\{[a(31)]:\#,\#\#\#.00\}\} per machine-hour \(\times\)
\$ \{\{[a(13)]:\#,\#\#\#\}\} machine-hours)
Assembly (\$\{\{[a(32)]:\#,\#\#\#.00\}\} per machine-hour \(\times\) \{\{[a(15)]:\#,\#\#\#\} \} machine-hours)
Total manufacturing overhead applied
\{\{[a(33)]:\#,\#\#\#\}\}
\{\{[a(34)]:\#,\#\#\#\}\}
\(\qquad\)
\{ \{[a(36)]:\#,\#\#\#\} \}
h.The selling price for Job E would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (\{\{[a(17)]:\#,\#\#\#\}\}\%)
Selling price
\begin{tabular}{r}
\$ \(\{\{[a(9)]: \#, \# \# \#\}\}\) \\
\\
\(\{\{[a(11)]: \#, \# \# \#\}\}\) \\
\(\{\{[a(36)]: \#, \# \# \#\}\}\) \\
\hline\(\$\{\{[a(37)]: \#, \# \# \#\}\}\) \\
\\
\hline
\end{tabular}
 \{\{[a(9)]:\#,\#\#\#\}\}
 \{\{[a(11)]:\#,\#\#\#\}\}
 \{\{[a(37)]:\#,\#\#\#\}\}
 \$\{\{[a(39)]:\#,\#\#\#\}
378) Machining Department:Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 98,800+\) (\(\$ 2.10\) per machine-hour \(\times 19,000\) machine-hours) \(=\$ 98,800+\$ 39,900\) \(=\$ 138,700\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 138,700 \div 19,000\) machine-hours \(=\$ 7.30\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.30\) per machine-hour \(\times 90\) machine-hours \(=\$ 657\) Customizing Department:Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 84,600\) \(+(\$ 3.60\) per direct labor-hour \(\times 9,000\) direct labor-hours \()=\$ 84,600+\) \(\$ 32,400=\$ 117,000\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 117,000 \div 9,000\) direct labor-hours \(=\$ 13.00\) per direct laborhourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.00\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 650\) Overhead applied to Job K369
\begin{tabular}{lr}
Machining Department & \$ 657 \\
Customizing Department & 650 \\
Total & \(\$ 1,307\) \\
\hline \hline
\end{tabular}
379) Machining Department:Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\) \(\$\{\{[\mathrm{a}(3)]: \#, \# \# \#\}\}+(\$\{\{[\mathrm{a}(4)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times\) \(\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) machine-hours \()=\$\{\{[\mathrm{a}(3)]: \#, \# \# \#\}\}+\)
\(\$\{\{[\mathrm{a}(13)]: \#, \# \# \#\}\}=\$\{\{[\mathrm{a}(14)]: \#, \# \# \#\}\}\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$\{\{[\mathrm{a}(14)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(1)]: \#, \# \# \#\}\}\) machine-hours \(=\) \(\$\{\{[\mathrm{a}(15)]: \#, \# \# \# .00\}\}\) per machine-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$\{\{[\mathrm{a}(15)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times\) \(\{\{[\mathrm{a}(9)]: \#, \# \# \#\}\}\) machine-hours \(=\$\{\{[\mathrm{a}(17)]: \#, \# \# \#\}\}\) Customizing Department:Customizing Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct laborhour \(\times\) Total direct labor-hours in the department) \(=\$\{\{[\mathrm{a}(7)]: \#, \# \# \#\}\}+\) \((\$\{\{[\mathrm{a}(8)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\{\{[\mathrm{a}(6)]: \#, \# \# \#\}\}\) direct labor-hours) \(=\$\{\{[\mathrm{a}(7)]: \#, \# \# \#\}\}+\$\{\{[\mathrm{a}(18)]: \#, \# \# \#\}\}=\) \(\$\{\{[\mathrm{a}(19)]: \#, \# \# \#\}\}\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$\{\{[\mathrm{a}(19)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(6)]: \#, \# \# \#\}\}\) direct labor-hours = \(\$\{\{[\mathrm{a}(20)]: \#, \# \# \# .00\}\}\) per direct labor-hourOverhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$\{\{[\mathrm{a}(20)]: \#, \# \# \# .00\}\}\) per direct labor-hour \(\times\) \(\{\{[\mathrm{a}(12)]: \#, \# \# \#\}\}\) direct labor-hours \(=\$\{\{[\mathrm{a}(21)]: \#, \# \# \#\}\}\) Overhead applied to Job K369
Machining Department Customizing Department Total
```

\$ {{[a(17)]:\#,\#\#\#}}
{{[a(21)]:\#,\#\#\#}}
\$ {{[a(22)]:\#,\#\#\#}}

```
380) a.The first step is to calculate the estimated total overhead costs in the two departments.Machining

\footnotetext{
Estimated fixed manufacturing overhead
\(\$ 20,000\)
}

Estimated variable manufacturing overhead (\$1.40 per machinehour \(\times 4,000\) machine-hours)
Estimated total manufacturing overhead cost \(\quad \$ 25,600\)

\section*{Finishing}

Estimated fixed manufacturing overhead \(\quad \$ 2,100\)
Estimated variable manufacturing overhead (\$2.80 per machinehour \(\times 1,000\) machine-hours)
Estimated total manufacturing overhead cost \$ 4,900
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 25,600+\$ 4,900=\$ 30,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\(\$ 30,500\)
Estimated total machine hours
Predetermined overhead rate

5,000 machine-hou
\(\$ 6.10\) per machine
b.The overhead applied to Job B is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$ 6.10\) per machine-hour \(\times(2,700\) machinehours +400 machine-hours \()=\$ 6.10\) per machine-hour \(\times(3,100\) machine-hours \()=\$ 18,910 \mathrm{c}\). The overhead applied to Job K is calculated as follows:Overhead applied to a particular job = Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 6.10\) per machinehour \(\times(1,300\) machine-hours +600 machine-hours \()=\$ 6.10\) per machine-hour \(\times(1,900\) machine-hours \()=\$ 11,590\) d.Machining Department predetermined overhead rate:

Estimated fixed manufacturing overhead
\(\$ 20,000\)
Estimated variable manufacturing overhead (\$1.40 per
machine-hour \(\times 4,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
e.Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.80 per machine-hour \(\times 1,000\) machine-hours)
Estimated total manufacturing overhead cost (a)
\(\$ 4,900\)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
1,000 machine-hou
\(\$ 4.90\) per machine
f.Manufacturing overhead applied to Job B:

Machining (\$6.40 per machine-hour \(\times 2,700\) machine-hours)
Finishing (\$4.90 per machine-hour \(\times 400\) machine-hours)
Total manufacturing overhead applied
g.Manufacturing overhead applied to Job K:

Machining (\$6.40 per machine-hour \(\times 1,300\) machine-hours)
Finishing (\$4.90 per machine-hour \(\times 600\) machine-hours)
Total manufacturing overhead applied
\$ 17,280
1,960
\$ 19, 240
\(\$ 8,320\)
2,940
\$11,260
381) a.The first step is to calculate the estimated total overhead costs in the two departments.Machining

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(x\) \{\{[a(1)]:\#,\#\#\#\}\} machine-hours)

Estimated total manufacturing overhead cost

\section*{Finishing}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(\times\) \{ \{[a(4)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost
\$ \{ \{ [a(2)]:\#,\#\#\#\}\}
\{\{[a(18)]:\#,\#\#\#\}\}
— \(\$\)
\{ \{[a(20)]:\#,\#\#\#\}\}
\$ \(\{\{[a(5)]: \#, \# \# \#\}\}\) \(\{\{[a(19)]: \#, \# \# \#\}\}\)
\{\{[a(21)]:\#,\#\#\#\}
The second step is to combine the estimated manufacturing overhead costs in the two departments (\$\{\{[a(20)]:\#,\#\#\#\}\}+\$\{\{[a(21)]:\#,\#\#\#\}\} \(=\$\{\{[\mathrm{a}(24)]: \#, \# \# \#\}\})\) to calculate the plantwide predetermined overhead rate as follows:

Estimated total manufacturing overhead cost Estimated total machine hours Predetermined overhead rate
```

    ${{[a(24)]:#,###}}
    {{[a(7)]:#,###}} machine-hou
    \$ {{[a(25)]:\#,\#\#\#.00}} per macl

```
b.The overhead applied to Job B is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machinehours incurred by the job \(=\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times\) (\(\{\{[\mathrm{a}(13)]: \#, \# \# \#\}\}\) machine-hours + \{\{[a(15)]:\#,\#\#\#\}\} machine-hours)= \(\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times(\{\{[\mathrm{a}(26)]: \#, \# \# \#\}\}\) machinehours \()=\$\{\{[\mathrm{a}(27)]: \#, \# \# \#\}\} \mathrm{c}\). The overhead applied to Job K is calculated as follows:Overhead applied to a particular job = Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\) \(\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times(\{\{[\mathrm{a}(14)]: \#, \# \# \#\}\}\) machinehours \(+\{\{[\mathrm{a}(16)]: \#, \# \# \#\}\}\) machine-hours \()=\$\{\{[\mathrm{a}(25)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times(\{\{[\mathrm{a}(28)]: \#, \# \# \#\}\}\) machine-hours \()=\) \(\$\{\{[\mathrm{a}(29)]: \#, \# \# \#\}\}\) d.Machining Department predetermined overhead rate:

\section*{Estimated fixed manufacturing overhead}
\$\{\{[a(2)]:\#,\#\#\#\}\}
Estimated variable manufacturing overhead
\{\{[a(18)]:\#,\#\#\#\}\}
(\$\{\{[a(3)]:\#,\#\#\#.00\}\} per machine-hour \(\times\) \{\{[a(1)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div \quad \$\{\{[a(30)]: \#, \# \# \# .00\}\}\) per mack
(b)
e.Finishing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
\$\{\{[a(5)]:\#,\#\#\#\}\}
(\$\{\{[a(6)]:\#,\#\#\#.00\}\} per machine-hour \(x\)
\{\{[a(4)]:\#,\#\#\#\}\} machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) \$ \{\{[a(31)]:\#,\#\#\#.00\}\} per macl
\$\{\{[a(21)]:\#,\#\#\#\}\}
\{\{[a(4)]:\#,\#\#\#\}\} machine-hou
(b)
f.Manufacturing overhead applied to Job B:

Machining (\$\{\{[a(30)]:\#,\#\#\#.00\}\} per machine-hour \(\times\)
\{\{[a(13)]:\#,\#\#\#\}\} machine-hours)
Finishing (\$\{\{[a(31)]:\#,\#\#\#.00\}\} per machine-hour \(\times\) \{\{[a(15)]:\#,\#\#\#\} machine-hours)

Total manufacturing overhead applied
g.Manufacturing overhead applied to Job K:

Machining (\(\$\{\{[a(30)]: \#, \# \# \# .00\}\}\) per machine-hour \(\times \$\{\{[a(36)]: \#, \# \# \#\}\}\) \{\{[a(14)]:\#,\#\#\#\}\} machine-hours)
Finishing (\$\{\{[a(31)]:\#,\#\#\#.00\}\} per machine-hour x \{\{[a(37)]:\#,\#\#\#\}\} \{\{[a(16)]:\#,\#\#\#\}\} machine-hours)
Total manufacturing overhead applied
\$\{\{[a(38)]:\#,\#\#\#\}\}
382) a. Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 76,300+(\$ 3.10\) per direct laborhour \(\times 7,000\) direct labor-hours \()=\$ 76,300+\$ 21,700=\) \(\$ 98,000 \mathrm{~b}\). Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 100,800+(\$ 1.70\) per machine-hour \(\times 16,000\) machine-hours \()=\$ 100,800+\$ 27,200=\$ 128,000\) Forming Department: Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 128,000 \div 16,000\) machine-hours \(=\$ 8.00\) per machine-hourc. Forming Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 8.00\) per machine-hour \(\times 50\) machine-hours \(=\$ 400\) Assembly Department: Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 98,000\) \(\div 7,000\) direct labor-hours \(=\$ 14.00\) per direct labor-hourAssembly Department: Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 14.00\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 560\) Overhead applied to Job X560
\begin{tabular}{lr}
Forming Department & \(\$ 400\) \\
Assembly Department & 560 \\
Total & \(\$ 960\) \\
\hline
\end{tabular}
383) a.The first step is to calculate the estimated total overhead costs in the two departments.Molding

Estimated fixed manufacturing overhead 5 ,100
Estimated variable manufacturing overhead (\$1.50 per machine- 1,500 hour \(\times 1,000\) machine-hours)

Estimated total manufacturing overhead cost

\section*{Customizing}

Estimated fixed manufacturing overhead \(\quad\) 23,400
Estimated variable manufacturing overhead (\$2.50 per machine- 22,500 hour \(\times\) 9,000 machine-hours)

Estimated total manufacturing overhead cost
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 6,600+\$ 45,900=\$ 52,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$52,500
Estimated total machine hours
Predetermined overhead rate

10,000 machine-hou
\(\$ 5.25\) per machine

The overhead applied to Job D is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 5.25\) per machine-hour \(\times\) (700 machine-hours + 3,600 machine-hours \()=\$ 5.25\) per machine-hour \(\times(4,300\) machinehours \()=\$ 22,575 \mathrm{~b}\). The overhead applied to Job G is calculated as follows:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job \(=\$ 5.25\) per machine-hour \(\times\) (300 machine-hours \(+5,400\) machine-hours) \(=\$ 5.25\) per machine-hour \(\times(5,700\) machine-hours \()=\$ 29,925 \mathrm{c}\). Molding Department predetermined overhead rate:
```

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.50 per
machine-hour x 1,000 machine-hours)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b)

```

Customizing Department predetermined overhead rate:
\begin{tabular}{|c|c|}
\hline Estimated fixed manufacturing overhead & \$23,400 \\
\hline Estimated variable manufacturing overhead (\$2.50 per machine-hour \(\times 9,000\) machine-hours) & 22,500 \\
\hline Estimated total manufacturing overhead cost (a) & \$45,900 \\
\hline Estimated total machine-hours (b) & 9,000 machine-hou \\
\hline Departmental predetermined overhead rate (a) \(\div\) (b) & \$ 5.10 per machine \\
\hline Manufacturing overhead applied to Job D: & \\
\hline Molding (\$6.60 per machine-hour \(\times 700\) machine-hours) & \$ 4,620 \\
\hline Customizing (\$5.10 per machine-hour \(\times 3,600\) machine-hours) & 18,360 \\
\hline Total manufacturing overhead applied & \$22,980 \\
\hline d. Manufacturing overhead applied to Job G: & \\
\hline Molding (\$6.60 per machine-hour \(\times 300\) machine-hours) & \$ 1,980 \\
\hline Customizing (\$5.10 per machine-hour \(\times 5,400\) machine-hours) & 27,540 \\
\hline Total manufacturing overhead applied & \$29,520 \\
\hline
\end{tabular}
384) a. Casting Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 124,100+(\$ 2.30\) per machine-hour \(\times 17,000\) machine-hours \()=\$ 124,100+\$ 39,100=\$ 163,200 \mathrm{~b}\). Casting Department:Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 163,200 \div 17,000\) machine-hours \(=\$ 9.60\) per machine-hourc. Casting Department:Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 9.60\) per machine-hour \(\times 80\) machine-hours \(=\$ 768\)
385) a. Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department \()=\$ 57,600+(\$ 4.00\) per direct laborhour \(\times 6,000\) direct labor-hours \()=\$ 57,600+\$ 24,000=\$ 81,600 \mathrm{~b}\).
Finishing Department:Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 81,600\) \(\div 6,000\) direct labor-hours \(=\$ 13.60\) per direct labor-hourc. Finishing Department:Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\) \(\$ 13.60\) per direct labor-hour \(\times 60\) direct labor-hours \(=\$ 816\) 386) a.Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 119,700+(\$ 2.00\) per machine-hour \(\times 19,000\) machine-hours \()=\$ 119,700+\$ 38,000=\$ 157,700 \mathrm{~b}\).
Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department \()=\$ 67,200+(\$ 4.20\) per direct labor-hour \(\times\) 8,000 direct labor-hours) \(=\$ 67,200+\$ 33,600=\$ 100,800\) Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 100,800 \div 8,000\) direct labor-hours \(=\) \(\$ 12.60\) per direct labor-hourc. Forming Department: Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 157,700 \div 19,000\) machine-hours \(=\) \(\$ 8.30\) per machine-hourForming Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.30\) per machine-hour \(\times 50\) machine-hours \(=\$ 415\) Customizing Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.60\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 630\)
387)

Predetermined overhead rate (a)
Actual activity level (b)
Manufacturing overhead applied (a) \(\times\) (b)
\$ 14.30 per machine-hour 36,700 machine-hours \$524, 810
388)

Predetermined overhead rate (a)
Actual activity level (b)
Manufacturing overhead applied (a) \(\times\)
(b)
389) Estimated total manufacturing overhead \(=\$ 1,533,180+(\$ 8.41\) per labor-hour \(\times 66,000\) labor-hours) \(=\$ 2,088,240\) Predetermined overhead rate \(=\$ 2,088,240 \div 66,000\) labor-hours \(=\$ 31.64\) per labor-hour 390) Estimated total manufacturing overhead \(=\$ 705,220+(\$ 4.43\) per labor-hour \(\times 37,000\) labor-hours) \(=\$ 869,130\) Predetermined overhead rate \(=\$ 869,130 \div 37,000\) labor-hours \(=\$ 23.49\) per labor-hour 391) Estimated total manufacturing overhead \(=\$ 985,920+(\$ 9.99\) per labor-hour \(\times 78,000\) labor-hours) \(=\$ 1,765,140\) Predetermined overhead rate \(=\$ 1,765,140 \div 78,000\) labor-hours \(=\$ 22.63\) per labor-hour 392) Estimated total manufacturing overhead \(=\$ 1,077,000+(\$ 8.82\) per machine-hour \(\times 50,000\) machine-hours \()=\$ 1,518,000\) Predetermined overhead rate \(=\$ 1,518,000 \div 50,000\) machine-hours \(=\$ 30.36\) per machine-hour

\section*{393) Cost Summary}

\section*{Direct materials}

Direct labor (\$13 per direct labor-hour \(\times 405\) direct labor- 5,265 hours)
Manufacturing overhead (\$11 per machine-hour \(\times 486\) machine- 5,346 hours)
Total product cost
Unit product cost
394) Cost Summary

Direct materials
Direct labor (\$15 per direct labor-hour x 1,224 direct labor- 18, 360
hours)
Manufacturing overhead (\$35 per Direct labor-hour \(\times 1,224\)
Direct labor-hours)
Total product cost
\$120,600
Unit product cost
395) a. Traditional Unit Product CostsPredetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$\{\{[\mathrm{a}(14)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(17)]: \#, \# \# \#\}\}\) direct labor-hours \(=\$\{\{[\mathrm{a}(30)]: \#, \# \# \# .00\}\}\) per direct labor-hour W82R

L48S
```

Direct materials
\$
{{[a(37)]:\#,\#\#\#.00}} {{[a(41)]:\#,\#\#\#.00}}
Direct labor {{[a(38)]:\#,\#\#\#.00}} {{[a(42)]:\#,\#\#\#.00}}
Manufacturing overhead {{[a(39)]:\#,\#\#\#.00}} {{[a(43)]:\#,\#\#\#.00}}
({{[a(3)]:\#,\#\#0.00} }
direct labor-hours x
\${{[a(30)]:\#,\#\#0.00}}
per direct labor-hour;
{{[a(7)]:\#,\#\#0.00}}
direct labor-hours x
\${{[a(30)]:\# ,\#\#0.00}}
per direct labor-hour)
Unit product cost \$ \$
{{[a(40)]:\#,\#\#\#.00}} {{[a(44)]:\#,\#\#\#.00}}

```

\section*{b. ABC Unit Product Costs.}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Estimated Overhead Cost} & \multirow[t]{2}{*}{Total Expected Activity} & Activity Rate \\
\hline & & \\
\hline & & \\
\hline \$ & \{ \{ a (46)]: \#, \#\#\#\} & \$ \{ \{ a (47)]: \#, \#\#\#\}\} \\
\hline \{ \{ [a(45) & direct labor-hours & per direct labor- \\
\hline]: \#, \#\#\# \} & & hour \\
\hline \} & & \\
\hline \$ & \{ \{ [a(49) & \$ \\
\hline \(\{\{[\mathrm{a}(48)\) &]:\#,\#\#\#\} & \{ \{ [a(50) \\
\hline]: \#, \#\#\# \} & \} setups &]: \#, \#\#\# \} \\
\hline \} & & \} per \\
\hline & & setup \\
\hline \$ & \{ \{ a (52)]: \#, & \$ \\
\hline
\end{tabular}
\begin{tabular}{lrr}
admini \(\{\{[a(51)\) & \(\# \# \#\}\}\) part & \(\{\{[a(53)]: \#\), \\
strati \(]: \#, \# \# \#\}\) & types & \(\# \# \#\}\}\) per \\
on & \(\}\) & \\
part type
\end{tabular}

Overhead cost for W82R
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Activity Rate} \\
\hline Supportin & \$ \(\{\{[\mathrm{a}(54)]: \#, \# \# \#\}\}\) \\
\hline \(g\) direct & per direct labor-hour \\
\hline labor & \\
\hline Setting & \$ \\
\hline up & \(\{\{[\mathrm{a}(57)]: \#\) \\
\hline machines & ,\#\#\#\}\} per \\
\hline & setup \\
\hline Parts & \$ \\
\hline administr & \{ \{[a(60)]:\#,\#\# \\
\hline ation & \#\}\} per part \\
\hline & type \\
\hline
\end{tabular}

\section*{Activity \\ ABC Cost}

\section*{Overhead cost for L48S}

\section*{Activity Rate}

\{\{[a(61)]:\#,\#\#\#
\}\} part types
\{\{[a(62)]:\#
\[
\text { , \#\#\# \} \} }
\]
\$
\(\{\{[a(63)]: \#\)

\section*{Activity}
\{\{[a(65)]:\#,\#\#\#\}\}
ABC Cost
\{\{[a(71)]:\#,\#\#\#
\(\{\{[a(72)]: \#\)
\}\} part types
\[
\text { , \#\#\# \} \} }
\]

W82R
\begin{tabular}{rr}
\(\{\{[\mathrm{a}(68)]: \#\) & \(\{\{[\mathrm{a}(69)]: \#\) \\
\#\#\# \(\}\) \\
setups & \(, \# \# \#\}\}\)
\end{tabular}
setups

\$
direct labor-hours \(\{\{[a(56)]: \#\) , \#\#\# \} \}
\(\{\{[a(59)]: \#\) , \#\#\# \} \}
, \#\#\#\} \}
\[
\text { , \#\#\#\} \} }
\]
```

Direct labor {{[a(75)]:\#,\#\#\#.00}} {{[a(79)]:\#,\#\#\#.00}}
Manufacturing {{[a(76)]:\#,\#\#\#.00}} {{[a(80)]:\#,\#\#\#.00}}
overhead
{{{[a(63)]:\#,\#\#\#}} \div
{{[a(4)]:\#,\#\#\#}}
units;
\${{[a(73)]:\#,\#\#\#}} \div
{{[a(8)]:\#,\#\#\#}}
units)
Unit product cost
\$
396) a. Traditional Manufacturing Overhead CostsPredetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 1,147,650 \div 35,000$ direct labor-hours $=\$ 32.79$ per direct labor-hour
D31X U75X

Direct labor-hours	0.10		2.10	
Predetermined overhead rate per direct laborhours	\$	32.79	\$	32.79
Manufacturing overhead cost per unit		\$ 3.28	\$	68.86

b. ABC Manufacturing Overhead Costs

	Estimated Overhead Cost	Total Expected Activity	Activity Rate
Assembling products	\$	35,000 direct labor-	\$ 4 per
	140,000	hours	direct
			labor-hour
Preparing	\$	1,855	\$ 130 per
batches	241,150	batches	batch
Axial milling	\$	2,555 machine-	\$ 300 per
	766,500	hours	machine-hour

Overhead cost for D31X

	Activity Rate	Activity	ABC Cost
Assembling products	```$ 4 per direct labor- hour```	$\begin{aligned} & 3,500 \text { direct } \\ & \text { labor-hours } \end{aligned}$	\$ 14,000
Preparing batches	\$ 130 per batch	560 batches	72,800
Axial milling	$\$ 300$ per machine-hour	1,540 machinehours	462,000

Total

Annual production	548,800
(units)	35,000
Manufacturing overhead	$\$ 15.68$
cost per unit	

Overhead cost for U75X

	Activity Rate	Activity	ABC Cost
Assembling products	```$ 4 per direct labor- hour```	31,500 direct labor-hours	$\begin{array}{r} \$ \\ 126,000 \end{array}$
Preparing batches	\$ 130 per batch	1,295 batches	168,350
Axial milling	\$ 300 per machine-hour	1,015 machinehours	304,500
Total			\$
			598,850
Annual production (units)			15,000
Manufacturing overhead cost per unit			\$ 39.92

397) a. Traditional Unit Product Costs Predetermined overhead rate $=$

Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 2,656,000 \div 64,000$ direct labor-hours $=\$ 41.50$ per direct labor-hour

			B40W		C63J	
Direct materials			\$	34.90	\$	63.70
Direct labor				20.80		62.40
Manufacturing overhead				33.20		99.60
(0.8 direct labor-hours $\times \$ 41.50$ per						
direct labor-hour; 2.4 direct labor-hours $x$						\$41.50 per direct labor-hour)
Unit product cost			\$	88.90		225.70
b. ABC Manufacturing Overhead Costs						
Estimated		Total Expected		Activity Rate		
	Overhead Cost	Activity				
Assembling	\$	64,000 direct la			19	per direct
products	1,216,000	ho				labor-hour
Preparing	\$ 480,000	4,800		\$ 100	per	


batches	batches	batch	
Milling	$\$ 960,000$	3,200 machine-	$\$ 300$ per
	hours	machine-hour	

## Overhead cost for B40W

	Activity Rate	Activity	ABC Cost
Assembling products	\$ 19 per direct labor-hour	28,000 direct labor-hours	\$ 532,000
Preparing batches	$\begin{array}{r} \$ 100 \\ \text { per } \\ \text { batch } \end{array}$	$\begin{array}{r} 2,304 \\ \text { batches } \end{array}$	230,400
Milling	$\$ 300$ per machine-hour	1,088 machinehours	326,400
Total			\$
			1,088,800
Overhead cost for C63J			
	Activity Rate	Activity	ABC Cost
Assembling products	\$ 19 per direct labor-hour	36,000 direct labor-hours	\$ 684,000
Preparing batches	$\begin{array}{r} \$ 100 \\ \text { per } \end{array}$	$\begin{array}{r} 2,496 \\ \text { batches } \end{array}$	249,600
Milling	batch   \$ 300 per   machine-hour	2,112 machinehours	633,600
Total			$\begin{array}{r} \$ \\ 1,567,200 \end{array}$


	B40W		C63J	
Direct materials	\$	34.90		63.70
Direct labor		20.80		62.40
Manufacturing overhead $(\$ 1,088,800 \div 35,000$ units; $\$ 1,567,200 \div$		31.11		104.48
15,000 units)				
Unit product cost	\$	86.81	\$	230.58

398) a. The expected total direct labor-hours during the period are computed as follows:
Product C: 2,000 units $\times 2.0$ hours per unit Product D: 2,700 units $\times 0.8$ hours per unit

$$
\begin{aligned}
& 4,000 \text { hours } \\
& 2,160 \text { hours }
\end{aligned}
$$

Using these hours as a base, the predetermined overhead using direct labor-hours would be:Predetermined overhead rate $=$ Estimated total overhead cost $\div$ Estimated total direct labor-hours $=\$ 167,140 \div 6,160$ direct labor-hours $=\$ 27.13$ per direct labor-hourUsing this overhead rate, the unit product costs are:

Direct materials	\$ 21.50	24.10
Direct labor	24.00	21.71
Manufacturing overhead		54.27

b. The activity rates for each activity cost pool are as follows:
Estimated Expected Activity Activity Rate
Overhead
Cost


The overhead cost charged to Product C is:

	Activity Rate	Activity	Amount
Machine setups	$\begin{array}{r} \$ 53.00 \\ \text { per setup } \end{array}$	130 setups	\$ 6,110
Purchase orders	$\begin{array}{r} \$ 38.00 \\ \text { per order } \end{array}$	750 orders	36,750
General factory	$\$ 13.00$ per direct labor-hour	4,000 direct laborhours	44,000
Total overhead cost			\$ 86,860

The overhead cost charged to Product D is:

Activity Rate


Overhead cost per unit:Product $\mathrm{C}: \$ 86,860 \div 2,000$ units $=\$ 43.43$ per unit.Product D: $\$ 80,280 \div 2,700$ units $=\$ 29.73$ per unit.Using activity based costing, the unit product cost of each product would be:
Product C Product D

Direct materials	$\$ 21.50$	$\$ 24.10$
Direct labor	24.00	9.60
Manufacturing overhead	43.43	29.73
Total unit product cost	$\$ 88.93$	$\$ 63.43$

399) a. Traditional Manufacturing Overhead CostsPredetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 1,464,480 \div 24,000$ direct labor-hours $=\$ 61.02$ per direct labor-hour

Direct
Prede
hour
Manuf
Manufacturing overhead cost per unit
b. ABC Manufacturing Overhead Costs

	Estimated Overhead Cost	Total Expected Activity	Activity Rate
Supporting direct	\$	24,000 direct labor-	\$ 23 per direct
labor	552,000	hours	labor-hour
Setting up	\$	1,104	\$ 120 per
machines	132,480	setups	setup
Parts	\$	1,560 part	\$ 500 per
administration	780,000	types	part type

Overhead cost for H16Z

	Activity Rate	Activity	ABC Cost
Supporting direct	\$ 23 per direct	12,000 direct	\$
labor	labor-hour	labor-hours	276,000
Setting up	\$ 120	864	103,680
machines	per	setups	
	setup		
Parts	\$ 500 per	600 part	300,000
administration	part type	types	
Total			\$
			679,680
Annual production (units)			30,000
Manufacturing overhead cost per unit			\$ 22.66
Overhead cost for P25P			
	Activity Rate	Activity	ABC Cost
Supporting direct	\$ 23 per direct	12,000 direct	\$
labor	labor-hour	labor-hours	276,000
Setting up	\$ 120	240	28,800
machines	per	setups	
	setup		
Parts	\$ 500 per	960 part	480,000
administration	part type	types	
Total			\$
			784,800
Annual production (units)			10,000
Manufacturing			\$ 78.48
overhead cost per unit			

400) a. Traditional Unit Product CostsPredetermined overhead rate $=$

Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=\$ 1,521,960 \div 22,000$ direct labor-hours $=\$ 69.18$ per direct labor-hour

	W82R	L48S
Direct materials	$\$ 11.50$	$\$ 62.90$

```
Direct labor
$ 2.00 $ 13.00
 Manufacturing overhead
 (0.20 direct labor-hours x $69.18 per direct
 labor-hour; 1.3 direct labor-hours x $69.18
 per direct labor-hour)
Unit product cost
$ 27.34 $ 165.83
```

b. ABC Unit Product Costs.

	Estimated   Overhead   Cost	Total Expected   Activity	Activity Rate
Supporting direct	$\$$	22,000 direct labor-	hours
labor	352,000		16 per direct
Setting up	$\$$	1,188	labor-hour
machines	201,960	setups	170 per
Parts	$\$$	1,936 part	setup
administration	968,000	types	$\$ 500$ per

## Overhead cost for W82R

## Activity Rate <br> Activity <br> ABC Cost

$$
\text { \$ } 16 \text { per direct } 9,000 \text { direct labor- }
$$ labor-hour hours

814
setups

924 part 462,000
types
\$ 500 per
part type
\$ 170
per
setup
Parts
administration
Total


## Overhead cost for L48S

## Activity Rate <br> Activity <br> ABC Cost

Supporting direct
labor
Setting up
machines

Parts
administration
Total
\$ 16 per direct
labor-hour
\$ 170
per
setup
$\$ 500$ per
part type

13,000 direct labor-hours 208,000
374
setups

1,012 part
types

744,380

	Activity Rate	Activity	ABC Cost
Supporting direct	\$ 16 per direct	13,000 direct	\$
labor	labor-hour	labor-hours	208,000
Setting up	\$ 170	374	63,580
machines	per	setups	
	setup		
Parts	\$ 500 per	1,012 part	506,000
administration	part type	types	
Total			\$
			777,580


L48S			
Direct materials	W82R		
Direct labor	\$	11.50	$\$ 2.90$
Manufacturing overhead	2.00	13.00	
(\$744,400 $\div 45,000$ units; $\$ 777,600 \div 10,000$	16.54	77.76	
units)			
Unit product cost	$\$ 30.04$	$\$ 153.66$	

401) Predetermined overhead rate $=$ Estimated total manufacturing overhead $\div$ Estimated total amount of the allocation base $=\$ 989,000 \div$ 50,000 machine-hours $=\$ 19.78$ per machine-hour
Actual manufacturing overhead cost incurred
Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
Manufacturing overhead applied to jobs
Cost of unused capacity
\$ 19.78 per machine
45,400 machine-hou \$898, 012
\$ 90,988
402) Predetermined overhead rate $=$ Estimated total manufacturing overhead at capacity $\div$ Estimated total amount of the allocation base at capacity $=\$\{\{[\mathrm{a}(4)]: \#, \# \# \#\}\} \div\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}$ machine-hours $=$ \$\{\{[a(5)]:\#,\#\#\#.00\}\} per machine-hour

Actual manufacturing overhead cost incurred Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
Manufacturing overhead applied to jobs
Cost of unused capacity
403) a.

Estimated total fixed manufacturing overhead
Estimated activity level
Predetermined overhead rate

$$
\$\{\{[a(4)]: \#, \# \# \#\}\}
$$

$\$\{\{[a(5)]: \#, \# \# \# .00\}\}$ per machine
$\{\{[a(3)]: \#, \# \# \#\}\}$ machine-hou
\$ \{ \{ [a (6) ]: \#, \#\#\#\}\}
\$ \{\{[a(7)]:\#,\#\#\#\}\}
b. Manufacturing overhead applied $=200$ hours $\times \$ 98.00$ per hour $=$ \$19,600
C.

b. Manufacturing overhead applied $=210$ hours $\times \$ 98.70$ per hour $=$ $\$ 20,727 \mathrm{c}$. Cost of unused capacity $=(230$ hours -210 hours $) \times \$ 98.70$ per hour $=\$ 1,974$
406) a.

```
Estimated total fixed manufacturing overhead ${{[a(1)]:#,###}}
Estimated activity level
Predetermined overhead rate
 {{[a(2)]:#,###}} hours
$ {{[a(5)]:#,###}} per hour
```

b. Manufacturing overhead applied $=\{\{[\mathrm{a}(4)]: \#, \# \# \#\}\}$ hours $\times$
$\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\}$ per hour $=\$\{\{[\mathrm{a}(6)]: \#, \# \# \#\}\} \mathrm{c}$. Cost of unused capacity $=(\{\{[\mathrm{a}(2)]: \#, \# \# \#\}\}$ hours $-\{\{[\mathrm{a}(4)]: \#, \# \# \#\}\}$ hours $) \times$ $\$\{\{[\mathrm{a}(5)]: \#, \# \# \#\}\}$ per hour $=\$\{\{[\mathrm{a}(7)]: \#, \# \# \#\}\}$
407) a. Predetermined overhead rate $=$ Estimated total manufacturing overhead at capacity $\div$ Estimated total amount of the allocation base at capacity $=\$ 6,400 \div 10,000$ machine-hours $=\$ 0.64$ per machine-hourb.
Manufacturing overhead applied to Job L77S
Number of hours for the job
Predetermined overhead rate
220 machine-hours
$\$ 0.64$ per machine-hour
$\$ 140.80$

Manufacturing overhead applied to the job \$140.80
c.

Actual manufacturing overhead cost incurred
Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
Manufacturing overhead applied to jobs
Cost of unused capacity
\$6, 400
408) a.Predetermined overhead rate $=$ Estimated total manufacturing overhead at capacity $\div$ Estimated total amount of the allocation base at capacity $=\$ 734,160 \div 46,000$ machine-hours $=\$ 15.96$ per machinehourb.
Actual manufacturing overhead cost incurred
Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
$\$ 15.96$ per machine-
43,000 machine-hou
409) Predetermined overhead rate $=$ Estimated total manufacturing overhead at capacity $\div$ Estimated total amount of the allocation base at capacity $=\$ 377,400 \div 37,000$ machine-hours $=\$ 10.20$ per machinehour

Actual manufacturing overhead cost incurred Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
Manufacturing overhead applied to jobs
Cost of unused capacity
\$377, 400
$\$ 10.20$ per machine-
34,700 machine-hou
\$353, 940
\$23,460
410) a.Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=$ $\$ 5,572,320 \div 76,000$ machine-hours $=\$ 73.32$ per machine-hourb. Manufacturing overhead applied to Job Q58A

Number of hours for the job Predetermined overhead rate

130 machine-hou
$\$ 73.32$ per machine$\$ 9,531.60$
c.Predetermined overhead rate $=$ Estimated total manufacturing overhead cost $\div$ Estimated total amount of the allocation base $=$ $\$ 5,572,320 \div 94,000$ machine-hours $=\$ 59.28$ per machine-hourd. Manufacturing overhead applied to Job Q58A

Number of hours for the job
Predetermined overhead rate
Manufacturing overhead applied to the job
e.

Actual manufacturing overhead cost incurred $\$ 5,572,320$

Manufacturing overhead applied to jobs:

Predetermined overhead rate
Actual hours
Manufacturing overhead applied to jobs
$\$ 59.28$ per machine-
82,800 machine-hou $\$ 4,908,384$

Cost of unused capacity
411) a.Predetermined overhead rate $=$ Estimated total manufacturing overhead $\div$ Estimated total amount of the allocation base $=\$ 43,200 \div$ 15,000 machine-hours $=\$ 2.88$ per machine-hourb.Predetermined overhead rate $=$ Estimated total manufacturing overhead $\div$ Estimated total amount of the allocation base $=\$ 43,200 \div 18,000$ machine-hours $=$ $\$ 2.40$ per machine-hour
Actual manufacturing overhead cost incurred
$\$ 43,200$
Manufacturing overhead applied to jobs:

```
 Predetermined overhead rate
 Actual hours
Manufacturing overhead applied to jobs
Cost of unused capacity
```

$\$ 2.40$ per machine-
15,800 machine-hou
$\$ 2.40$ per machine-
15,800 machine-hou

