Student name:

\qquad

MULTIPLE CHOICE - Choose the one alternative that best completes the statement or answers the question.

1) Which of the following statements are true?
1. A cost driver is a factor, such as machine-hours, beds occupied, computer time, or flighthours, that causes direct costs.
2. Job-order costing systems often use allocation bases that do not reflect how jobs actually use overhead resources.
3. An employee time ticket is an hour-by-hour summary of the employee's activities throughout the day.
A) Only statement I is true.
B) Statements I and II are true.
C) Statements II and III are true.
D) All of the statements are true.
2) Which of the following statements are true?
1. The formula for computing the predetermined overhead rate is: Predetermined overhead rate $=$ Estimated total amount of the allocation base \div Estimated total manufacturing overhead cost
2. Generally speaking, when going through the process of computing a predetermined overhead rate, the estimated total manufacturing overhead cost is determined before estimating the amount of the allocation base.
A) Only statement I is true.
B) Only statement II is true.
C) Both of the statements are true.
D) Neither of the statements are true.
3) Which of the following statements are true?
1. If a job is not completed at year end, then no manufacturing overhead cost would be applied to that job when a predetermined overhead rate is used.
2. Actual overhead costs are not assigned to jobs in a job costing system.
3. The amount of overhead applied to a particular job equals the actual amount of overhead caused by the job.
A) Only statement I is true.
B) Only statement II is true.
C) Statements II and III are true.
D) All of the statements are true.
4) Which of the following statements are true?
1. Job cost sheets contain entries for actual direct material, actual direct labor, and actual manufacturing overhead cost incurred in completing a job.
2. A job cost sheet is used to record how much a customer pays for the job once the job is completed.
A) Only statement I is true.
B) Only statement II is true.
C) Both of the statements are true.
D) Neither of the statements are true.
5) Which of the following statements are true?
1. In a job-order costing system, indirect labor is assigned to a job using information from the employee time ticket.
2. If the allocation base in the predetermined overhead rate does not drive overhead costs, it will nevertheless provide reasonably accurate unit product costs because of the averaging process.
3. In a job-order costing system, costs are traced to individual units of product. The sum total of such traced costs is called the unit product cost.
A) Only statement I is true.
B) Statements I and II are true.
C) Statements II and III are true.
D) None of the statements are true.
6) Which of the following statements are true?
1. The fact that one department may be labor intensive while another department is machine intensive explains in part why multiple predetermined overhead rates are often used in larger companies.
2. A company will improve job cost accuracy by using multiple overhead rates even if it cannot identify more than one overhead cost driver.
3. The appeal of using multiple departmental overhead rates is that they presumably provide a more accurate accounting of the costs caused by jobs.

Brewer 9e Rechecks 2021-11-02
A) Only statement I is true.
B) Statements I and III are true.
C) Statements II and III are true.
D) None of the statements are true.
7) Which of the following statements are true?

1. The costs attached to products that have not been sold are included in ending inventory on the balance sheet.
2. In absorption costing, nonmanufacturing costs are assigned to units of product.
3. Most countries require some form of absorption costing for external reports.
A) Only statement I is true.
B) Only statement II is true.
C) Statements I and III are true.
D) All of the statements are true.
8) Which of the following statements are true?
1. A bill of materials is a document that lists the type and quantity of each type of direct material needed to complete a unit of product.
2. An employee time ticket is used to record points that are earned by employees based on the hours they worked that can be used to pay for coffee, food in the cafeteria, and even in some cases for vacation travel.
A) Only statement I is true.
B) Only statement II is true.
C) Both of the statements are true.
D) Neither of the statements are true.
9) In a job-order costing system that is based on machine-hours, which of the following formulas is correct?
A) Predetermined overhead rate $=$ Actual manufacturing overhead \div Actual machinehours
B) Predetermined overhead rate $=$ Actual manufacturing overhead \div Estimated machinehours
C) Predetermined overhead rate $=$ Estimated manufacturing overhead \div Estimated machine-hours
D) Predetermined overhead rate $=$ Estimated manufacturing overhead \div Actual machinehours
10) Which of the following is the correct formula to compute the predetermined overhead rate?
A) Predetermined overhead rate $=$ Estimated total units in the allocation base \div Estimated total manufacturing overhead costs
B) Predetermined overhead rate $=$ Estimated total manufacturing overhead costs \div Estimated total units in the allocation base
C) Predetermined overhead rate $=$ Actual total manufacturing overhead costs \div Estimated total units in the allocation base
D) Predetermined overhead rate $=$ Estimated total manufacturing overhead costs \div Actual total units in the allocation base.
11) Assigning manufacturing overhead to a specific job is complicated by all of the below except:
A) Manufacturing overhead is an indirect cost that is either impossible or difficult to trace to a particular job.
B) Manufacturing overhead is incurred only to support some jobs.
C) Manufacturing overhead consists of both variable and fixed costs.
D) The average cost of actual fixed manufacturing overhead expenses will vary depending on how many units are produced in a period.
12) Which of the following statements about using a plantwide overhead rate based on direct labor is correct?
A) Using a plantwide overhead rate based on direct labor-hours will ensure that direct labor costs are correctly traced to jobs.
B) Using a plantwide overhead rate based on direct labor costs will ensure that direct labor costs will be correctly traced to jobs.
C) It is often overly simplistic and incorrect to assume that direct labor-hours is a company's only manufacturing overhead cost driver.
D) The labor theory of value ensures that using a plantwide overhead rate based on direct labor will do a reasonably good job of assigning overhead costs to jobs.
13) Which of the following would usually be found on a job cost sheet under a normal cost system?
A)
B)
C)
D)

Actual direct material
 cost

Yes

Yes
No
No

Actual manufacturing overhead cost

Yes
No
Yes
No
A) Choice A
B) Choice B
C) Choice C
D) Choice D
14) Which of the following statements is not correct concerning multiple overhead rate systems?
A) A multiple overhead rate system is more complex than a system based on a single plantwide overhead rate.
B) A multiple overhead rate system is usually more accurate than a system based on a single plantwide overhead rate.
C) A company may choose to create a separate overhead rate for each of its production departments.
D) In departments that are relatively labor-intensive, their overhead costs should be applied to jobs based on machine-hours rather than on direct labor-hours.
15) Johansen Corporation uses a predetermined overhead rate based on direct labor-hours to apply manufacturing overhead to jobs. The Corporation has provided the following estimated costs for the next year:

```
Direct materials $ 6,000
Direct labor $ 20,000
Rent on factory building $ 15,000
Sales salaries $ 25,000
Depreciation on factory equipment $ 8,000
Indirect labor $ 12,000
Production supervisor's salary $ 15,000
```

Jameson estimates that 20,000 direct labor-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 2.50$ per direct labor-hour
B) $\$ 2.79$ per direct labor-hour
C) $\$ 3.00$ per direct labor-hour
D) $\$ 4.00$ per direct labor-hour
16) The Silver Corporation uses a predetermined overhead rate to apply manufacturing overhead to jobs. The predetermined overhead rate is based on labor cost in Department A and on machine-hours in Department B. At the beginning of the year, the Corporation made the following estimates:

Department A Department B

Direct labor cost	$\$ 60,000$	$\$ 40,000$
Manufacturing overhead	$\$ 90,000$	$\$ 45,000$
Direct labor-hours	6,000	9,000
Machine-hours	2,000	15,000

What predetermined overhead rates would be used in Department A and Department B, respectively?
A) 67% and $\$ 3.00$
B) 150% and $\$ 5.00$
C) 150% and $\$ 3.00$
D) 67% and $\$ 5.00$
17) Purves Corporation is using a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 121,000$ and 10,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$113,000 and 10,900 total direct labor-hours during the period. The predetermined overhead rate is closest to:
A) $\$ 10.37$
B) $\$ 12.10$
C) $\$ 11.10$
D) $\$ 11.30$
18) Reamer Corporation uses a predetermined overhead rate based on machine-hours to apply manufacturing overhead to jobs. The Corporation has provided the following estimated costs for next year:

Direct materials	$\$ 1,000$
Direct labor	$\$ 3,000$
Sales commissions	$\$ 4,000$
Salary of production supervisor	$\$ 2,000$
Indirect materials	$\$ 400$
Advertising expense	$\$ 800$
Rent on factory equipment	$\$ 1,000$

Reamer estimates that 500 direct labor-hours and 1,000 machine-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 6.80$ per machine-hour
B) $\$ 6.00$ per machine-hour
C) $\$ 3.00$ per machine-hour
D) $\$ 3.40$ per machine-hour
19) Baj Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company considers all of its manufacturing overhead costs to be fixed and it has provided the following data for the most recent year.
Estimated total fixed manufacturing overhead \$534,000 from the beginning of the year

```
Estimated activity level from the beginning
30,000 machine-hours
```

of the year

Actual total fixed manufacturing overhead \$487,000

The predetermined overhead rate per machine-hour would be closest to:
A) $\$ 17.80$
B) $\$ 19.49$
C) $\$ 16.23$
D) $\$ 17.77$
20) Giannitti Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:
Estimated machine-hours

```
Estimated variable manufacturing $ 3.40 per machine-hour
overhead
Estimated total fixed manufacturing $ 838,720
overhead
```

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 6.67$ per machine-hour
B) $\$ 10.20$ per machine-hour
C) $\$ 14.98$ per machine-hour
D) $\$ 8.63$ per machine-hour
21) Giannitti Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:
Estimated machine-hours
Estimated variable manufacturing $\$ 3.01$ per machine-hour overhead
Estimated total fixed manufacturing \$ 1,058,040 overhead
The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 29.39$ per machine-hour
B) $\$ 32.40$ per machine-hour
C) $\$ 32.81$ per machine-hour
D) $\$ 3.01$ per machine-hour
22) Gilchrist Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the machine-hours for the upcoming year at 40,500 machine-hours. The estimated variable manufacturing overhead was $\$ 4.10$ per machine-hour and the estimated total fixed manufacturing overhead was $\$ 1,194,345$. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 33.59$ per machine-hour
B) $\$ 32.59$ per machine-hour
C) $\$ 4.10$ per machine-hour
D) $\$ 29.49$ per machine-hour
23) Gilchrist Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the machine-hours for the upcoming year at 79,000 machine-hours. The estimated variable manufacturing overhead was $\$ 7.38$ per machine-hour and the estimated total fixed manufacturing overhead was $\$ 2,347,090$. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 37.09$ per machine-hour
B) $\$ 36.07$ per machine-hour
C) $\$ 7.38$ per machine-hour
D) $\$ 29.71$ per machine-hour
24) Dearden Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 144,000$, variable manufacturing overhead of $\$ 2.00$ per machine-hour, and 60,000 machine-hours. The predetermined overhead rate is closest to:
A) $\$ 2.40$ per machine-hour
B) $\$ 6.40$ per machine-hour
C) $\$ 4.40$ per machine-hour
D) $\$ 2.00$ per machine-hour
25) Longobardi Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the labor-hours for the upcoming year at 45,500 labor-hours. The estimated variable manufacturing overhead was $\$ 5.49$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 1,037,855$. The actual labor-hours for the year turned out to be 41,600 labor-hours. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 28.30$ per labor-hour
B) $\$ 22.81$ per labor-hour
C) $\$ 5.49$ per labor-hour
D) $\$ 30.95$ per labor-hour
26) Longobardi Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. At the beginning of the most recently completed year, the Corporation estimated the labor-hours for the upcoming year at 46,000 labor-hours. The estimated variable manufacturing overhead was $\$ 6.25$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 1,026,260$. The actual labor-hours for the year turned out to be 41,200 labor-hours. The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 28.56$ per labor-hour
B) $\$ 22.31$ per labor-hour
C) $\$ 6.25$ per labor-hour
D) $\$ 31.16$ per labor-hour
27) Valvano Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 440,000$, variable manufacturing overhead of $\$ 2.20$ per machine-hour, and 50,000 machine-hours. The estimated total manufacturing overhead is closest to:
A) $\$ 440,000$
B) $\$ 110,000$
C) $\$ 440,002$
D) $\$ 550,000$
28) Brothern Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the most recently completed year appear below:
Estimates made at the beginning of the year:

Estimated machine-hours 37,300
Estimated variable manufacturing \$ 5.39 per machine-hour
overhead
Estimated total fixed manufacturing \$ 775,840
overhead
Actual machine-hours for the year 35,200
The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 25.89$ per machine-hour
B) $\$ 26.19$ per machine-hour
C) $\$ 5.39$ per machine-hour
D) $\$ 20.80$ per machine-hour
29) Brothern Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the most recently completed year appear below:
Estimates made at the beginning of the year:

Estimated machine-hours 39,000
Estimated variable manufacturing $\$ 6.76$ per machine-hour
overhead

```
Estimated total fixed manufacturing $ 794,430
overhead
```

```
Actual machine-hours for the year 42,700
```

```
Actual machine-hours for the year 42,700
```

The predetermined overhead rate for the recently completed year was closest to:
A) $\$ 25.37$ per machine-hour
B) $\$ 27.13$ per machine-hour
C) $\$ 6.76$ per machine-hour
D) $\$ 20.37$ per machine-hour
30) Steele Corporation uses a predetermined overhead rate based on machine-hours to apply manufacturing overhead to jobs. Steele Corporation has provided the following estimated costs for next year:

Direct materials	$\$ 20,000$
Direct labor	$\$ 60,000$
Sales commissions	$\$ 80,000$
Salary of production supervisor	$\$ 40,000$
Indirect materials	$\$ 8,000$
Advertising expense	$\$ 16,000$
Rent on factory equipment	$\$ 20,000$

Steele estimates that 10,000 direct labor-hours and 16,000 machine-hours will be worked during the year. The predetermined overhead rate per hour will be:
A) $\$ 4.25$
B) $\$ 8.00$
C) $\$ 9.00$
D) $\$ 10.25$
31) Helland Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:

Total direct labor-hours
30,000
Total fixed manufacturing overhead cost
\$ 189,000
Variable manufacturing overhead per direct labor-hour The predetermined overhead rate is closest to:
A) $\$ 2.50$ per direct labor-hour
B) $\$ 11.30$ per direct labor-hour
C) $\$ 6.30$ per direct labor-hour
D) $\$ 8.80$ per direct labor-hour
32) Laflame Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost \$357,000
Variable manufacturing overhead per machine-hour \$ 3.90
The estimated total manufacturing overhead is closest to:
A) $\$ 273,000$
B) $\$ 630,000$
C) $\$ 357,004$
D) $\$ 357,000$
33) Almaraz Corporation has two manufacturing departments--Forming and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Forming | Finishing | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 7,000 | 3,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 40,600$ | $\$ 8,100$ | $\$ 4,700$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 1.30$ | $\$ 2.80$ | |
| overhead cost per MH | | | |

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) $\$ 6.62$
B) $\$ 4.87$
C) $\$ 4.10$
D) $\$ 7.10$
34) Bernson Corporation is using a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of $\$ 492,000$ and 30,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of $\$ 517,000$ and 28,300 total machine-hours during the period. The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 464,120$
B) $\$ 492,000$
C) $\$ 487,703$
D) $\$ 25,000$
35) Beat Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
40,000
```

Total fixed manufacturing overhead cost \$344,000
Variable manufacturing overhead per machine-hour

Recently, Job M759 was completed. It required 60 machine-hours. The amount of overhead applied to Job M759 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 750$
B) $\$ 516$
C) $\$ 984$
D) $\$ 234$
36) Mundorf Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Forming	Assembly	Total
Estimated total machine-hours (MHs)	9,000	1,000	10,000
Estimated total fixed manufacturing	$\$ 52,200$	$\$ 2,400$	$\$ 4,600$
overhead cost			
Estimated variable manufacturing	$\$ 2.00$	$\$ 2.10$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job B and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job B Job H

Forming machine-hours	6,100	2,900
Assembly machine-hours	400	600

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job B is closest to:
A) $\$ 48,555$
B) $\$ 35,490$
C) $\$ 2,988$
D) $\$ 45,567$
37) Parido Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Casting | Assembly | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 8,000 | 2,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 44,000$ | $\$ 4,200$ | $\$ 8,200$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 1.90$ | $\$ 3.00$ | |
| overhead cost per MH | | | |

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job H

Casting machine-hours	5,400	2,600
Assembly machine-hours	800	1,200

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 8,328$
B) $\$ 26,372$
C) $\$ 18,316$
D) $\$ 18,044$
38) Juanita Corporation uses a job-order costing system and applies overhead on the basis of direct labor cost. At the end of October, Juanita had one job still in process. The job cost sheet for this job contained the following information:
Direct materials \$ 480
Direct labor \$ 150
Manufacturing overhead applied \$ 600
An additional $\$ 100$ of labor was needed in November to complete this job. For this job, how much should Juanita have transferred to finished goods inventory in November when it was completed?
A) $\$ 1,330$
B) $\$ 500$
C) $\$ 1,230$
D) $\$ 1,730$
39) Carradine Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 105,000$, variable manufacturing overhead of $\$ 3.00$ per machine-hour, and 70,000 machine-hours. The company recently completed Job P233 which required 60 machine-hours. The amount of overhead applied to Job P233 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 90$
B) $\$ 270$
C) $\$ 450$
D) $\$ 180$
40) Fusaro Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
Estimated total fixed manufacturing \$ 684,000 overhead from the beginning of the year
Estimated activity level from the beginning
40,000 machine-hours of the year
Actual total fixed manufacturing overhead \$ 616,000

Actual activity level

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 644,670$
B) $\$ 684,000$
C) $\$ 68,000$
D) $\$ 580,580$
41) Koelsch Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Molding	Customizing	Total
Estimated total machine-hours (MHs)	1,000	9,000	10,000
Estimated total fixed manufacturing	$\$ 4,000$	$\$ 25,200$	29,200
overhead cost	$\$ 2.00$	$\$ 3.00$	
Estimated variable manufacturing	$\$ 0$		

During the most recent month, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job F Job K

```
Direct materials $ 12,300 $ 8,400
Direct labor cost $ 18,200 $ 6,800
Molding machine-hours 700 300
Customizing machine-hours 3,600 5,400
```

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job K is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 72,561$
B) $\$ 79,817$
C) $\$ 24,187$
D) $\$ 48,374$
42) Thach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 665,000$, variable manufacturing overhead of $\$ 3.00$ per machine-hour, and 70,000 machine-hours. Recently, Job T321 was completed with the following characteristics:
Number of units in the job 30
Total machine-hours 90
Direct materials \$ 630
Direct labor cost \$ 2,880
The unit product cost for Job T321 is closest to:
A) $\$ 117.00$
B) $\$ 58.50$
C) $\$ 154.50$
D) $\$ 51.50$
43) Tancredi Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Customizing	Total
Estimated total machine-hours (MHs)	5,000	5,000	10,000
Estimated total fixed manufacturing	$\$ 22,000$	$\$ 11,500$	33,500
overhead cost			
Estimated variable manufacturing	$\$ 1.80$	$\$ 3.00$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job E and Job J. There were no beginning inventories. Data concerning those two jobs follow:

	Job E	Job J
Direct materials	$\$ 12,800$	$\$ 7,000$
Direct labor cost	$\$ 17,600$	$\$ 7,700$
Machining machine-hours	3,400	1,600
Customizing machine-hours	2,000	3,000

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. If both jobs are sold during the month, the company's cost of goods sold for the month would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 102,600$
B) $\$ 61,450$
C) $\$ 41,150$
D) $\$ 110,808$
44) Session Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours 70,000
Total fixed manufacturing overhead cost \$ 511,000
Variable manufacturing overhead per direct labor-hour \$ 2.10
Recently, Job K913 was completed with the following characteristics:
Total direct labor-hours 150
Direct materials \$705
Direct labor cost \$4,650
The total job cost for Job K913 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 6,060$
B) $\$ 2,115$
C) $\$ 6,765$
D) $\$ 5,355$
45) Pebbles Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Casting | Finishing | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 2,000 | 3,000 | 5,000 |
| Estimated total fixed manufacturing | $\$ 9,800$ | $\$ 6,300$ | $\$ 16,100$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 2.00$ | $\$ 2.40$ | |
| overhead cost per MH | | | |

During the most recent month, the company started and completed two jobs--Job A and Job L. There were no beginning inventories. Data concerning those two jobs follow:

Job A
Job L

Direct materials	$\$ 15,400$	$\$ 9,600$
Direct labor cost	$\$ 24,900$	$\$ 6,200$
Casting machine-hours	1,400	600
Finishing machine-hours	1,200	1,800

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job L is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 9,600$
B) $\$ 6,200$
C) $\$ 28,904$
D) $\$ 13,104$
46) Stockmaster Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Forming | Assembly | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 5,000 | 5,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 27,000$ | $\$ 10,500$ | $\$ 37,500$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 1.10$ | $\$ 2.80$ | |
| overhead cost per MH | | | |

During the most recent month, the company started and completed two jobs--Job C and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job C	Job H
$\$ 11,200$	$\$ 7,500$
$\$ 21,000$	$\$ 7,800$
3,400	1,600
2,000	3,000

Direct materials
Direct labor cost
Forming machine-hours
Assembly machine-hours

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 40% on manufacturing cost to establish selling prices. The calculated selling price for Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 96,989$
B) $\$ 88,172$
C) $\$ 25,192$
D) $\$ 62,980$
47) Atteberry Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Machining | Finishing | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 6,000 | 4,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 30,000$ | $\$ 11,200$ | $\$ 1,200$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 2.00$ | $\$ 2.40$ | |
| overhead cost per MH | | | |

During the most recent month, the company started and completed two jobs--Job E and Job L. There were no beginning inventories. Data concerning those two jobs follow:

```
                                    Job E
```

$\$ 13,400$	$\$ 9,100$
$\$ 24,500$	$\$ 7,000$
4,100	1,900
1,600	2,400

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job E is closest to: (Round your

intermediate calculations to 2 decimal places.)

A) $\$ 24,500$
B) $\$ 35,796$
C) $\$ 13,400$
D) $\$ 73,696$
48) Coates Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 249,000$, variable manufacturing overhead of $\$ 3.80$ per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job X784 which was recently completed:

```
Number of units in the job 50
Total machine-hours 250
Direct materials $ 470
Direct labor cost $ 5,500
```

If the company marks up its unit product costs by 30% then the selling price for a unit in Job X784 is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 253.87$
B) $\$ 233.87$
C) $\$ 53.97$
D) $\$ 155.22$
49) Sutter Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 10,000
Total fixed manufacturing overhead cost \$35,000
Variable manufacturing overhead per machine-hour \$ 2.20
Recently, Job T369 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 40
Direct materials \$ 750
Direct labor cost \$ 1,560
If the company marks up its unit product costs by 20% then the selling price for a unit in Job T369 is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 324.56$
B) $\$ 304.56$
C) $\$ 277.20$
D) $\$ 50.76$
50) Doakes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
60,000
Total fixed manufacturing overhead cost \$378,000
Variable manufacturing overhead per direct labor-hour \$ 2.20

Recently, Job M843 was completed with the following characteristics:
Number of units in the job 60
Total direct labor-hours 120
Direct materials \$ 630
Direct labor cost \$ 2,400
The unit product cost for Job M843 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 33.75$
B) $\$ 67.50$
C) $\$ 27.50$
D) $\$ 50.50$
51) Placker Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 155,000$, variable manufacturing overhead of $\$ 3.40$ per machine-hour, and 50,000 machine-hours. Recently, Job A881 was completed with the following characteristics:
Total machine-hours
Direct materials
\$ 645
Direct labor cost
\$ 2,300
The total job cost for Job A881 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 3,595$
B) $\$ 2,945$
C) $\$ 2,950$
D) $\$ 1,295$
52) Tomey Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

```
Forming
Finishing
```

Machine-hours	18,000	14,000
Direct labor-hours	2,000	8,000
Total fixed manufacturing overhead cost	$\$ 99,000$	$\$ 0,400$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		$\$ 3.70$
Variable manufacturing overhead per direct		$\$$

During the current month the company started and finished Job T617. The following data were recorded for this job:

Job T617:	Forming	Finishing
Machine-hours	90	20
Direct labor-hours	30	60
Direct materials	$\$ 940$	$\$ 350$
Direct labor cost	$\$ 960$	$\$ 1,920$

The total job cost for Job T617 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 5,604$
B) $\$ 2,584$
C) $\$ 684$
D) $\$ 3,020$
53) Molash Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Assembly	Total
Estimated total machine-hours (MHs)	2,000	3,000	5,000
Estimated total fixed manufacturing	$\$ 9,400$	$\$ 8,100$	$\$ 17,500$
overhead cost			
Estimated variable manufacturing overhead cost per MH	$\$ 1.80$	$\$ 2.40$	

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:

Job B
$\$ 14,400 \$ 7,100$
$\$ 23,500 \$ 6,700$
Direct labor cost
Machining machine-hours
Assembly machine-hours

1,400
600
1,200
1,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job L is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 40,320$
B) $\$ 41,933$
C) $\$ 13,440$
D) $\$ 26,880$
54) Columbo Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

```
Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct $ 3.30
labor-hour
```

During the current month the company started and finished Job A948. The following data were recorded for this job:

Job A948:	Forming	Finishing
Machine-hours	70	30
Direct labor-hours	10	50
Direct materials	$\$ 650$	$\$ 330$
Direct labor cost	$\$ 380$	$\$ 1,900$

If the company marks up its manufacturing costs by 40% then the selling price for Job A948 would be closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 6,197.80$
B) $\$ 1,770.80$
C) $\$ 4,427.00$
D) $\$ 6,818.00$
55) Lotz Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Casting	Finishing	Total
Estimated total machine-hours (MHs)	2,000	8,000	10,000
Estimated total fixed manufacturing	$\$ 10,200$	$\$ 19,200$	$\$ 29,400$
overhead cost			
Estimated variable manufacturing	$\$ 1.20$	$\$ 2.20$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job F	Job K
\$ 14,400	$\$ 7,100$
$\$ 22,500$	$\$ 6,600$
1,400	600
3,200	4,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. The calculated selling price for Job F is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 30,220$
B) $\$ 90,660$
C) $\$ 60,440$
D) $\$ 96,100$
56) Ashe Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

	Machining	Customizing	Total
Estimated total machine-hours (MHs)	1,000	4,000	5,000
Estimated total fixed manufacturing	$\$ 4,700$	$\$ 9,200$	$\$$
overhead cost			13,900
Estimated variable manufacturing	$\$ 1.10$	$\$ 2.60$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job K
700	300
1,600	2,400

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job K is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 11,760$
B) $\$ 1,740$
C) $\$ 13,716$
D) $\$ 13,500$
57) Boward Corporation has two production departments, Milling and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Assembly
Machine-hours	18,000	12,000
Direct labor-hours	2,000	7,000
Total fixed manufacturing overhead cost	$\$ 120,600$	76,300
Variable manufacturing overhead per machine-	$\$ 2.00$	
hour		$\$.30$
Variable manufacturing overhead per direct		$\$$
labor-hour		

During the current month the company started and finished Job T818. The following data were recorded for this job:

```
Job T818:
Machine-hours
Direct labor-hours
```

Milling
50
10

Assembly
30
40

The total amount of overhead applied in both departments to Job T818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 1,651$
B) $\$ 608$
C) $\$ 435$
D) $\$ 1,043$
58) Malakan Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
Machining Finishing

Machine-hours	18,000	11,000
Direct labor-hours	2,000	9,000
Total fixed manufacturing overhead cost	$\$ 102,600$	$\$ 96,300$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		$\$ 3.90$
Variable manufacturing overhead per direct		$\$$
labor-hour		

During the current month the company started and finished Job K368. The following data were recorded for this job:

Job K368:	Machining	Finishing
Machine-hours	80	30
Direct labor-hours	20	40

The amount of overhead applied in the Machining Department to Job K368 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 856.00$
B) $\$ 168.00$
C) $\$ 624.00$
D) $\$ 140,400.00$
59) Mahon Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

Machine-hours	17,800	14,800
Direct labor-hours	6,400	7,400
Total fixed manufacturing overhead cost	106,800	56,240
Variable manufacturing overhead per	$\$ 1.70$	
machine-hour		$\$ 3.40$
Variable manufacturing overhead per direct		
labor-hour		

During the current month the company started and finished Job T138. The following data were recorded for this job:

Job T138:	Casting	Customizing
Machine-hours	90	40
Direct labor-hours	15	90

The amount of overhead applied in the Customizing Department to Job T138 is closest to:

(Round your intermediate calculations to 2 decimal places.)

A) $\$ 576.00$
B) $\$ 81,400.00$
C) $\$ 990.00$
D) $\$ 288.00$
60) Mahon Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Customizing
Machine-hours	18,000	14,000
Direct labor-hours	2,000	7,000

```
Total fixed manufacturing overhead cost $ 124,200 $ 68,600
Variable manufacturing overhead per
    $ 1.90
machine-hour
Variable manufacturing overhead per direct
$ 3.80
labor-hour
```

During the current month the company started and finished Job T138. The following data were recorded for this job:

Job T138:	Casting	Customizing
Machine-hours	70	30
Direct labor-hours	10	60

The amount of overhead applied in the Customizing Department to Job T138 is closest to:
(Round your intermediate calculations to 2 decimal places.)
A) $\$ 588.00$
B) $\$ 95,200.00$
C) $\$ 816.00$
D) $\$ 228.00$
61) Marioni Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Forming | Assembly | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 7,000 | 3,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 37,100$ | $\$ 9,000$ | $\$ 4,100$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 1.70$ | $\$ 2.60$ | |
| overhead cost per MH | | | |

During the most recent month, the company started and completed two jobs--Job B and Job H. There were no beginning inventories. Data concerning those two jobs follow:
Job B Job H

Forming machine-hours	4,800	2,200
Assembly machine-hours	1,200	1,800

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 6,720$
B) $\$ 33,600$
C) $\$ 40,320$
D) $\$ 39,480$
62) Bassett Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Customizing
Machine-hours	16,000	12,000
Direct labor-hours	2,000	8,000
Total fixed manufacturing overhead cost	$\$ 118,400$	87,200
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		$\$ 8.30$
Variable manufacturing overhead per direct		
labor-hour		

The predetermined overhead rate for the Milling Department is closest to:
A) $\$ 19.00$ per machine-hour
B) $\$ 2.10$ per machine-hour
C) $\$ 9.50$ per machine-hour
D) $\$ 7.40$ per machine-hour
63) Fatzinger Corporation has two production departments, Milling and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Assembly
Machine-hours	20,000	14,000
Direct labor-hours	2,000	7,000

```
Total fixed manufacturing overhead cost $ 132,000 $ 57,400
Variable manufacturing overhead per machine- $ 2.30
hour
Variable manufacturing overhead per direct $ 3.40
labor-hour
```

The predetermined overhead rate for the Assembly Department is closest to:
A) $\$ 8.20$ per direct labor-hour
B) $\$ 3.40$ per direct labor-hour
C) $\$ 4.06$ per direct labor-hour
D) $\$ 11.60$ per direct labor-hour
64) Swango Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Customizing
Machine-hours	19,000	11,000
Direct labor-hours	1,000	8,000
Total fixed manufacturing overhead cost	$\$ 138,700$	$\$ 86,400$
Variable manufacturing overhead per machine-	$\$ 1.60$	
hour		
Variable manufacturing overhead per direct		3.00
labor-hour		

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) $\$ 24,000$
B) $\$ 110,400$
C) $\$ 86,400$
D) $\$ 60,379$
65) Tarrant Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Casting | Finishing | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 1,000 | 4,000 | 5,000 |
| Estimated total fixed manufacturing | $\$ 5,700$ | $\$ 11,200$ | $\$ 16,900$ |
| overhead cost | | | |
| Estimated variable manufacturing | $\$ 1.30$ | $\$ 2.90$ | |
| overhead cost per MH | | | |

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Casting Department is closest to:
A) $\$ 5.70$
B) $\$ 1.30$
C) $\$ 5.96$
D) $\$ 7.00$
66) Prayer Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Machining	Customizing
Machine-hours	19,000	13,000
Direct labor-hours	1,000	8,000
Total fixed manufacturing overhead cost	$\$ 110,200$	68,800
Variable manufacturing overhead per machine-	$\$ 2.00$	
hour		
Variable manufacturing overhead per direct labor-hour		

The estimated total manufacturing overhead for the Machining Department is closest to:
A) $\$ 148,200$
B) $\$ 110,200$
C) $\$ 38,000$
D) $\$ 299,725$
67) Camm Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

Forming	Assembly	Total
3,000	2,000	5,000
$\$ 12,600$	$\$ 4,600$	$\$ 17,200$
$\$ 1.70$	$\$ 2.50$	

```
Estimated total machine-hours (MHs)
Estimated total fixed manufacturing
overhead cost
Estimated variable manufacturing
overhead cost per MH
```

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) $\$ 2.50$
B) $\$ 2.30$
C) $\$ 4.80$
D) $\$ 5.46$
68) Huang Aerospace Corporation manufactures aviation control panels in two departments, Fabrication and Assembly. In the Fabrication department, Huang uses a predetermined overhead rate of $\$ 30$ per machine-hour. In the Assembly department, Huang uses a predetermined overhead rate of $\$ 12$ per direct labor-hour. During the current year, Job \#X2984 incurred the following number of hours in each department:

	Fabrication	Assembly
Machine-hours	40	12
Direct labor-hours	3	25

What is the total amount of manufacturing overhead that Huang should have applied to Job \#X2984 during the current year?
A) $\$ 1,200$
B) $\$ 1,500$
C) $\$ 1,560$
D) $\$ 1,734$
69) Sargent Corporation applies overhead cost to jobs on the basis of 80% of direct labor cost. If Job 210 shows $\$ 11,680$ of manufacturing overhead cost applied, how much was the direct labor cost on the job?
A) $\$ 14,600$
B) $\$ 21,024$
C) $\$ 9,344$
D) $\$ 11,680$
70) Sargent Corporation applies overhead cost to jobs on the basis of 80% of direct labor cost. If Job 210 shows $\$ 10,000$ of manufacturing overhead cost applied, how much was the direct labor cost on the job?
A) $\$ 12,500$
B) $\$ 11,000$
C) $\$ 8,000$
D) $\$ 10,000$
71) Kreuzer Corporation is using a predetermined overhead rate of $\$ 22.30$ per machine-hour that was based on estimated total fixed manufacturing overhead of \$446,000 and 20,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of $\$ 409,000$ and 18,200 total machine-hours during the period. The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to:
A) $\$ 446,000$
B) $\$ 37,000$
C) $\$ 372,190$
D) $\$ 405,860$
72) Kavin Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
Predetermined overhead rate $\quad \$ 23.60$ per machinehour

```
    Estimated total fixed manufacturing $ 708,000
    overhead from the beginning of the year
Estimated activity level from the beginning 30,000 machine-hours
of the year
Actual total fixed manufacturing overhead $ 752,000
Actual activity level
28,100 machine-hours
```

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to:
A) $\$ 663,160$
B) $\$ 708,000$
C) $\$ 44,000$
D) $\$ 704,373$
73) Job 910 was recently completed. The following data have been recorded on its job cost sheet:

```
Direct materials $ 2,412
Direct labor-hours
Direct labor wage rate
Machine-hours
```

The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 22$ per machine-hour. The total cost that would be recorded on the job cost sheet for Job 910 would be:
A) $\$ 3,966$
B) $\$ 6,980$
C) $\$ 7,820$
D) $\$ 4,304$
74) Job 910 was recently completed. The following data have been recorded on its job cost sheet:

```
Direct materials $ 3,193
Direct labor-hours
Direct labor wage rate
```

 21 labor-hours
    ```
    21 labor-hours
    $ 12 per labor-hour
```

```
    $ 12 per labor-hour
```

```

\section*{Machine-hours}

166 machine-hours
The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is \(\$ 15\) per machine-hour. The total cost that would be recorded on the job cost sheet for Job 910 would be:
A) \(\$ 3,220\)
B) \(\$ 3,760\)
C) \(\$ 5,935\)
D) \(\$ 3,445\)
75) Grib Corporation uses a predetermined overhead rate based on direct labor cost to apply manufacturing overhead to jobs. The predetermined overhead rates for the year are \(200 \%\) of direct labor cost for Department A and 50\% of direct labor cost for Department B. Job 436, started and completed during the year, was charged with the following costs:

Department A Department B
\begin{tabular}{lrr} 
Direct materials & \(\$ 50,000\) & \(\$ 10,000\) \\
Direct labor & \(?\) & \(\$ 60,000\) \\
Manufacturing overhead & \(\$ 80,000\) & \(?\)
\end{tabular}

The total manufacturing cost assigned to Job 436 was:
A) \(\$ 360,000\)
B) \(\$ 390,000\)
C) \(\$ 270,000\)
D) \(\$ 480,000\)
76) The following data have been recorded for recently completed Job 450 on its job cost sheet. Direct materials cost was \(\$ 2,070\). A total of 35 direct labor-hours and 243 machine-hours were worked on the job. The direct labor wage rate is \(\$ 18\) per labor-hour. The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is \(\$ 22\) per machine-hour. The total cost for the job on its job cost sheet would be:
A) \(\$ 5,002\)
B) \(\$ 10,191\)
C) \(\$ 8,046\)
D) \(\$ 5,421\)
77) The following data have been recorded for recently completed Job 450 on its job cost sheet. Direct materials cost was \(\$ 3,044\). A total of 46 direct labor-hours and 104 machine-hours were worked on the job. The direct labor wage rate is \(\$ 15\) per labor-hour. The Corporation applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is \(\$ 13\) per machine-hour. The total cost for the job on its job cost sheet would be:
A) \(\$ 4,332\)
B) \(\$ 3,734\)
C) \(\$ 3,072\)
D) \(\$ 5,086\)
78) Dejarnette Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
80,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
The estimated total manufacturing overhead is closest to:
A) \(\$ 416,003\)
B) \(\$ 248,000\)
C) \(\$ 664,000\)
D) \(\$ 416,000\)
79) Dejarnette Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
80, 000
Total fixed manufacturing overhead cost
\$ 416,000
Variable manufacturing overhead per machine-hour
\$ 3.10
The predetermined overhead rate is closest to:
A) \(\$ 8.30\) per machine-hour
B) \(\$ 11.40\) per machine-hour
C) \(\$ 5.20\) per machine-hour
D) \(\$ 3.10\) per machine-hour
80) Odonnel Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 36,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 10,000 direct labor-hours.
The estimated total manufacturing overhead is closest to:
A) \(\$ 64,000\)
B) \(\$ 36,000\)
C) \(\$ 28,000\)
D) \(\$ 36,003\)
81) Odonnel Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 36,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 10,000 direct labor-hours.
The predetermined overhead rate is closest to:
A) \(\$ 2.80\) per direct labor-hour
B) \(\$ 6.40\) per direct labor-hour
C) \(\$ 3.60\) per direct labor-hour
D) \(\$ 9.20\) per direct labor-hour
82) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Assembly & Total \\
Estimated total machine-hours (MHs) & 7,000 & 3,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 39,200\) & \(\$ 6,600\) & \(\$ 45,800\) \\
overhead cost
\end{tabular}
```

Estimated variable manufacturing \$ 1.90 \$ 2.10
overhead cost per MH

```

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job B & Job G \\
Direct materials & \(\$ 14,800\) & \(\$ 8,300\) \\
Direct labor cost & \(\$ 22,000\) & \(\$ 8,900\) \\
Machining machine-hours & 4,800 & 2,200 \\
Assembly machine-hours & 1,200 & 1,800
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) \(\$ 4.00\)
B) \(\$ 7.50\)
C) \(\$ 4.58\)
D) \(\$ 6.54\)
83) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Assembly & Total \\
& & & \\
Estimated total machine-hours (MHs) & 7,000 & 3,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 39,200\) & \(\$ 6,600\) & \(\$ 4,800\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.90\) & \(\$ 2.10\) & \\
overhead cost per MH & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job B & \multicolumn{1}{l}{ Job G } \\
\(\$ 14,800\) & \(\$ 8,300\) \\
\(\$ 22,000\) & \(\$ 8,900\) \\
4,800 & 2,200 \\
1,200 & 1,800
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 14,800\) & \(\$ 8,300\) \\
Direct labor cost & \(\$ 22,000\) & \(\$ 8,900\) \\
Machining machine-hours & 4,800 & 2,200 \\
Assembly machine-hours & 1,200 & 1,800
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 31,392\)
B) \(\$ 27,480\)
C) \(\$ 39,240\)
D) \(\$ 7,848\)
84) Morataya Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Assembly & Total \\
Estimated total machine-hours (MHs) & 7,000 & 3,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 39,200\) & \(\$ 6,600\) & \(\$ 4,800\) \\
overhead cost \\
Estimated variable manufacturing & \(\$ 1.90\) & \(\$ 2.10\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job G. There were no beginning inventories. Data concerning those two jobs follow:

Job B Job G
\begin{tabular}{lrr} 
Direct materials & \(\$ 14,800\) & \(\$ 8,300\) \\
Direct labor cost & \(\$ 22,000\) & \(\$ 8,900\) \\
Machining machine-hours & 4,800 & 2,200 \\
Assembly machine-hours & 1,200 & 1,800
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job G is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 14,388\)
B) \(\$ 26,160\)
C) \(\$ 11,772\)
D) \(\$ 18,320\)
85) Housholder Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
Estimated total fixed manufacturing overhead \(\$ 310,000\) from the beginning of the year
```

Estimated activity level from the beginning of
the year
Actual total fixed manufacturing overhead \$ 338,000
Actual activity level
20,000 machine-hours
18,300 machine-hours

```

The predetermined overhead rate is closest to:
A) \(\$ 18.47\)
B) \(\$ 16.94\)
C) \(\$ 16.90\)
D) \(\$ 15.50\)
86) Housholder Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
```

 Estimated total fixed manufacturing overhead $ 310,000
 from the beginning of the year
 Estimated activity level from the beginning of 20,000 machine-hours
the year
Actual total fixed manufacturing overhead \$ 338,000
Actual activity level
18,300 machine-hours

```

The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 28,000\)
B) \(\$ 309,270\)
C) \(\$ 310,000\)
D) \(\$ 283,650\)
87) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 90,000\), variable manufacturing overhead of \(\$ 3.70\) per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.

The estimated total manufacturing overhead is closest to:
A) \(\$ 90,000\)
B) \(\$ 275,000\)
C) \(\$ 185,000\)
D) \(\$ 90,004\)
88) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 90,000\), variable manufacturing overhead of \(\$ 3.70\) per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.

The predetermined overhead rate is closest to:
A) \(\$ 1.80\) per direct labor-hour
B) \(\$ 5.50\) per direct labor-hour
C) \(\$ 9.20\) per direct labor-hour
D) \(\$ 3.70\) per direct labor-hour
89) Gerstein Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 90,000\), variable manufacturing overhead of \(\$ 3.70\) per direct labor-hour, and 50,000 direct labor-hours. The company recently completed Job M800 which required 150 direct labor-hours.

The amount of overhead applied to Job M800 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 270\)
B) \(\$ 1,380\)
C) \(\$ 825\)
D) \(\$ 555\)
90) Krier Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of \(\$ 738,000\) and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \(\$ 792,000\) and 31,500 total direct labor-hours during the period.
The predetermined overhead rate is closest to:
A) \(\$ 26.40\)
B) \(\$ 25.14\)
C) \(\$ 23.43\)
D) \(\$ 24.60\)
91) Krier Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of \(\$ 738,000\) and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of \$792,000 and 31,500 total direct labor-hours during the period.
The amount of manufacturing overhead that would have been applied to all jobs during the period is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 831,600\)
B) \(\$ 54,000\)
C) \(\$ 774,900\)
D) \(\$ 738,000\)
92) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
80,000
Total fixed manufacturing overhead cost
\$ 312,000
Variable manufacturing overhead per machine-hour
Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The estimated total manufacturing overhead is closest to:
A) \(\$ 168,000\)
B) \(\$ 312,002\)
C) \(\$ 312,000\)
D) \(\$ 480,000\)
93) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
80,000
Total fixed manufacturing overhead cost \$312,000
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The predetermined overhead rate is closest to:
A) \(\$ 8.10\) per machine-hour
B) \(\$ 2.10\) per machine-hour
C) \(\$ 3.90\) per machine-hour
D) \(\$ 6.00\) per machine-hour
94) Harootunian Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
80,000
Total fixed manufacturing overhead cost
\$ 312,000
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T629 was completed with the following characteristics:
Number of units in the job 50
Total machine-hours 200
The amount of overhead applied to Job T629 is closest to:
A) \(\$ 1,620\)
B) \(\$ 780\)
C) \(\$ 1,200\)
D) \(\$ 420\)
95) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours 40,000
Total fixed manufacturing overhead cost 96,000

Variable manufacturing overhead per direct labor-hour
Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
\(\begin{array}{ll}\text { Total direct labor-hours } & 100\end{array}\)
Direct materials \$ 755
Direct labor cost \$ 4,000
The estimated total manufacturing overhead is closest to:
A) \(\$ 120,000\)
B) \(\$ 96,003\)
C) \(\$ 96,000\)
D) \(\$ 216,000\)
96) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
40,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
\$ 96,000
\(\$ 3.00\)

Recently, Job P951 was completed with the following characteristics:
Number of units in the job
Total direct labor-hours 100
Direct materials \$ 755
Direct labor cost \$ 4,000
The predetermined overhead rate is closest to:
A) \(\$ 2.40\) per direct labor-hour
B) \(\$ 3.00\) per direct labor-hour
C) \(\$ 8.40\) per direct labor-hour
D) \(\$ 5.40\) per direct labor-hour
97) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials \$755
Direct labor cost \$4,000
The amount of overhead applied to Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 840\)
B) \(\$ 300\)
C) \(\$ 540\)
D) \(\$ 240\)
98) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
76,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
\$ 235,600
\$ 2.00

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 25
Total direct labor-hours 100
Direct materials \$ 870
Direct labor cost \$7,600
The total job cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 8,110\)
B) \(\$ 8,470\)
C) \(\$ 1,380\)
D) \(\$ 8,980\)
99) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours 40,000
Total fixed manufacturing overhead cost 96,000

Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials \$ 755
Direct labor cost \$ 4,000
The total job cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,540\)
B) \(\$ 4,755\)
C) \(\$ 1,295\)
D) \(\$ 5,295\)
100) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
Total fixed manufacturing overhead cost \$ 492,000
Variable manufacturing overhead per direct labor-hour
Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials
\$ 600
Direct labor cost
\$ 8,200

```
82,000
\$ 6.00

The unit product cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 240.00\)
B) \(\$ 500.00\)
C) \(\$ 400.00\)
D) \(\$ 100.00\)
101) Dehner Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
40,000
```

Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
Recently, Job P951 was completed with the following characteristics:
Number of units in the job 20
Total direct labor-hours 100
Direct materials
\$ 755
Direct labor cost \$ 4,000

```
\$ 96,000
\(\$ 3.00\)

The unit product cost for Job P951 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 237.75\)
B) \(\$ 264.75\)
C) \(\$ 64.75\)
D) \(\$ 52.95\)
102) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 160,000\), variable manufacturing overhead of \(\$ 3.40\) per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:
Total direct labor-hours 250
Direct materials \$715
Direct labor cost \$ 9,000
The estimated total manufacturing overhead is closest to:
A) \(\$ 272,000\)
B) \(\$ 160,000\)
C) \(\$ 432,000\)
D) \(\$ 160,003\)
103) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 160,000\), variable manufacturing overhead of \(\$ 3.40\) per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:
```

Total direct labor-hours
250
Direct materials \$ 715
Direct labor cost \$ 9,000

```

The predetermined overhead rate is closest to:
A) \(\$ 8.80\) per direct labor-hour
B) \(\$ 2.00\) per direct labor-hour
C) \(\$ 3.40\) per direct labor-hour
D) \(\$ 5.40\) per direct labor-hour
104) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 160,000\), variable manufacturing overhead of \(\$ 3.40\) per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:
Total direct labor-hours 250
Direct materials
\$ 715
Direct labor cost
\(\$ 9,000\)
The amount of overhead applied to Job A578 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 500\)
B) \(\$ 1,350\)
C) \(\$ 2,200\)
D) \(\$ 850\)
105) Branin Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 160,000\), variable manufacturing overhead of \(\$ 3.40\) per direct labor-hour, and 80,000 direct labor-hours. The company has provided the following data concerning Job A578 which was recently completed:
Total direct labor-hours 250
Direct materials \$715
Direct labor cost \$ 9,000

The total job cost for Job A578 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 11,065\)
B) \(\$ 10,350\)
C) \(\$ 2,065\)
D) \(\$ 9,715\)
106) Spang Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 20,000
Total fixed manufacturing overhead cost \$ 176,000
Variable manufacturing overhead per machine-hour \$ 2.20
Recently, Job P505 was completed with the following characteristics:
Total machine-hours 200
Direct materials
\$ 540
Direct labor cost
\$ 7,200
The amount of overhead applied to Job P505 is closest to:
A) \(\$ 2,200\)
B) \(\$ 1,760\)
C) \(\$ 2,640\)
D) \(\$ 440\)
107) Spang Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 20,000
Total fixed manufacturing overhead cost \$176,000
Variable manufacturing overhead per machine-hour \$ 2.20
Recently, Job P505 was completed with the following characteristics:
Total machine-hours 200
Direct materials \$ 540
Direct labor cost \$ 7,200
The total job cost for Job P505 is closest to:
A) \(\$ 9,400\)
B) \(\$ 9,940\)
C) \(\$ 7,740\)
D) \(\$ 2,740\)
108) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 3,250 & 1,750 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 13,000\) & \(\$ 4,400\) & 17,400 \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 3.00\) & \(\$ 6.00\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job M
\begin{tabular}{lrr} 
Direct materials & \(\$ 16,000\) & \(\$ 9,400\) \\
Direct labor cost & \(\$ 22,700\) & \(\$ 9,700\) \\
Molding machine-hours & 1,250 & 2,000 \\
Finishing machine-hours & 1,250 & 500
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job M is closest to: (Round your

\section*{intermediate calculations to 2 decimal places.)}
A) \(\$ 18,825\)
B) \(\$ 9,700\)
C) \(\$ 37,925\)
D) \(\$ 9,400\)
109) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
```

Molding Finishing Total

```
```

Estimated total machine-hours (MHs) 4,000 1,000 5,000
Estimated total fixed manufacturing \$ 19,600 \$ 2,400 \$ 22,000
overhead cost
Estimated variable manufacturing \$ 1.10 \$ 2.10
overhead cost per MH

```

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
Direct materials & \(\$ 13,600\) & \(\$ 7,500\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 7,400\) \\
Molding machine-hours & 2,700 & 1,300 \\
Finishing machine-hours & 400 & 600
\end{tabular}
\begin{tabular}{rr} 
Job A & Job M \\
\$ 13, 600 & \(\$ 7,500\) \\
\(\$ 20,700\) & \(\$ 7,400\) \\
2,700 & 1,300 \\
400 & 600
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 10,830\)
B) \(\$ 7,400\)
C) \(\$ 25,730\)
D) \(\$ 7,500\)
110) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 6,500 & 3,500 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 27,000\) & \(\$ 6,500\) & \(\$ 33,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.00\) & \(\$ 2.00\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job \(\mathbf{A}\) & \multicolumn{1}{l}{ Job M } \\
\(\$ 17,600\) & \(\$ 11,500\) \\
\(\$ 24,500\) & \(\$ 10,900\) \\
2,500 & 4,000 \\
2,500 & 1,000
\end{tabular}
```

Direct materials
Direct labor cost
Molding machine-hours
Finishing machine-hours

```
\$ 17,600
\(\$ 24,500\)

2,500

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(40 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 65,600\)
B) \(\$ 91,840\)
C) \(\$ 112,600\)
D) \(\$ 26,240\)
111) Opunui Corporation has two manufacturing departments--Molding and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 1,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 19,600\) & \(\$ 2,400\) & \(\$ 22,000\) \\
overhead cost & \(\$ 1.10\) & \(\$ 2.10\) & \\
Estimated variable manufacturing & & & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job A & \multicolumn{1}{l}{ Job M } \\
\(\$ 13,600\) & \(\$ 7,500\) \\
\(\$ 20,700\) & \(\$ 7,400\) \\
2,700 & 1,300 \\
400 & 600
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(40 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 51,970\)
B) \(\$ 72,758\)
C) \(\$ 80,034\)
D) \(\$ 20,788\)
112) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
Number of units in the job 40
Total direct labor-hours 80
Direct materials \$ 950
Direct labor cost \$ 2,720
The estimated total manufacturing overhead is closest to:
A) \(\$ 665,000\)
B) \(\$ 497,002\)
C) \(\$ 497,000\)
D) \(\$ 168,000\)
113) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
Number of units in the job 40
Total direct labor-hours 80
Direct materials
\$ 950
Direct labor cost
\$ 2,720
The predetermined overhead rate is closest to:
A) \(\$ 11.90\) per direct labor-hour
B) \(\$ 7.10\) per direct labor-hour
C) \(\$ 9.50\) per direct labor-hour
D) \(\$ 2.40\) per direct labor-hour
114) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
Number of units in the job 40
Total direct labor-hours 80
Direct materials \$ 950
Direct labor cost \$2,720
The amount of overhead applied to Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 568\)
B) \(\$ 192\)
C) \(\$ 760\)
D) \(\$ 952\)
115) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
Number of units in the job 40
Total direct labor-hours 80
Direct materials \$ 950
Direct labor cost
\$ 2,720
The total job cost for Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,430\)
B) \(\$ 3,670\)
C) \(\$ 1,710\)
D) \(\$ 3,480\)
116) Lueckenhoff Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 497,000\), variable manufacturing overhead of \(\$ 2.40\) per direct labor-hour, and 70,000 direct labor-hours. The company has provided the following data concerning Job T498 which was recently completed:
Number of units in the job 40
Total direct labor-hours 80
Direct materials
\$ 950
Direct labor cost
\$ 2,720
The unit product cost for Job T498 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 55.38\)
B) \(\$ 42.75\)
C) \(\$ 91.75\)
D) \(\$ 110.75\)
117) Nielsen Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Assembly & Total \\
& & & \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,700\) & \(\$ 10,800\) & 15,500 \\
overhead cost & \(\$ 1.20\) & \(\$ 2.20\) & \\
Estimated variable manufacturing & & & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job F & Job M \\
\(\$ 13,000\) & \(\$ 7,400\) \\
\(\$ 20,400\) & \(\$ 8,800\) \\
700 & 300 \\
1,600 & 2,400
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 13,000\) & \(\$ 7,400\) \\
Direct labor cost & \(\$ 20,400\) & \(\$ 8,800\) \\
Machining machine-hours & 700 & 300 \\
Assembly machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job F is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 13,000\)
B) \(\$ 20,400\)
C) \(\$ 45,130\)
D) \(\$ 11,730\)
118) Nielsen Corporation has two manufacturing departments--Machining and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Assembly & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,700\) & \(\$ 10,800\) & \(\$ 15,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.20\) & \(\$ 2.20\) &
\end{tabular}
overhead cost per MH

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:

> Job F Job M
\begin{tabular}{lrr} 
Direct materials & \(\$ 13,000\) & \(\$ 7,400\) \\
Direct labor cost & \(\$ 20,400\) & \(\$ 8,800\) \\
Machining machine-hours & 700 & 300 \\
Assembly machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(40 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 46,154\)
B) \(\$ 41,958\)
C) \(\$ 29,970\)
D) \(\$ 11,988\)
119) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
```

Total fixed manufacturing overhead cost
\$ 33,000
Variable manufacturing overhead per direct labor-hour
\$ 2.50

```
Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$ 455
Direct labor cost \(\$ 5,320\)

The amount of overhead applied to Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 812\)
B) \(\$ 350\)
C) \(\$ 462\)
D) \(\$ 1,162\)
120) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
Total fixed manufacturing overhead cost
\$ 33,000
Variable manufacturing overhead per direct labor-hour \$ 2.50
Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$455
Direct labor cost \$ 5,320
The total job cost for Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 5,775\)
B) \(\$ 6,132\)
C) \(\$ 6,587\)
D) \(\$ 1,267\)
121) Decorte Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
Recently, Job K332 was completed with the following characteristics:
Number of units in the job 70
Total direct labor-hours 140
Direct materials \$ 455
Direct labor cost
\$ 5,320
10,000
\$ 33,000

The unit product cost for Job K332 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 94.10\)
B) \(\$ 18.10\)
C) \(\$ 82.50\)
D) \(\$ 47.05\)
122) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \$ 1,400
The estimated total manufacturing overhead is closest to:
A) \(\$ 330,000\)
B) \(\$ 162,000\)
C) \(\$ 168,000\)
D) \(\$ 162,003\)
123) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost \(\$ 1,400\)

The predetermined overhead rate is closest to:
A) \(\$ 5.50\) per direct labor-hour
B) \(\$ 8.30\) per direct labor-hour
C) \(\$ 2.80\) per direct labor-hour
D) \(\$ 2.70\) per direct labor-hour
124) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 162,000\), variable manufacturing overhead of \(\$ 2.80\) per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
```

Number of units in the job

Total direct labor-hours 50
Direct materials
\$ 920
Direct labor cost
\$ 1,400
The amount of overhead applied to Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 135$
B) $\$ 140$
C) $\$ 415$
D) $\$ 275$
125) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 162,000$, variable manufacturing overhead of $\$ 2.80$ per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost $\$ 1,400$

The total job cost for Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 1,675$
B) $\$ 2,595$
C) $\$ 1,195$
D) $\$ 2,320$
126) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 162,000$, variable manufacturing overhead of $\$ 2.80$ per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 50
Direct materials \$ 920
Direct labor cost
\$ 1,400
The unit product cost for Job K818 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 51.90$
B) $\$ 259.50$
C) $\$ 232.00$
D) $\$ 119.50$
127) Beans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of $\$ 162,000$, variable manufacturing overhead of $\$ 2.80$ per direct labor-hour, and 60,000 direct labor-hours. Recently, Job K818 was completed with the following characteristics:

| Number of units in the job | 10 |
| :--- | ---: |
| Total direct labor-hours | 50 |
| Direct materials | $\$ 920$ |
| Direct labor cost | $\$ 1,400$ |

If the company marks up its unit product costs by 40% then the selling price for a unit in Job K818 is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 363.30$
B) $\$ 103.80$
C) $\$ 383.30$
D) $\$ 324.80$
128) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

| Total machine-hours | |
| :--- | ---: |
| Total fixed manufacturing overhead cost | |
| Variable manufacturing overhead per machine-hour | |
| Recently, Job T687 was completed with the following characteristics: | |
| Number of units in the job | 10 |
| Total machine-hours | 30 |
| Direct materials | $\$ 675$ |
| Direct labor cost | 1,050 |

The estimated total manufacturing overhead is closest to:
A) $\$ 315,000$
B) $\$ 252,000$
C) $\$ 252,002$
D) $\$ 63,000$
129) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
\$ 2.10
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$675
Direct labor cost \$ 1,050
The predetermined overhead rate is closest to:
A) $\$ 12.60$ per machine-hour
B) $\$ 10.50$ per machine-hour
C) $\$ 8.40$ per machine-hour
D) $\$ 2.10$ per machine-hour
130) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

| Total machine-hours | 33,000 |
| :--- | ---: |
| Total fixed manufacturing overhead cost | $\$ 660,000$ |

Variable manufacturing overhead per machine-hour \$ 6
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 40
Direct materials \$715
Direct labor cost \$ 1,430
The amount of overhead applied to Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 1,040.00$
B) $\$ 660.00$
C) $\$ 1,167.40$
D) $\$ 208.00$
131) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$ 675
Direct labor cost \(\$ 1,050\)
```

30,000
\$ 252,000
\$ 2.10

The amount of overhead applied to Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 315$
B) $\$ 252$
C) $\$ 378$
D) $\$ 63$
132) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost \$ 455,000
Variable manufacturing overhead per machine-hour \$ 5
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 40
Direct materials \$ 710
Direct labor cost $\$ 1,420$
The total job cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 2,180$
B) $\$ 2,130$
C) $\$ 1,470$
D) $\$ 2,890$
133) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$ 675
```

 30,000
 \$ 252,000
\$ 2.10

Direct labor cost
The total job cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 1,365$
B) $\$ 1,725$
C) $\$ 990$
D) $\$ 2,040$
134) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
31,200
Total fixed manufacturing overhead cost \$156,000
Variable manufacturing overhead per machine-hour \$ 3
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 30
Direct materials \$ 665
Direct labor cost \$ 1,330
The unit product cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 90.50$
B) $\$ 74.50$
C) $\$ 199.50$
D) $\$ 223.50$
135) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job T687 was completed with the following characteristics:
Number of units in the job
Total machine-hours 30
```

 30,000
 \$ 252,000
 \$ 2.10
 Direct materials
\$ 675
Direct labor cost
$\$ 1,050$
The unit product cost for Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 99.00$
B) $\$ 68.00$
C) $\$ 172.50$
D) $\$ 204.00$
136) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 32,000
Total fixed manufacturing overhead cost \$ 352,000
Variable manufacturing overhead per machine-hour \$ 3.00
Recently, Job T687 was completed with the following characteristics:
Number of units in the job 10
Total machine-hours 40
Direct materials \$ 675
Direct labor cost $\$ 1,350$
If the company marks up its unit product costs by 40% then the selling price for a unit in Job T687 is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 103.40$
B) $\$ 546.00$
C) $\$ 361.90$
D) $\$ 283.50$
137) Lupo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 30,000
Total fixed manufacturing overhead cost \$252,000
Variable manufacturing overhead per machine-hour \$ 2.10
Recently, Job T687 was completed with the following characteristics:
Number of units in the job

```
Total machine-hours 30
Direct materials $ 675
Direct labor cost $ 1,050
```

If the company marks up its unit product costs by 40% then the selling price for a unit in Job T687 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 81.60$
B) $\$ 305.60$
C) $\$ 285.60$
D) $\$ 241.50$
138) Ronson Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Casting | Customizing | Total |
| :--- | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 5,000 | 5,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 27,500$ | $\$ 10,500$ | $\$ 38,000$ |
| overhead cost | $\$ 1.70$ | $\$ 2.60$ | |
| Estimated variable manufacturing | $\$ 0$ | | |

During the most recent month, the company started and completed two jobs--Job C and Job G. There were no beginning inventories. Data concerning those two jobs follow:

```
Job C
Job G
$ 10,600 $ 6,800
```

Direct materials
Direct labor cost \$ 23,700 \$ 7,900
Casting machine-hours $\quad 3,400$ 1,600
Customizing machine-hours 2,000 3,000

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job C is closest to: (Round your intermediate calculations to $\mathbf{2}$ decimal places.)
A) $\$ 32,130$
B) $\$ 11,900$
C) $\$ 20,230$
D) $\$ 20,520$
139) Ronson Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

| | Casting | Customizing | Total |
| :--- | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 5,000 | 5,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 27,500$ | $\$ 10,500$ | $\$ 38,000$ |
| overhead cost | $\$ 1.70$ | $\$ 2.60$ | |
| Estimated variable manufacturing | $\$ 0$ | | |

During the most recent month, the company started and completed two jobs--Job C and Job G. There were no beginning inventories. Data concerning those two jobs follow:

```
Job C
Job G
$ 10,600 $ 6,800
```

Direct materials
Direct labor cost \$ 23,700 $\quad \$ 7900$
Casting machine-hours $\quad 3,400$ 1,600
Customizing machine-hours 2,000 3,000

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job G is closest to: (Round your intermediate calculations to 2 decimal places.)
A) $\$ 42,070$
B) $\$ 27,370$
C) $\$ 6,800$
D) $\$ 7,900$
140) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

```
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently, Job M598 was completed with the following characteristics:
Number of units in the job 60
Total machine-hours 300
Direct materials
\$ 645
Direct labor cost
80,000
\$ 624,000

The amount of overhead applied to Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 930\)
B) \(\$ 4,200\)
C) \(\$ 2,340\)
D) \(\$ 3,270\)
141) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
\begin{tabular}{lr} 
Total machine-hours & 80,000 \\
Total fixed manufacturing overhead cost & 624,000 \\
Variable manufacturing overhead per machine-hour & \(\$ 3.10\)
\end{tabular}

Recently, Job M598 was completed with the following characteristics:
Number of units in the job
60
Total machine-hours 300
Direct materials \$ 645
Direct labor cost \$ 9,000
The total job cost for Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 12,270\)
B) \(\$ 9,645\)
C) \(\$ 3,915\)
D) \(\$ 12,915\)
142) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
80,000
Total fixed manufacturing overhead cost
\$ 624,000
Variable manufacturing overhead per machine-hour
\$ 3.10

```

Recently, Job M598 was completed with the following characteristics:
Number of units in the job 60
Total machine-hours 300
Direct materials \$ 645
Direct labor cost \$ 9,000

The unit product cost for Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 65.25\)
B) \(\$ 160.75\)
C) \(\$ 215.25\)
D) \(\$ 43.05\)
143) Sivret Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 80,000
Total fixed manufacturing overhead cost \$ 624,000
Variable manufacturing overhead per machine-hour \$ 3.10
Recently, Job M598 was completed with the following characteristics:
Number of units in the job 60
Total machine-hours 300
Direct materials \$ 645
Direct labor cost \$9,000
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job M598 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 321.35\)
B) \(\$ 225.05\)
C) \(\$ 86.10\)
D) \(\$ 301.35\)
144) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials
\$ 500
Direct labor cost
\$ 2,640
The predetermined overhead rate is closest to:
A) \(\$ 2.90\) per machine-hour
B) \(\$ 2.00\) per machine-hour
C) \(\$ 4.90\) per machine-hour
D) \(\$ 6.90\) per machine-hour
145) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost
\$ 2,640
The amount of overhead applied to Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 232\)
B) \(\$ 160\)
C) \(\$ 392\)
D) \(\$ 552\)
146) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials
Direct labor cost \$2,640
The total job cost for Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,140\)
B) \(\$ 892\)
C) \(\$ 3,532\)
D) \(\$ 3,032\)
147) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:

Direct materials
Direct labor cost
The unit product cost for Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 176.60\)
B) \(\$ 157.00\)
C) \(\$ 44.60\)
D) \(\$ 44.15\)
148) Levron Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 58,000\), variable manufacturing overhead of \(\$ 2.00\) per machine-hour, and 20,000 machine-hours. The company has provided the following data concerning Job P978 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$500
Direct labor cost \$ 2,640
If the company marks up its unit product costs by \(30 \%\) then the selling price for a unit in Job P978 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 249.58\)
B) \(\$ 229.58\)
C) \(\$ 204.10\)
D) \(\$ 52.98\)
149) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$ 294,000
Variable manufacturing overhead per machine-hour
\$ 2.30
Recently, Job M825 was completed with the following characteristics:
Number of units in the job
Total machine-hours 80
Direct materials \$ 665
Direct labor cost \(\$ 1,840\)
The predetermined overhead rate is closest to:
A) \(\$ 8.80\) per machine-hour
B) \(\$ 6.50\) per machine-hour
C) \(\$ 2.30\) per machine-hour
D) \(\$ 4.20\) per machine-hour
150) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$ 294,000
Variable manufacturing overhead per machine-hour
\$ 2.30
Recently, Job M825 was completed with the following characteristics:
Number of units in the job
Total machine-hours 80
Direct materials \$665
Direct labor cost \$1,840
The amount of overhead applied to Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 184\)
B) \(\$ 520\)
C) \(\$ 704\)
D) \(\$ 336\)
151) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
70,000
Total fixed manufacturing overhead cost \$ 294,000

```
Variable manufacturing overhead per machine-hour \$ 2.30

Recently, Job M825 was completed with the following characteristics:
Number of units in the job 20
Total machine-hours 80
Direct materials \$665
Direct labor cost \$1,840
The total job cost for Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,360\)
B) \(\$ 2,505\)
C) \(\$ 1,185\)
D) \(\$ 3,025\)
152) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour \$ 2.30
Recently, Job M825 was completed with the following characteristics:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 665
Direct labor cost \$ 1,840

```
70,000
\$ 294,000

The unit product cost for Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 37.81\)
B) \(\$ 59.25\)
C) \(\$ 151.25\)
D) \(\$ 125.25\)
153) Bolander Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$ 294,000
Variable manufacturing overhead per machine-hour
\$ 2.30
Recently, Job M825 was completed with the following characteristics:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 665
Direct labor cost \(\quad \$ 1,840\)
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job M825 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 60.50\)
B) \(\$ 175.35\)
C) \(\$ 211.75\)
D) \(\$ 231.75\)
154) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$940
Direct labor cost \$2,240

The amount of overhead applied to Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 176\)
B) \(\$ 792\)
C) \(\$ 968\)
D) \(\$ 616\)
155) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \(\$ 940\)
Direct labor cost \$2,240
The total job cost for Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,972\)
B) \(\$ 1,732\)
C) \(\$ 3,180\)
D) \(\$ 3,032\)
156) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
\begin{tabular}{lr} 
Number of units in the job & 20 \\
Total machine-hours & 80 \\
Direct materials & \(\$ 940\) \\
Direct labor cost & \(\$ 2,240\)
\end{tabular}

The unit product cost for Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 86.60\)
B) \(\$ 159.00\)
C) \(\$ 198.60\)
D) \(\$ 49.65\)
157) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 308,000\), variable manufacturing overhead of \(\$ 2.60\) per machine-hour, and 44,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 970
Direct labor cost \$ 1,940
If the company marks up its unit product costs by \(20 \%\) then the selling price for a unit in Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 240.68\)
B) \(\$ 183.90\)
C) \(\$ 36.78\)
D) \(\$ 220.68\)
158) Cull Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 462,000\), variable manufacturing overhead of \(\$ 2.20\) per machine-hour, and 60,000 machine-hours. The company has provided the following data concerning Job X455 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 940
Direct labor cost \(\$ 2,240\)
If the company marks up its unit product costs by \(20 \%\) then the selling price for a unit in Job X455 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 258.32\)
B) \(\$ 190.80\)
C) \(\$ 39.72\)
D) \(\$ 238.32\)
159) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost \$ 2,160
The amount of overhead applied to Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,256\)
B) \(\$ 632\)
C) \(\$ 944\)
D) \(\$ 312\)
160) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
```

Number of units in the job20
Total machine-hours 80
Direct materials
\$ 500
Direct labor cost
\$ 2,160

```

The total job cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,660\)
B) \(\$ 3,104\)
C) \(\$ 3,604\)
D) \(\$ 1,444\)
161) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 288,600\), variable manufacturing overhead of \(\$ 2.60\) per machine-hour, and 39,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:

The unit product cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 124.50\)
B) \(\$ 31.12\)
C) \(\$ 41.12\)
D) \(\$ 164.50\)
162) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
```

Number of units in the job20

```
Total machine-hours ..... 80
Direct materials ..... \(\$ 500\)
Direct labor cost ..... \$ 2,160

The unit product cost for Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 133.00\)
B) \(\$ 72.20\)
C) \(\$ 45.05\)
D) \(\$ 180.20\)
163) Kostelnik Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \(\$ 237,000\), variable manufacturing overhead of \(\$ 3.90\) per machine-hour, and 30,000 machine-hours. The company has provided the following data concerning Job A496 which was recently completed:
Number of units in the job 20
Total machine-hours 80
Direct materials \$ 500
Direct labor cost \$ 2,160
If the company marks up its unit product costs by \(40 \%\) then the selling price for a unit in Job A496 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 186.20\)
B) \(\$ 272.28\)
C) \(\$ 72.08\)
D) \(\$ 252.28\)
164) Halbur Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Machining & Customizing & Total \\
Estimated total machine-hours (MHs) & 6,000 & 4,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 33,600\) & \(\$ 10,000\) & 43,600 \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.80\) & \(\$ 2.80\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job J. There were no beginning inventories. Data concerning those two jobs follow:

Job C Job J
Direct materials
\$ 11,300
\$ 8,100
\begin{tabular}{lrr} 
Direct labor cost & \(\$ 18,500\) & 6,300 \\
Machining machine-hours & 4,100 & 1,900 \\
Customizing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job J is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 28,208\)
B) \(\$ 18,748\)
C) \(\$ 12,464\)
D) \(\$ 15,744\)
165) Halbur Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{|c|c|c|c|}
\hline & Machining & Customizing & Total \\
\hline Estimated total machine-hours (MHs) & 6,000 & 4,000 & 10,000 \\
\hline Estimated total fixed & \$ & \$ 10,000 & \$ \\
\hline manufacturing overhead cost & 33,600 & & 43,600 \\
\hline Estimated variable manufacturing overhead cost per MH & \$ 1.80 & \$ 2.80 & \\
\hline
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
& Job C & Job J \\
Direct materials & \(\$ 11,300\) & \(\$ 8,100\) \\
Direct labor cost & \(\$ 18,500\) & \(\$ 6,300\) \\
Machining machine-hours & 4,100 & 1,900 \\
Customizing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The total manufacturing cost assigned to Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 18,500\)
B) \(\$ 67,192\)
C) \(\$ 11,300\)
D) \(\$ 37,392\)
166) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours 50,000
Total fixed manufacturing overhead cost
\$ 285,000
Variable manufacturing overhead per direct labor-hour
\$ 3.80
Recently, Job P513 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 20
Direct materials \$710
Direct labor cost \$ 500
The estimated total manufacturing overhead is closest to:
A) \(\$ 475,000\)
B) \(\$ 285,000\)
C) \(\$ 190,000\)
D) \(\$ 285,004\)
167) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour \(\$ 3.80\)
Recently, Job P513 was completed with the following characteristics:

Number of units in the job
10
Total direct labor-hours 20

Direct materials
\$ 710
Direct labor cost

The predetermined overhead rate is closest to:
A) \(\$ 13.30\) per direct labor-hour
B) \(\$ 3.80\) per direct labor-hour
C) \(\$ 9.50\) per direct labor-hour
D) \(\$ 5.70\) per direct labor-hour
168) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
50, 000
Total fixed manufacturing overhead cost \(\quad \$ 285,000\)
Variable manufacturing overhead per direct labor-hour
\(\$ 3.80\)
Recently, Job P513 was completed with the following characteristics:
Number of units in the job 10
Total direct labor-hours 20
Direct materials \(\quad \$ 710\)
Direct labor cost \$ 500
The amount of overhead applied to Job P513 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 76\)
B) \(\$ 190\)
C) \(\$ 266\)
D) \(\$ 114\)
169) Prather Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours 50,000
Total fixed manufacturing overhead cost \$ 285,000
Variable manufacturing overhead per direct labor-hour \$ 3.80
Recently, Job P513 was completed with the following characteristics:

Number of units in the job
10
Total direct labor-hours 20
Direct materials \$710
Direct labor cost \(\quad \$ 500\)
The total job cost for Job P513 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 690\)
B) \(\$ 900\)
C) \(\$ 1,400\)
D) \(\$ 1,210\)
170) Kubes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \$90,000, variable manufacturing overhead of \(\$ 3.50\) per direct labor-hour, and 30,000 direct labor-hours. The company has provided the following data concerning Job A477 which was recently completed:
```

Total direct labor-hours 100
Direct materials \$ 520
Direct labor cost \$ 2,800

```

The amount of overhead applied to Job A477 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 300\)
B) \(\$ 350\)
C) \(\$ 650\)
D) \(\$ 1,000\)
171) Kubes Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on total fixed manufacturing overhead cost of \$90,000, variable manufacturing overhead of \(\$ 3.50\) per direct labor-hour, and 30,000 direct labor-hours. The company has provided the following data concerning Job A477 which was recently completed:
Total direct labor-hours 100
Direct materials
\$ 520
Direct labor cost \$2,800
The total job cost for Job A477 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 3,450\)
B) \(\$ 1,170\)
C) \(\$ 3,970\)
D) \(\$ 3,320\)
172) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & 77,600 \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \(\$ .00\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 80\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The estimated total manufacturing overhead for the Assembly Department is closest to:
A) \(\$ 77,600\)
B) \(\$ 101,600\)
C) \(\$ 56,674\)
D) \(\$ 24,000\)
173) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000
\end{tabular}
```

Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct \$ 3.00
labor-hour

```
```

\$ 129,200

```
$ 129,200
$ 77,600
$ 77,600
    $ 1.60
```

 $ 1.60
    ```

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The predetermined overhead rate for the Assembly Department is closest to:
A) \(\$ 3.00\) per direct labor-hour
B) \(\$ 12.70\) per direct labor-hour
C) \(\$ 9.70\) per direct labor-hour
D) \(\$ 5.35\) per direct labor-hour
174) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & 129,200 & \(\$ 7,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40
\end{tabular}
```

Direct materials \$ 730 \$ 380
Direct labor cost \$ 900 \$ 1,200

```

The amount of overhead applied in the Assembly Department to Job T288 is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 508.00\)
B) \(\$ 101,600.00\)
C) \(\$ 388.00\)
D) \(\$ 120.00\)
175) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours 4,000 8,000
Total fixed manufacturing overhead cost \$ 129,200

Machine-hours	19,000	15,000
Direct labor-hours	4,000	8,000
Total fixed manufacturing overhead cost	$\$ 129,200$	$\$ 77,600$
Variable manufacturing overhead per machine-	$\$ 1.60$	
hour		$\$ 3.00$
Variable manufacturing overhead per direct		
labor-hour		

```
Forming Assembly

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The total amount of overhead applied in both departments to Job T288 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 508\)
B) \(\$ 672\)
C) \(\$ 1,688\)
D) \(\$ 1,180\)
176) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 7,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.00 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

The total job cost for Job T288 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 672\)
B) \(\$ 2,088\)
C) \(\$ 2,302\)
D) \(\$ 4,390\)
177) Deloria Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct \$ 3.00
labor-hour

Machine-hours	19,000	15,000
Direct labor-hours	4,000	8,000
Total fixed manufacturing overhead cost	$\$ 129,200$	$\$ 7,600$
Variable manufacturing overhead per machine-	$\$ 1.60$	
hour		$\$.00$
Variable manufacturing overhead per direct		$\$ 1$

```
Forming Assembly

During the current month the company started and finished Job T288. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T288: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 730\) & \(\$ 80\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,200\)
\end{tabular}

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job T288 would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,390.00\)
B) \(\$ 878.00\)
C) \(\$ 5,268.00\)
D) \(\$ 5,795.00\)
178) Macnamara Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{|c|c|c|c|c|}
\hline & Casting & Finishing & & Total \\
\hline Estimated total machine-hours (MHs) & 1,000 & 4,000 & & 5,000 \\
\hline Estimated total fixed manufacturing overhead cost & \$ 4,800 & \$ 8,800 & \$ & 13,600 \\
\hline Estimated variable manufacturing overhead cost per MH & \$ 1.80 & \$ 2.90 & & \\
\hline
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job F & Job M \\
\(\$ 11,500\) & \(\$ 9,000\) \\
\(\$ 18,400\) & \(\$ 7,400\) \\
700 & 300 \\
1,600 & 2,400
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 11,500\) & \(\$ 9,000\) \\
Direct labor cost & \(\$ 18,400\) & \(\$ 7,400\) \\
Casting machine-hours & 700 & 300 \\
Finishing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job F is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,620\)
B) \(\$ 12,780\)
C) \(\$ 12,420\)
D) \(\$ 8,160\)
179) Macnamara Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Casting & Finishing & Total \\
Estimated total machine-hours (MHs) & 1,000 & 4,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 8,800\) & \(\$ 13,600\) \\
overhead cost & & & \\
\begin{tabular}{lrl} 
Estimated variable manufacturing \\
overhead cost per MH
\end{tabular} & \(\$ 1.80\) & \(\$ 2.90\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job F and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job F & Job M \\
\$ 11,500 & \(\$ 9,000\) \\
\(\$ 18,400\) & \(\$ 7,400\) \\
700 & 300 \\
1,600 & 2,400
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 11,500\) & \(\$ 9,000\) \\
Direct labor cost & \(\$ 18,400\) & \(\$ 7,400\) \\
Casting machine-hours & 700 & 300 \\
Finishing machine-hours & 1,600 & 2,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job M is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 15,310\)
B) \(\$ 47,767\)
C) \(\$ 30,620\)
D) \(\$ 45,930\)
180) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Finishing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 96,900\) & 65,800 \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.60 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & \(\$ 30\) \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The predetermined overhead rate for the Forming Department is closest to:
A) \(\$ 5.70\) per machine-hour
B) \(\$ 7.70\) per machine-hour
C) \(\$ 2.00\) per machine-hour
D) \(\$ 18.70\) per machine-hour
181) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Finishing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 96,900\) & \(\$ 65,800\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.60 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & \(\$ 50\) \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 9.40\) per direct labor-hour
B) \(\$ 13.00\) per direct labor-hour
C) \(\$ 3.60\) per direct labor-hour
D) \(\$ 5.35\) per direct labor-hour
182) Hickingbottom Corporation has two production departments, Forming and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Finishing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 1,000 & 7,000
\end{tabular}
```

Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct \$ 3.60
labor-hour

```

During the current month the company started and finished Job M381. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job M381: & Forming & Finishing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 840\) & \(\$ 350\) \\
Direct labor cost & \(\$ 750\) & \(\$ 1,000\)
\end{tabular}

The total job cost for Job M381 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,206\)
B) \(\$ 616\)
C) \(\$ 4,076\)
D) \(\$ 1,870\)
183) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \(\$ 3.20\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
Job K928:
```

Direct labor-hours 30
Direct materials \$ 775
\$415
Direct labor cost \$ 630
\$ 1,050

```

The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 136,800\)
B) \(\$ 34,200\)
C) \(\$ 171,000\)
D) \(\$ 359,100\)
184) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & \(\$ 69,600\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \(\$ .20\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job K928: & Machining & Finishing \\
Machine-hours & 90 & 10 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 775\) & \(\$ 15\) \\
Direct labor cost & \(\$ 630\) & \(\$ 1,050\)
\end{tabular}

The predetermined overhead rate for the Machining Department is closest to:
A) \(\$ 7.20\) per machine-hour
B) \(\$ 9.00\) per machine-hour
C) \(\$ 21.38\) per machine-hour
D) \(\$ 1.80\) per machine-hour
185) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 136,800\) & 69,600 \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \(\$ 3.20\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job K928:

```

Machining
90
30
\$ 775
\$ 630

Finishing
10
50
\$ 415
\$ 1,050

The amount of overhead applied in the Machining Department to Job K928 is closest to:
A) \(\$ 783.00\)
B) \(\$ 810.00\)
C) \(\$ 162.00\)
D) \(\$ 171,000.00\)
186) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\[
\begin{array}{rr}
\text { Machining } & \text { Finishing } \\
19,000 & 12,000
\end{array}
\]
```

Direct labor-hours 2,000 8,000
Total fixed manufacturing overhead cost \$ 136,800 \$ 69,600
Variable manufacturing overhead per machine-
\$ 1.80
hour
Variable manufacturing overhead per direct \$ 3.20
labor-hour

```

During the current month the company started and finished Job K928. The following data were recorded for this job:
```

Job K928:
Machine-hours
Direct labor-hours 30 50
Direct materials \$ 775
Direct labor cost \$ 630
Finishing
\$ 415
\$ 1,050

```

The total amount of overhead applied in both departments to Job K928 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,405\)
B) \(\$ 2,000\)
C) \(\$ 810\)
D) \(\$ 595\)
187) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machining
Finishing

```
```

Machine-hours
19,000
12,000
Direct labor-hours 2,000 8,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
\$ 136,800 \$ 69,600
\$ 1.80
hour
Variable manufacturing overhead per direct
\$ 3.20
labor-hour

```

During the current month the company started and finished Job K928. The following data were recorded for this job:
Job K928:
Machining
Finishing
\begin{tabular}{lrr} 
Machine-hours & 90 & 10 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 775\) & \(\$ 15\) \\
Direct labor cost & \(\$ 630\) & \(\$ 1,050\)
\end{tabular}

The total job cost for Job K928 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 810\)
B) \(\$ 4,275\)
C) \(\$ 2,060\)
D) \(\$ 2,215\)
188) Kalp Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 19,000 & 12,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & 136,800 & \(\$ 9,600\) \\
Variable manufacturing overhead per & \(\$ 1.80\) & \\
machine-hour & & \(\$ 3.20\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job K928. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job K928: & Machining & Finishing \\
Machine-hours & 90 & 10 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 775\) & \(\$ 415\) \\
Direct labor cost & \(\$ 630\) & \(\$ 1,050\)
\end{tabular}

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job K928 would be closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 4,275.00\)
B) \(\$ 5,643.00\)
C) \(\$ 5,130.00\)
D) \(\$ 855.00\)
189) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Customizing & Total \\
& & & \\
Estimated total machine-hours (MHs) & 1,000 & 9,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
overhead cost \\
Estimated variable manufacturing & \(\$ 1.10\) & \(\$ 2.50\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job A & Job J \\
\(\$ 12,000\) & \(\$ 7,700\) \\
\(\$ 20,700\) & \(\$ 6,400\) \\
700 & 300 \\
3,600 & 5,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 90,707\)
B) \(\$ 27,487\)
C) \(\$ 82,461\)
D) \(\$ 54,974\)
190) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Customizing & Total \\
Estimated total machine-hours (MHs) & 1,000 & 9,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
overhead cost & & & \\
\begin{tabular}{lrl} 
Estimated variable manufacturing & \(\$ 1.10\) & \(\$ 2.50\)
\end{tabular} \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job J
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job J is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 71,983\)
B) \(\$ 65,439\)
C) \(\$ 43,626\)
D) \(\$ 21,813\)
191) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Customizing & Total \\
& & & \\
Estimated total machine-hours (MHs) & 1,000 & 9,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
overhead cost \\
Estimated variable manufacturing & \(\$ 1.10\) & \(\$ 2.50\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job J

Direct materials
\$ 12,000
\(\$ 7,700\)
\begin{tabular}{lrr} 
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 27,595\)
B) \(\$ 87,752\)
C) \(\$ 82,785\)
D) \(\$ 55,190\)
192) Janicki Corporation has two manufacturing departments--Machining and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Customizing & Total \\
& & & & \\
Estimated total machine-hours (MHs) & 1,000 & 9,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 4,800\) & \(\$ 23,400\) & \(\$ 28,200\) \\
overhead cost & & & \\
\begin{tabular}{ll} 
Estimated variable manufacturing \\
overhead cost per MH
\end{tabular} & \(\$ 1.10\) & \(\$ 2.50\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job A & Job J \\
\(\$ 12,000\) & \(\$ 7,700\) \\
\(\$ 20,700\) & \(\$ 6,400\) \\
700 & 300 \\
3,600 & 5,400
\end{tabular}
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,000\) & \(\$ 7,700\) \\
Direct labor cost & \(\$ 20,700\) & \(\$ 6,400\) \\
Machining machine-hours & 700 & 300 \\
Customizing machine-hours & 3,600 & 5,400
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job J is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 65,115\)
B) \(\$ 67,720\)
C) \(\$ 21,705\)
D) \(\$ 43,410\)
193) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
& 18,000 & 13,000 \\
Machine-hours & 4,000 & 7,000 \\
Direct labor-hours & \(\$ 113,400\) & \(\$ 64,400\) \\
Total fixed manufacturing overhead cost & \(\$ 1.60\) & \\
Variable manufacturing overhead per & & \(\$ 3.90\) \\
machine-hour & & \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job A319: & Milling & Customizing \\
Machine-hours & 60 & 10 \\
Direct labor-hours & 20 & 60 \\
Direct materials & \(\$ 655\) & \(\$ 305\) \\
Direct labor cost & \(\$ 400\) & \(\$ 1,200\)
\end{tabular}

The amount of overhead applied in the Milling Department to Job A319 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 142,200.00\)
B) \(\$ 552.00\)
C) \(\$ 96.00\)
D) \(\$ 474.00\)
194) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 18,000 & 13,000 \\
Direct labor-hours & 4,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 113,400\) & \(\$ 4,400\) \\
Variable manufacturing overhead per & \(\$ 1.60\) & \\
machine-hour & & \(\$ 3.90\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job A319: & Milling & Customizing \\
Machine-hours & 60 & 10 \\
Direct labor-hours & 20 & 60 \\
Direct materials & \(\$ 655\) & \(\$ 305\) \\
Direct labor cost & \(\$ 400\) & \(\$ 1,200\)
\end{tabular}

The amount of overhead applied in the Customizing Department to Job A319 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 234.00\)
B) \(\$ 786.00\)
C) \(\$ 552.00\)
D) \(\$ 91,700.00\)
195) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Direct labor-hours 11,000 8,000
Total fixed manufacturing overhead cost \$ 91,000 \$ 44,000
Variable manufacturing overhead per machine- \$ 2.00
hour
Variable manufacturing overhead per direct \$ 4.40
labor-hour

```

During the current month the company started and finished Job A319. The following data were recorded for this job:
```

Job A319:
Machine-hours
Direct labor-hours 30
30 40
Direct materials \$ 400 \$ 200
Direct labor cost \$ 570
\$ 600

```

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job A319 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 3,436\)
B) \(\$ 2,863\)
C) \(\$ 2,386\)
D) \(\$ 477\)
196) Comans Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 18,000 & 13,000 \\
\begin{tabular}{lrl} 
Direct labor-hours & 4,000 & 7,000 \\
Total fixed manufacturing overhead & \(\$ 113,400\) & 64,400 \\
cost & \(\$ 1.60\) & \\
Variable manufacturing overhead per & & 3.90 \\
machine-hour & & \\
Variable manufacturing overhead per & &
\end{tabular} \begin{tabular}{l} 
(irect labor-hour
\end{tabular}
\end{tabular}

During the current month the company started and finished Job A319. The following data were recorded for this job:
```

Job A319:
Machine-hours
Direct labor-hours 20
Direct materials \$ 655
Direct labor cost \$ 400
Customizing

```

Milling
60
20
\$ 655
\$ 400

Customizing
\(\$ 305\)
\$ 1,200

If the company marks up its manufacturing costs by \(20 \%\) then the selling price for Job A319 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 5,042.00\)
B) \(\$ 4,584.00\)
C) \(\$ 3,820.00\)
D) \(\$ 764.00\)
197) Sanderlin Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 26,500\) & \(\$ 13,500\) & \(\$ 40,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 2.00\) & \(\$ 3.00\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job L. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{rr} 
Job C & Job L \\
\(\$ 12,500\) & \(\$ 8,200\) \\
\(\$ 20,200\) & \(\$ 6,400\) \\
3,400 & 1,600 \\
2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job \(L\) is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 29,900\)
B) \(\$ 11,680\)
C) \(\$ 28,780\)
D) \(\$ 17,100\)
198) Sanderlin Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Machining & Finishing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 26,500\) & \(\$ 13,500\) & \(\$ 40,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 2.00\) & \(\$ 3.00\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job L. There were no beginning inventories. Data concerning those two jobs follow:

Job C
\begin{tabular}{rr}
\(\$ 12,500\) & \(\$ 8,200\) \\
\(\$ 20,200\) & \(\$ 6,400\) \\
3,400 & 1,600 \\
2,000 & 3,000
\end{tabular}

Job L

Direct materials
Direct labor cost
Machining machine-hours
Finishing machine-hours

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. The calculated selling price for Job C is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 87,666\)
B) \(\$ 68,920\)
C) \(\$ 13,784\)
D) \(\$ 82,704\)
199) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,000\) & \(\$ 61,200\)
\end{tabular}
```

Variable manufacturing overhead per \$ 1.70
machine-hour
Variable manufacturing overhead per direct \$ 4.10
labor-hour

```

During the current month the company started and finished Job T268. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T268: & Machining & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 720\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,500\)
\end{tabular}

The total amount of overhead applied in both departments to Job T268 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 616\)
B) \(\$ 715\)
C) \(\$ 2,046\)
D) \(\$ 1,331\)
200) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,000\) & 61,200 \\
Variable manufacturing overhead per & \(\$ 1.70\) & \\
machine-hour & & 4.10 \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T268. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T268: & Machining & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 50
\end{tabular}
```

Direct materials \$ 720 \$ 380
Direct labor cost \$ 900 \$ 1,500

```

The total job cost for Job T268 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 2,595\)
B) \(\$ 616\)
C) \(\$ 4,831\)
D) \(\$ 2,236\)
201) Collini Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
Machining Customizing
\begin{tabular}{lrr} 
Machine-hours & 17,000 & 15,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,000\) & 61,200 \\
Variable manufacturing overhead per & \(\$ 1.70\) & \\
machine-hour & & \(\$ .10\) \\
Variable manufacturing overhead per direct & & \(\$ 1\)
\end{tabular}

During the current month the company started and finished Job T268. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job T268: & Machining & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 30 & 50 \\
Direct materials & \(\$ 720\) & \(\$ 380\) \\
Direct labor cost & \(\$ 900\) & \(\$ 1,500\)
\end{tabular}

If the company marks up its manufacturing costs by \(40 \%\) then the selling price for Job T268 would be closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 1,932.40\)
B) \(\$ 6,763.40\)
C) \(\$ 4,831.00\)
D) \(\$ 7,440.00\)
202) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Forming & Customizing & Total \\
& & & \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 16,500\) & \(\$ 20,300\) & \(\$ 6,800\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job H
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,800\) & \(\$ 6,700\) \\
Direct labor cost & \(\$ 24,300\) & \(\$ 7,800\) \\
Forming machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 2,800 & 4,200
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 28,512\)
B) \(\$ 16,632\)
C) \(\$ 11,880\)
D) \(\$ 17,664\)
203) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$\) & \(\$ 20,300\) & \(\$\) \\
overhead cost & 16,500 & & 36,800 \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) &
\end{tabular} overhead cost per MH
During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

Job A Job H
```

\$ 12,800 \$ 6,700
\$ 24,300 \$ 7,800
2,000 1,000
2,800 4,200

```
\begin{tabular}{lrr} 
Direct materials & \(\$ 12,800\) & \(\$ 6,700\) \\
Direct labor cost & \(\$ 24,300\) & \(\$ 7,800\) \\
Forming machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 2,800 & 4,200
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. The amount of manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 19,136\)
B) \(\$ 5,940\)
C) \(\$ 30,888\)
D) \(\$ 24,948\)
204) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$\) & \(\$ 20,300\) & \(\$\) \\
overhead cost & 16,500 & & 36,800 \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) &
\end{tabular} overhead cost per MH

Forming Customizing Total

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{ll} 
Job A & Job H \\
\(\$ 12,800\) & \(\$ 6,700\) \\
\(\$ 24,300\) & \(\$ 7,800\)
\end{tabular}
\begin{tabular}{lll} 
Forming machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 2,800 & 4,200
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job A is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 14,400\)
B) \(\$ 15,120\)
C) \(\$ 28,512\)
D) \(\$ 29,520\)
205) Heroux Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 7,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$\) & \(\$ 20,300\) & \(\$\) \\
overhead cost & 16,500 & & 36,800 \\
Estimated variable manufacturing & \(\$ 1.70\) & \(\$ 2.50\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job A and Job H. There were no beginning inventories. Data concerning those two jobs follow:

> Job A

Direct materials \(\quad \$ 12,800 \quad\) 6,700
Direct labor cost \(\quad \$ 24,300 \quad \$ 7,800\)
Forming machine-hours 2,000 1,000
Customizing machine-hours 2,800 4,200

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job H is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 22,680\)
B) \(\$ 30,888\)
C) \(\$ 29,880\)
D) \(\$ 7,200\)
206) Tiff Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Assembly \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 1,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 129,200\) & \(\$ 6,500\) \\
Variable manufacturing overhead per machine- & \(\$ 1.80\) & \\
hour & & \(\$ .80\) \\
Variable manufacturing overhead per direct & & \\
labor-hour & &
\end{tabular}

During the current month the company started and finished Job P131. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job P131: & Casting & Assembly \\
Machine-hours & 90 & 20 \\
Direct labor-hours & 20 & 60
\end{tabular}

The predetermined overhead rate for the Casting Department is closest to:
A) \(\$ 9.40\) per machine-hour
B) \(\$ 7.60\) per machine-hour
C) \(\$ 1.80\) per machine-hour
D) \(\$ 31.96\) per machine-hour
207) Tiff Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Assembly \\
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 1,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$\) & \(\$\) \\
& 129,200 & 46,500 \\
Variable manufacturing overhead per machine-hour & \(\$ 1.80\) &
\end{tabular}

Variable manufacturing overhead per direct laborhour
During the current month the company started and finished Job P131. The following data were recorded for this job:
```

Job P131: Casting Assembly
Machine-hours 90
Direct labor-hours 20

```

```

Direct labor-hours 20 60

```

The amount of overhead applied in the Assembly Department to Job P131 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 228.00\)
B) \(\$ 558.00\)
C) \(\$ 65,500.00\)
D) \(\$ 786.00\)
208) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 28,000 & 12,000 \\
Direct labor-hours & 4,000 & 10,000 \\
Total fixed manufacturing overhead cost & \(\$ 84,000\) & \(\$ 39,000\) \\
Variable manufacturing overhead per machine- & \(\$ 2.00\) & \\
hour & & \\
\begin{tabular}{lrl} 
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular} &
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 60 & 20
\end{tabular}

The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 210,000\)
B) \(\$ 154,000\)
C) \(\$ 56,000\)
D) \(\$ 178,000\)
209) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
& 16,000 & 11,000 \\
Machine-hours & 2,000 & 6,000 \\
Direct labor-hours & \(\$\) & \(\$ 56,400\) \\
Total fixed manufacturing overhead cost & 104,000 & \\
& \(\$ 2.10\) & \\
Variable manufacturing overhead per machine- & & \(\$ 3.30\) \\
hour & &
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 10 & 60
\end{tabular}

The estimated total manufacturing overhead for the Machining Department is closest to:
A) \(\$ 137,600\)
B) \(\$ 104,000\)
C) \(\$ 33,600\)
D) \(\$ 310,933\)
210) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 6,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 30\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 10 & 60
\end{tabular}

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 40,950\)
B) \(\$ 19,800\)
C) \(\$ 56,400\)
D) \(\$ 76,200\)
211) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 04,000\) & \(\$ 56,400\)
\end{tabular}
```

Variable manufacturing overhead per machine- \$ 2.10
hour
Variable manufacturing overhead per direct \$ 3.30
labor-hour

```

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60
30
Direct labor-hours 10
6 0

```

The predetermined overhead rate for the Machining Department is closest to:
A) \(\$ 22.93\) per machine-hour
B) \(\$ 6.50\) per machine-hour
C) \(\$ 2.10\) per machine-hour
D) \(\$ 8.60\) per machine-hour
212) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 6,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 3.30\)
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
```

Job T272: Machining Customizing
Machine-hours 60
30
Direct labor-hours 10
6 0

```

The predetermined overhead rate for the Customizing Department is closest to:
A) \(\$ 3.30\) per direct labor-hour
B) \(\$ 12.70\) per direct labor-hour
C) \(\$ 9.40\) per direct labor-hour
D) \(\$ 4.76\) per direct labor-hour
213) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 04,000\) & \(\$ 6,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 10 & 60
\end{tabular}

The amount of overhead applied in the Machining Department to Job T272 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 137,600.00\)
B) \(\$ 126.00\)
C) \(\$ 516.00\)
D) \(\$ 564.00\)
214) Eisentrout Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Customizing \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 104,000\) & \(\$ 6,400\) \\
Variable manufacturing overhead per machine- & \(\$ 2.10\) & \\
hour & & \(\$ 30\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job T272. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T272: & Machining & Customizing \\
Machine-hours & 60 & 30 \\
Direct labor-hours & 10 & 60
\end{tabular}

The amount of overhead applied in the Customizing Department to Job T272 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 76,200.00\)
B) \(\$ 762.00\)
C) \(\$ 564.00\)
D) \(\$ 198.00\)
215) Stoke Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 20,000 & 15,000 \\
Direct labor-hours & 2,000 & 7,000
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Total fixed manufacturing overhead cost & \$ & \$ 58,100 \\
\hline & 138,000 & \\
\hline Variable manufacturing overhead per machine-hour & \$ 2.30 & \\
\hline Variable manufacturing overhead per direct & & \$ 3.00 \\
\hline labor-hour & & \\
\hline
\end{tabular}

During the current month the company started and finished Job A460. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job A460: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 50
\end{tabular}

The amount of overhead applied in the Forming Department to Job A460 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 184,000.00\)
B) \(\$ 184.00\)
C) \(\$ 736.00\)
D) \(\$ 664.00\)
216) Stoke Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 20,000 & 15,000 \\
Direct labor-hours & 2,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$\) & \(\$ 8,100\) \\
Variable manufacturing overhead per machine-hour & \(\$ 38,000\) & \\
Variable manufacturing overhead per direct & 2.30 & \\
labor-hour & & \(\$ .00\)
\end{tabular}

During the current month the company started and finished Job A460. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job A460: & Forming & Assembly \\
Machine-hours & 80 & 10 \\
Direct labor-hours & 30 & 50
\end{tabular}

The amount of overhead applied in the Assembly Department to Job A460 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 415.00\)
B) \(\$ 150.00\)
C) \(\$ 565.00\)
D) \(\$ 79,100.00\)
217) Vanliere Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 11,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 8,700\) & 52,800 \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ 3.80\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

During the current month the company started and finished Job A803. The following data were recorded for this job:
\begin{tabular}{lrc} 
Job A803: & Machining & Finishing \\
Machine-hours & 90 & 20 \\
Direct labor-hours & 20 & 60
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 8.80\) per direct labor-hour
B) \(\$ 3.98\) per direct labor-hour
C) \(\$ 12.60\) per direct labor-hour
D) \(\$ 3.80\) per direct labor-hour
218) Vanliere Corporation has two production departments, Machining and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Machining & Finishing \\
Machine-hours & 19,000 & 11,000 \\
Direct labor-hours & 3,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 138,700\) & \(\$ 2,800\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ 3.80\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A803. The following data were recorded for this job:
```

Job A803:
Machine-hours
Direct labor-hours

```


90
20

Finishing
20
60

The amount of overhead applied in the Machining Department to Job A803 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 828.00\)
B) \(\$ 792.00\)
C) \(\$ 171.00\)
D) \(\$ 174,800.00\)
219) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 15,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$\) & 55,200
\end{tabular}
```

Variable manufacturing overhead per machine-hour \$ 2.30
Variable manufacturing overhead per direct
\$ 4.50
labor-hour

```

During the current month the company started and finished Job T924. The following data were recorded for this job:
\begin{tabular}{lcr} 
Job T924: & Forming & Assembly \\
Machine-hours & 70 & 20 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 870\) & \(\$ 385\) \\
Direct labor cost & \(\$ 630\) & \(\$ 840\)
\end{tabular}

The estimated total manufacturing overhead for the Forming Department is closest to:
A) \(\$ 36,800\)
B) \(\$ 102,400\)
C) \(\$ 309,867\)
D) \(\$ 139,200\)
220) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 15,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$\) & 55,200 \\
Variable manufacturing overhead per machine-hour & \(\$ 2.30\) & \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job T924. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T924: & Forming & Assembly \\
Machine-hours & 70 & 20 \\
Direct labor-hours & 30 & 40
\end{tabular}
```

Direct materials \$870 \$385
Direct labor cost \$630 \$840

```

The estimated total manufacturing overhead for the Assembly Department is closest to:
A) \(\$ 27,000\)
B) \(\$ 55,200\)
C) \(\$ 82,200\)
D) \(\$ 47,700\)
221) Ahlheim Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 15,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$\) & \(\$ 5,200\) \\
Variable manufacturing overhead per machine-hour & \(\$ 2,400\) & \\
Variable manufacturing overhead per direct & 2.30 & \\
labor-hour & & \(\$ .50\)
\end{tabular}

During the current month the company started and finished Job T924. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T924: & Forming & Assembly \\
Machine-hours & 70 & 20 \\
Direct labor-hours & 30 & 40 \\
Direct materials & \(\$ 870\) & \(\$ 385\) \\
Direct labor cost & \(\$ 630\) & \(\$ 840\)
\end{tabular}

The total amount of overhead applied in both departments to Job T924 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 1,157\)
B) \(\$ 548\)
C) \(\$ 609\)
D) \(\$ 1,705\)
222) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$\) & \(\$ 10,500\) & \(\$\) \\
overhead cost & 28,000 & & 38,500 \\
Estimated variable manufacturing overhead & \(\$ 1.80\) & \(\$ 2.60\) & \\
cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
Job B Job L
\begin{tabular}{lll} 
Forming machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Forming Department is closest to:
A) \(\$ 5.60\)
B) \(\$ 7.40\)
C) \(\$ 1.80\)
D) \(\$ 6.05\)
223) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$\) & \(\$ 10,500\) & \(\$\) \\
overhead cost & 28,000 & 38,500 \\
Estimated variable manufacturing overhead & \(\$ 1.80\) & \(\$ 2.60\) & \\
cost per MH & & &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
Job B Job L
\begin{tabular}{lll} 
Forming machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) \(\$ 2.60\)
B) \(\$ 4.70\)
C) \(\$ 6.05\)
D) \(\$ 2.10\)
224) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 28,000\) & \(\$ 10,500\) & \(\$ 38,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.80\) & \(\$ 2.60\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
```

Job B Job L

```
\begin{tabular}{lll} 
Forming machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job B is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 9,400\)
B) \(\$ 25,160\)
C) \(\$ 32,670\)
D) \(\$ 34,560\)
225) Merati Corporation has two manufacturing departments--Forming and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
\begin{tabular}{lrl} 
Estimated total fixed manufacturing \\
overhead cost
\end{tabular} & \(\$ 28,000\) & \(\$ 10,500\) & \(\$ 38,500\) \\
\begin{tabular}{l} 
Estimated variable manufacturing \\
overhead cost per MH
\end{tabular} & \(\$ 1.80\) & \(\$ 2.60\) &
\end{tabular}

During the most recent month, the company started and completed two jobs--Job B and Job L. There were no beginning inventories. Data concerning those two jobs follow:
```

Job B Job L

```
\begin{tabular}{lll} 
Forming machine-hours & 3,400 & 1,600 \\
Assembly machine-hours & 2,000 & 3,000
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. The manufacturing overhead applied to Job L is closest to: (Round your intermediate calculations to \(\mathbf{2}\) decimal places.)
A) \(\$ 27,830\)
B) \(\$ 11,840\)
C) \(\$ 25,940\)
D) \(\$ 14,100\)
226) Barbeau Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 13,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 119,000\) & \(\$ 42,000\) \\
Variable manufacturing overhead per & \(\$ 1.60\) & \\
machine-hour & & 4.30 \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A492. The following data were recorded for this job:
```

Job A492: Milling Customizing
Machine-hours 90
Direct labor-hours

Milling	Customizing
90	20
20	50

```

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 63,500\)
B) \(\$ 21,500\)
C) \(\$ 42,000\)
D) \(\$ 33,853\)
227) Barbeau Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Customizing \\
Machine-hours & 17,000 & 13,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 119,000\) & \(\$ 42,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.60\) & \\
hour & & 4.30 \\
Variable manufacturing overhead per direct & & \(\$ 4\)
\end{tabular}

During the current month the company started and finished Job A492. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job A492: & Milling & Customizing \\
Machine-hours & 90 & 20 \\
Direct labor-hours & 20 & 50
\end{tabular}

The amount of overhead applied in the Milling Department to Job A492 is closest to: (Round your intermediate calculations to 2 decimal places.)
A) \(\$ 146,200.00\)
B) \(\$ 144.00\)
C) \(\$ 756.00\)
D) \(\$ 774.00\)
228) Kroeker Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per
machine-hour
Variable manufacturing overhead per
direct labor-hour

```
Milling Customizing
    17,000 12,000
        1,000 9,000
\$ 112,200 \$ 81,000
    \$ 1.70

During the current month the company started and finished Job T898. The following data were recorded for this job:
\begin{tabular}{lcc} 
Job T898: & Milling & Customizing \\
Machine-hours & 80 & 30 \\
Direct labor-hours & 20 & 50
\end{tabular}

The estimated total manufacturing overhead for the Milling Department is closest to:
A) \(\$ 240,833\)
B) \(\$ 141,100\)
C) \(\$ 28,900\)
D) \(\$ 112,200\)
229) Kroeker Corporation has two production departments, Milling and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per
machine-hour
Variable manufacturing overhead per direct \$ 4.30
labor-hour

```
```

Milling
Customizing

```

17,000
\(1,000 \quad 9,000\)
\(\$ 112,200 \$ 81,000\)
\$ 1.70

12,000
\$ 4.30
```

labor-hour

```

During the current month the company started and finished Job T898. The following data were recorded for this job:
```

Job T898: Milling
Machine-hours
Direct labor-hours

```80
\[
20
\]

Customizing
30
50

The amount of overhead applied in the Customizing Department to Job T898 is closest to:

\section*{(Round your intermediate calculations to 2 decimal places.)}
A) \(\$ 450.00\)
B) \(\$ 119,700.00\)
C) \(\$ 665.00\)
D) \(\$ 215.00\)
230) Petty Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Finishing \\
Machine-hours & 20,000 & 14,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 148,000\) & \(\$ 88,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) &
\end{tabular}
hour
Variable manufacturing overhead per direct

The estimated total manufacturing overhead for the Milling Department is closest to:
A) \(\$ 408,000\)
B) \(\$ 38,000\)
C) \(\$ 148,000\)
D) \(\$ 186,000\)
231) Petty Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Milling & Finishing \\
Machine-hours & 20,000 & 14,000 \\
Direct labor-hours & 2,000 & 8,000 \\
Total fixed manufacturing overhead cost & \(\$ 148,000\) & \(\$ 88,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \(\$ .60\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

The predetermined overhead rate for the Finishing Department is closest to:
A) \(\$ 5.84\) per direct labor-hour
B) \(\$ 3.60\) per direct labor-hour
C) \(\$ 11.00\) per direct labor-hour
D) \(\$ 14.60\) per direct labor-hour
232) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Customizing \\
Machine-hours & 23,000 & 23,000 \\
Direct labor-hours & 16,000 & 2,000 \\
Total fixed manufacturing overhead cost & \(\$ 105,800\) & 8,600 \\
Variable manufacturing overhead per & \(\$ 1.70\) & \\
machine-hour & & \(\$ 3.10\) \\
Variable manufacturing overhead per direct & & \\
labor-hour
\end{tabular}

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 155,400\)
B) \(\$ 6,200\)
C) \(\$ 14,800\)
D) \(\$ 8,600\)
233) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
```

Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per
machine-hour
Variable manufacturing overhead per direct
1,000 7,000
\$ 152,000
\$ 2.10

```

Casting

20,000
Customizing

13,000
7,000
\$ 68,600
\$ 2.10
```

labor-hour

```

The estimated total manufacturing overhead for the Customizing Department is closest to:
A) \(\$ 54,110\)
B) \(\$ 30,100\)
C) \(\$ 98,700\)
D) \(\$ 68,600\)
234) Garza Corporation has two production departments, Casting and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Casting & Customizing \\
Machine-hours & 20,000 & 13,000 \\
Direct labor-hours & 1,000 & 7,000 \\
Total fixed manufacturing overhead cost & \(\$ 152,000\) & \(\$ 68,600\) \\
Variable manufacturing overhead per & \(\$ 2.10\) & \\
machine-hour & & \(\$ 4.30\) \\
Variable manufacturing overhead per direct & &
\end{tabular}

The predetermined overhead rate for the Casting Department is closest to:
A) \(\$ 9.70\) per machine-hour
B) \(\$ 7.60\) per machine-hour
C) \(\$ 2.10\) per machine-hour
D) \(\$ 27.71\) per machine-hour
235) Marciante Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

Casting Finishing
\begin{tabular}{lrr} 
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 105,400\) & 52,000 \\
Variable manufacturing overhead per & \(\$ 1.70\) & \\
machine-hour & & \(\$ 3.90\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

The estimated total manufacturing overhead for the Casting Department is closest to:
A) \(\$ 387,260\)
B) \(\$ 134,300\)
C) \(\$ 28,900\)
D) \(\$ 105,400\)
236) Marciante Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
Machine-hours & 17,000 & 10,000 \\
Direct labor-hours & 2,000 & 5,000 \\
Total fixed manufacturing overhead cost & \(\$ 105,400\) & 52,000 \\
Variable manufacturing overhead per & \(\$ 1.70\) & \\
machine-hour & & \(\$ 3.90\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

The estimated total manufacturing overhead for the Finishing Department is closest to:
A) \(\$ 71,500\)
B) \(\$ 52,000\)
C) \(\$ 34,794\)
D) \(\$ 19,500\)
237) Jurica Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Customizing \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 6,000
\end{tabular}
```

Total fixed manufacturing overhead cost \$ 100,700 \$ 63,000
Variable manufacturing overhead per
machine-hour
Variable manufacturing overhead per direct \$ 3.90
labor-hour

```

The predetermined overhead rate for the Forming Department is closest to:
A) \(\$ 23.12\) per machine-hour
B) \(\$ 2.00\) per machine-hour
C) \(\$ 5.30\) per machine-hour
D) \(\$ 7.30\) per machine-hour
238) Jurica Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Customizing \\
Machine-hours & 19,000 & 15,000 \\
Direct labor-hours & 4,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 100,700\) & 63,000 \\
Variable manufacturing overhead per & \(\$ 2.00\) & \\
machine-hour & & \(\$ .90\) \\
Variable manufacturing overhead per direct & & \(\$\) \\
labor-hour
\end{tabular}

The predetermined overhead rate for the Customizing Department is closest to:
A) \(\$ 4.55\) per direct labor-hour
B) \(\$ 3.90\) per direct labor-hour
C) \(\$ 10.50\) per direct labor-hour
D) \(\$ 14.40\) per direct labor-hour
239) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per MH
\end{tabular}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. That predetermined manufacturing overhead rate is closest to:
A) \(\$ 4.70\)
B) \(\$ 7.40\)
C) \(\$ 6.48\)
D) \(\$ 3.70\)
240) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per MH
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Casting Department is closest to:
A) \(\$ 1.50\)
B) \(\$ 7.40\)
C) \(\$ 5.90\)
D) \(\$ 6.48\)
241) Claybrooks Corporation has two manufacturing departments--Casting and Assembly. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrrr} 
& Casting & Assembly & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 17,700\) & \(\$ 5,800\) & \(\$ 23,500\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.20\) & \\
overhead cost per MH
\end{tabular}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both departments. The departmental predetermined overhead rate in the Assembly Department is closest to:
A) \(\$ 2.90\)
B) \(\$ 6.48\)
C) \(\$ 5.10\)
D) \(\$ 2.20\)

ESSAY. Write your answer in the space provided or on a separate sheet of paper.
242) Linnear Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
30,000
Total fixed manufacturing overhead cost
\$144,000
Variable manufacturing overhead per machine-hour
\(\$ 4.00\)

\section*{Required:}

Calculate the estimated total manufacturing overhead for the year.
243) Dallman Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 287,000\), and a variable manufacturing overhead rate of \(\$ 3.50\) per machine-hour.

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
244) Henkes Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 64,000 labor-hours. The estimated variable manufacturing overhead was \(\$ 8.30\) per labor-hour and the estimated total fixed manufacturing overhead was \(\$ 1,043,200\). The actual labor-hours for the year turned out to be 67,200 laborhours.

\section*{Required:}

Compute the company's predetermined overhead rate for the recently completed year. (Round your answer to 2 decimal places.)
245) Crowson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:

Total machine-hours
50,000
Total fixed manufacturing overhead cost \(\$ 390,000\)

Variable manufacturing overhead per machine-hour
\$ 3.60

\section*{Required:}

Calculate the predetermined overhead rate for the year.
246) Cannizzaro Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 248,000\), and a variable manufacturing overhead rate of \(\$ 3.80\) per machine-hour.

\section*{Required:}

Calculate the predetermined overhead rate for the year.
247) Quiet Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 152,000\), and a variable manufacturing overhead rate of \(\$ 3.10\) per machine-hour.

\section*{Required:}

Calculate the estimated total manufacturing overhead for the year.
248) Florek Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
10,000
Total fixed manufacturing overhead cost
Variable manufacturing overhead per direct labor-hour
\$31,000
\(\$ 2.50\)

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
249) Meenach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 63,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 88,200\), and a variable manufacturing overhead rate of \(\$ 2.90\) per direct laborhour. Recently Job X387 was completed and required 210 direct labor-hours.

\section*{Required:}

Calculate the amount of overhead applied to Job X387. (Do not round intermediate calculations.)
250) Meenach Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 80,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 160,000\), and a variable manufacturing overhead rate of \(\$ 2.30\) per direct laborhour. Recently Job X387 was completed and required 120 direct labor-hours.

\section*{Required:}

Calculate the amount of overhead applied to Job X387. (Do not round intermediate calculations.)
251) Weakley Corporation uses a predetermined overhead rate that was based on estimated total fixed manufacturing overhead of \(\$ 358,000\) and 20,000 machine-hours for the period. The company incurred actual total fixed manufacturing overhead of \(\$ 382,000\) and 18,300 total machine-hours during the period.

\section*{Required:}

Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
252) Fillmore Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 60,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 96,000\), and a variable manufacturing overhead rate of \(\$ 3.30\) per direct laborhour. Recently Job X809 was completed and required 100 direct labor-hours.

Required:
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job X809.
253) Thrall Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost
\$50,000
Variable manufacturing overhead per machine-hour
\$ 3.90
Recently Job K125 was completed and required 160 machine-hours.

\section*{Required:}

Calculate the amount of overhead applied to Job K125.
254) Verry Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
60,000
Total fixed manufacturing overhead cost \$342,000
Variable manufacturing overhead per direct labor-hour
\(\$ 2.40\)
Recently Job X711 was completed and required 90 direct labor-hours.

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job X711.
255) Trevigne Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.
Estimated total fixed manufacturing overhead \$ 114,000
from the beginning of the year
Estimated activity level from the beginning of 10,000 machine-hours the year
Actual total fixed manufacturing overhead
\$ 104,000
Actual activity level
9,400 machine-hours

\section*{Required:}

Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
256) Luarca Corporation has two manufacturing departments--Casting and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Customizing & Total \\
Estimated total machine-hours (MHs) & 2,000 & 3,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 11,600\) & \(\$ 7,200\) & \(\$ 18,800\) \\
overhead cost & & \\
Estimated variable manufacturing & 1.90 & 2.80 & \\
overhead cost per MH & & \\
During the most recent month, the company started and completed two jobs--Job F and Job L. \\
There were no beginning inventories. Data concerning those two jobs follow: & \\
& Job F & Job & \\
& & \\
& \(\$ 10,600\) & \(\$ 6,600\) \\
Direct materials & \(\$ 24,400\) & \(\$ 8,600\) \\
Direct labor cost & 1,400 & 600 \\
Casting machine-hours & 1,200 & 1,800
\end{tabular}

\section*{Required:}

Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(50 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job F and Job L.
257) Lamberson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-hour
Recently Job P647 was completed with the following characteristics:
Number of units in the job
Total machine-hours
Direct materials \$ 740
Direct labor cost \$6,000

\section*{Required:}
a. Calculate the amount of overhead applied to Job P647.
b. Calculate the total job cost for Job P647.
c. Calculate the unit product cost for Job P647.
258) Mcewan Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 50,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 390,000\), and a variable manufacturing overhead rate of \(\$ 4.40\) per direct laborhour. Job X941, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
Total direct labor-hours 300
Direct materials
\(\$ 600\)
Direct labor cost \$7,000

\section*{Required:}

Calculate the selling price for Job X941 if the company marks up its unit product costs by 20\%. (Round intermediate calculations and final answer to 2 decimal places.)
259) Mcewan Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 20,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 182,000\), and a variable manufacturing overhead rate of \(\$ 2.50\) per direct laborhour. Job X941, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
Total direct labor-hours 250
Direct materials \(\quad \$ 740\)
Direct labor cost \(\$ 6,500\)

\section*{Required:}

Calculate the selling price for Job X941 if the company marks up its unit product costs by 20\%. (Round intermediate calculations and final answer to 2 decimal places.)
260) Teasley Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 630,000\), and a variable manufacturing overhead rate of \(\$ 3.40\) per machine-hour. Job X159 was recently completed. The job cost sheet for the job contained the following data:
```

Total machine-hours 200
Direct materials \$ 670
Direct labor cost \$7,800

```

\section*{Required:}

Calculate the total job cost for Job X159.
261) Alsobrooks Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
\begin{tabular}{lr} 
Total machine-hours \\
Total fixed manufacturing overhead cost \\
Variable manufacturing overhead per machine-hour \\
Recently Job M242 was completed with the following characteristics: \\
Number of units in the job & 20 \\
Total machine-hours & 60 \\
Direct materials & \(\$ 25\) \\
Direct labor cost & \(\$ 1,680\)
\end{tabular}

\section*{Required:}
a. Calculate the total job cost for Job M242.
b. Calculate the unit product cost for Job M242.
262) Ryans Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total machine-hours
10,000
Total fixed manufacturing overhead cost \$71,000
Variable manufacturing overhead per machine-hour

```

Recently Job P512 was completed with the following characteristics:
Number of units in the job 30
Total machine-hours 60
Direct materials \(\quad \$ 870\)
Direct labor cost \(\$ 2,400\)

\section*{Required:}
a. Calculate the predetermined overhead rate for the year.
b. Calculate the amount of overhead applied to Job P512.
c. Calculate the total job cost for Job P512.
d. Calculate the unit product cost for Job P512.
263) Lezo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 40,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 136,000\), and a variable manufacturing overhead rate of \(\$ 2.90\) per machine-hour. Job A290, which was for 60 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
\begin{tabular}{lr} 
Total machine-hours & 300 \\
Direct materials & \(\$ 885\) \\
Direct labor cost & \(\$ 7,200\)
\end{tabular}

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job A290.
d. Calculate the total job cost for Job A290.
264) Whitlatch Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
Total fixed manufacturing overhead cost \$342,000

\section*{Variable manufacturing overhead per machine-hour}

Recently Job M238 was completed with the following characteristics:
Number of units in the job 70
Total machine-hours 140
Direct materials \$ 945
Direct labor cost \(\quad \$ 2,800\)

\section*{Required:}

Calculate the total job cost for Job M238.
265) Obermeyer Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 10,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 96,000\), and a variable manufacturing overhead rate of \(\$ 3.60\) per direct laborhour. Job A735, which was for 40 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
Total direct labor-hours
Direct materials

Direct labor cost

\section*{Required:}
a. Calculate the amount of overhead applied to Job A735.
b. Calculate the total job cost for Job A735.
c. Calculate the unit product cost for Job A735.
266) Olmscheid Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Molding & Customizing & Total \\
Estimated total machine-hours (MHs) & 5,000 & 5,000 & 10,000 \\
Estimated total fixed manufacturing & \(\$ 21,000\) & \(\$ 14,000\) & \(\$ 35,000\) \\
overhead cost & & & \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ .40\) \\
overhead cost per MH
\end{tabular}

During the period, the company started and completed two jobs--Job F and Job K. There were no beginning inventories. Data concerning those two jobs follow:
Job F Job K

Direct materials
\$ 12,700
\(\$ 6,400\)
Direct labor cost
Molding machine-hours
\$ 19,100
3,400
\$ 7,900
1,600
Customizing machine-hours
2,000
3,000

\section*{Required:}
a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate.
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job F.
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K. d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job F.
e. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job K.
f. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(30 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job F.
g. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of \(30 \%\) on manufacturing cost to establish selling prices. Calculate the selling price for Job K.
h. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. If both jobs were sold during the month, what was the company's cost of goods sold for the month?
267) Cardosa Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 70,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 308,000\), and a variable manufacturing overhead rate of \(\$ 2.10\) per machine-hour. Job M556, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
```

Total machine-hours 100

```

Direct materials
Direct labor cost
\$2,700

\section*{Required:}
a. Calculate the total job cost for Job M556.
b. Calculate the unit product cost for Job M556.
268) Dietzen Corporation has two manufacturing departments--Casting and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
& Casting & Finishing & Total \\
Estimated total machine-hours (MHs) & 4,000 & 6,000 & 10,000 \\
\begin{tabular}{l} 
Estimated total fixed manufacturing \\
overhead cost
\end{tabular} & \(\$ 18,000\) & \(\$ 18,000\) & \(\$ 36,000\) \\
Estimated variable manufacturing & \(\$ 1.50\) & 2.30 & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job D and Job J. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
Direct materials & \(\$ 14,300\) & \(\$ 6,800\) \\
Direct labor cost & \(\$ 21,700\) & \(\$ 8,800\) \\
Casting machine-hours & 2,700 & 1,300 \\
Finishing machine-hours & 2,400 & 3,600
\end{tabular}

\section*{Required:}
a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job D.
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job J.
269) Posson Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 20,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 130,000\), and a variable manufacturing overhead rate of \(\$ 3.00\) per machine-hour. Job K789, which was for 10 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
Total machine-hours 30
Direct materials \$775
Direct labor cost \(\quad \$ 1,170\)

\section*{Required:}
a. Calculate the predetermined overhead rate for the year.
b. Calculate the amount of overhead applied to Job K789.
c. Calculate the total job cost for Job K789.
d. Calculate the unit product cost for Job K789
270) Rondo Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours 30,000
Total fixed manufacturing overhead cost \$252,000
Variable manufacturing overhead per machine-hour \$ 2.90
Recently Job T506 was completed with the following characteristics:
Number of units in the job 70
Total machine-hours 210
Direct materials \$ 665
Direct labor cost \(\quad \$ 6,720\)

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job T506.
d. Calculate the total job cost for Job T506.
e. Calculate the unit product cost for Job T506.
f. Calculate the selling price for Job T506 if the company marks up its unit product costs by 20\%.
271) Leadley Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
```

Total direct labor-hours
10,000
Total fixed manufacturing overhead cost \$76,000
Variable manufacturing overhead per direct labor-hour \$ 2.10

```

Recently Job X701 was completed with the following characteristics:
Number of units in the job90
Total direct labor-hours ..... 270
Direct materials ..... \$ 590
Direct labor cost ..... \$6,480

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job X701.
d. Calculate the total job cost for Job X701
272) Pasko Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on the following data:
Total direct labor-hours
Total fixed manufacturing overhead cost
\$258,000
Variable manufacturing overhead per direct labor-hour \$ 2.00
Recently Job P660 was completed with the following characteristics:
Number of units in the job
Total direct labor-hours250

Direct materials \(\quad\) \$ 645

\section*{Required:}

Calculate the selling price for Job P660 if the company marks up its unit product costs by \(20 \%\).
273) Leeds Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
50, 000
Total fixed manufacturing overhead cost
\$215, 000
Variable manufacturing overhead per machine-hour \(\quad 3.80\)
Recently Job T496 was completed with the following characteristics:
Number of units in the job 80
Total machine-hours 240
Direct materials \(\quad\) \$ 735
Direct labor cost \(\quad \$ 8,880\)

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job T496.
d. Calculate the total job cost for Job T496.
e. Calculate the unit product cost for Job T496.
274) Petru Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on the following data:
Total machine-hours
70,000
Total fixed manufacturing overhead cost
\$525, 000
Variable manufacturing overhead per machine-hour
\$ 2.30

Recently Job P987 was completed with the following characteristics:
Number of units in the job ..... 20
Total machine-hours ..... 80
Direct materials ..... \$ 630
Direct labor cost ..... \$2,080

\section*{Required:}

Calculate the unit product cost for Job P987.
275) Franta Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on direct labor-hours. The company based its predetermined overhead rate for the current year on 70,000 direct labor-hours, total fixed manufacturing overhead cost of \(\$ 238,000\), and a variable manufacturing overhead rate of \(\$ 2.70\) per direct laborhour. Job P873, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
```

Total direct labor-hours200
Direct materials
\$ 630
Direct labor cost
\$4,800

```

\section*{Required:}

Calculate the unit product cost for Job P873.
276) Temby Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 10,000 machine-hours, total fixed manufacturing overhead cost of \(\$ 88,000\), and a variable manufacturing overhead rate of \(\$ 3.20\) per machine-hour. Job K418, which was for 50 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
Total machine-hours
150
Direct materials \$ 580

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job K418.
d. Calculate the total job cost for Job K418.
e. Calculate the unit product cost for Job K418.
f. Calculate the selling price for Job K418 if the company marks up its unit product costs by \(30 \%\).
277) Saxon Corporation uses a job-order costing system with a single plantwide predetermined overhead rate based on machine-hours. The company based its predetermined overhead rate for the current year on 10,000 machine-hours, total fixed manufacturing overhead cost of \$91,000, and a variable manufacturing overhead rate of \(\$ 2.40\) per machine-hour. Job K373, which was for 60 units of a custom product, was recently completed. The job cost sheet for the job contained the following data:
```

Total machine-hours120
Direct materials \$ 645

```
Direct labor cost \(\quad \$ 3,720\)

\section*{Required:}
a. Calculate the estimated total manufacturing overhead for the year.
b. Calculate the predetermined overhead rate for the year.
c. Calculate the amount of overhead applied to Job K373.
d. Calculate the total job cost for Job K373.
e. Calculate the unit product cost for Job K373
278) Kluth Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lrrr} 
Estimated total machine-hours (MHs) & 12,000 & 2,800 & 14,800 \\
Estimated total fixed manufacturing & \(\$ 26,400\) & \(\$ 9,240\) & \(\$ 35,640\) \\
overhead cost \\
Estimated variable manufacturing & \(\$ 1.50\) & \(\$ 2.00\)
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job M. There were no beginning inventories. Data concerning those two jobs follow:
```

Job C
Job M
\$ 15,800 \$ 9,300

```
Direct labor cost \(\quad \$ 22,600 \quad \$ 9,500\)
Molding machine-hours \(\quad 2,500 \quad 9,500\)
Customizing machine-hours 1,800 1,000

\section*{Required:}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job C and for Job M. (Do not round intermediate calculations.)
279) Kluth Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:
\begin{tabular}{lccr} 
& Molding & Customizing & Total \\
Estimated total machine-hours (MHs) & 3,000 & 2,000 & 5,000 \\
Estimated total fixed manufacturing & \(\$ 15,900\) & \(\$ 4,200\) & \(\$\) \\
overhead cost & & & 20,100 \\
Estimated variable manufacturing & \(\$ 1.20\) & \(\$ 2.40\) & \\
overhead cost per MH
\end{tabular}

During the most recent month, the company started and completed two jobs--Job C and Job M. There were no beginning inventories. Data concerning those two jobs follow:
\begin{tabular}{lrr} 
Direct materials & \(\$ 15,600\) & \(\$ 8,600\) \\
Direct labor cost & \(\$ 25,100\) & \(\$ 8,300\) \\
Molding machine-hours & 2,000 & 1,000 \\
Customizing machine-hours & 800 & 1,200
\end{tabular}

\section*{Required:}

Assume that the company uses departmental predetermined overhead rates with machine-hours as the allocation base in both production departments. Further assume that the company uses a markup of \(20 \%\) on manufacturing cost to establish selling prices. Calculate the selling prices for Job C and for Job M. (Do not round intermediate calculations.)
280) Amason Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
\begin{tabular}{lrr} 
& Forming & Assembly \\
Machine-hours & 16,000 & 11,000 \\
Direct labor-hours & 2,000 & 6,000 \\
Total fixed manufacturing overhead cost & \(\$ 102,400\) & \(\$ 66,000\) \\
Variable manufacturing overhead per machine- & \(\$ 1.90\) & \\
hour & & \\
Variable manufacturing overhead per direct & & 3.80 \\
labor-hour
\end{tabular}

During the current month the company started and finished Job A950. The following data were recorded for this job:
\begin{tabular}{lrr} 
Job A950: & Forming & Assembly \\
Machine-hours & 50 & 20 \\
Direct labor-hours & 20 & 40 \\
Direct materials & \(\$ 665\) & \(\$ 415\)
\end{tabular}
```

Direct labor cost

Required:

Calculate the selling price for Job A950 if the company marks up its unit product costs by 30% to determine selling prices.
281) Dancel Corporation has two production departments, Milling and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Milling Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Milling	Finishing
Machine-hours	17,000	14,000
Direct labor-hours	1,000	6,000
Total fixed manufacturing overhead cost	$\$ 91,800$	$\$ 64,200$
Variable manufacturing overhead per machine-hour	$\$ 2.00$	
Variable manufacturing overhead per direct		3.40
labor-hour		

During the current month the company started and finished Job M565. The following data were recorded for this job:

Job M565:	Milling	Finishing
Machine-hours	70	20
Direct labor-hours	10	40
Direct materials	$\$ 750$	$\$ 360$
Direct labor cost	$\$ 340$	$\$ 1,360$

Required:

a. Calculate the total amount of overhead applied to Job M565 in both departments.
b. Calculate the total job cost for Job M565.
c. Calculate the selling price for Job M565 if the company marks up its unit product costs by 20% to determine selling prices.
282) Pangle Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Forming	Customizing
Machine-hours	16,000	12,000
Direct labor-hours	4,000	9,000
Total fixed manufacturing overhead cost	$\$ 91,200$	$\$ 99,000$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		$\$ 3.10$
Variable manufacturing overhead per direct		
labor-hour		

During the current month the company started and finished Job M109. The following data were recorded for this job:

```
Job M109:
Machine-hours
Direct labor-hours
Direct materials
Direct labor cost
```

Forming	Customizing
50	30
20	50
$\$ 915$	$\$ 355$
$\$ 620$	$\$ 1,550$

Required:

Calculate the total job cost for Job M109.
283) Vasilopoulos Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Assembly
Machine-hours	17,000	11,000
Direct labor-hours	3,000	6,000
Total fixed manufacturing overhead cost	$\$ 119,000$	$\$ 51,000$
Variable manufacturing overhead per machine-	$\$ 2.10$	
hour		
Variable manufacturing overhead per direct		3.10
labor-hour		

During the current month the company started and finished Job A182. The following data were recorded for this job:

```
Job A182:
Machine-hours
Direct labor-hours
Direct materials
Direct labor cost
\begin{tabular}{rr} 
Casting & Assembly \\
50 & 20 \\
10 & 50 \\
\(\$ 895\) & \(\$ 365\) \\
\(\$ 240\) & \(\$ 1,200\)
\end{tabular}
```


Required:

a. Calculate the estimated total manufacturing overhead for the Casting Department.
b. Calculate the estimated total manufacturing overhead for the Assembly Department.
c. Calculate the predetermined overhead rate for the Casting Department.
d. Calculate the predetermined overhead rate for the Assembly Department.
e. Calculate the total amount of overhead applied to Job A182 in both departments.
f. Calculate the total job cost for Job A182.
g. Calculate the selling price for Job A182 if the company marks up its unit product costs by 20% to determine selling prices.
284) Hultquist Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:

Estimated total machine-hours (MHs)	4,000	6,000	10,000
Estimated total fixed manufacturing	$\$ 8,000$	$\$ 15,000$	$\$ 23,000$
overhead cost			
Estimated variable manufacturing	$\$ 3.00$	$\$ 6.00$	

During the period, the company started and completed two jobs--Job C and Job L. Data concerning those two jobs follow:

```
Direct materials
Direct labor cost
Forming machine-hours
Customizing machine-hours
```

$\$ 22,700 \$ 9,700$
1,250
$\$ 22,700 \$ 9,700$
Job C Job L

```
$ 16,000
$ 9,400
```

 2,750
 \(1,250 \quad 4,750\)

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job L. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job L. (Do not round intermediate calculations.)
d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Forming department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Customizing department? (Round your answer to 2 decimal places.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job L? (Do not round intermediate calculations.)
h. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
285) Hultquist Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:

| | Forming | Customizing | Total |
| :--- | ---: | ---: | ---: | ---: |
| Estimated total machine-hours (MHs) | 9,000 | 1,000 | 10,000 |
| Estimated total fixed manufacturing | $\$ 50,400$ | $\$ 2,600$ | $\$ 53,000$ |

```
overhead cost
Estimated variable manufacturing $ 1.70 $ 2.10
overhead cost per MH
```

During the period, the company started and completed two jobs--Job C and Job L. Data concerning those two jobs follow:

Direct materials	$\$ 15,100$	$\$ 6,900$
Direct labor cost	$\$ 20,800$	$\$ 8,500$
Forming machine-hours	6,100	2,900
Customizing machine-hours	400	600

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job L. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job L. (Do not round intermediate calculations.)
d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Forming department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Customizing department? (Round your answer to 2 decimal places.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job L? (Do not round intermediate calculations.)
h. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job L. (Do not round intermediate calculations.)
286) Carcana Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the period to calculate predetermined overhead rates:
Machining Finishing Total

Estimated total machine-hours (MHs)	1,000	4,000	5,000
Estimated total fixed manufacturing	$\$ 4,200$	$\$ 8,800$	$\$$
overhead cost			13,000
Estimated variable manufacturing	$\$ 1.90$	$\$ 2.90$	
overhead cost per MH			

During the period, the company started and completed two jobs--Job E and Job G. Data concerning those two jobs follow:

Job E	Job G
$\$ 11,800$	$\$ 8,000$
$\$ 19,200$	$\$ 6,700$
700	300
1,600	2,400

Required:

a. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department?
b. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department?
c. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E?
d. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job G?
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job E.
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job G.
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. If both jobs were sold during the month, what was the company's cost of goods sold for the month?
287) Braegelmann Corporation has two production departments, Casting and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Assembly
Machine-hours	20,000	14,000
Direct labor-hours	4,000	6,000

```
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct $ 4.50
labor-hour
```

During the current month the company started and finished Job K246. The following data were recorded for this job:

Job K246:	Casting	Assembly
Machine-hours	60	30
Direct labor-hours	20	40
Direct materials	$\$ 950$	$\$ 305$
Direct labor cost	$\$ 460$	$\$ 920$

Required:

a. Calculate the estimated total manufacturing overhead for the Casting Department.
b. Calculate the estimated total manufacturing overhead for the Assembly Department.
c. Calculate the predetermined overhead rate for the Casting Department.
d. Calculate the predetermined overhead rate for the Assembly Department.
e. Calculate the amount of overhead applied in the Casting Department to Job K246.
f. Calculate the amount of overhead applied in the Assembly Department to Job K246.
g. Calculate the total job cost for Job K246.
h. Calculate the selling price for Job K246 if the company marks up its unit product costs by 40% to determine selling prices.
288) Matrejek Corporation has two manufacturing departments--Forming and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

Estimated total machine-hours (MHs)	8,000	2,000	10,000
Estimated total fixed manufacturing	$\$ 36,800$	$\$ 4,800$	$\$ 41,600$
overhead cost			
Estimated variable manufacturing	$\$ 1.60$	$\$ 2.90$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job D and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job D
$\$ 15,600 \quad \$ 6,900$
Direct materials
Direct labor cost
Forming machine-hours
Customizing machine-hours
$\$ 19,100 \quad \$ 8,700$
$5,400 \quad 2,600$
$800 \quad 1,200$

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 50% on manufacturing cost to establish selling prices. Calculate the selling price for Job D.
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 50% on manufacturing cost to establish selling prices. Calculate the selling price for Job K.
c. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. Calculate the selling price for Job D.
d. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 50% on manufacturing cost to establish selling prices. Calculate the selling price for Job K.
289) Harnett Corporation has two manufacturing departments--Molding and Assembly. The company used the following data at the beginning of the period to calculate predetermined overhead rates:

```
Estimated total machine-hours (MHs)
Estimated total fixed manufacturing
overhead cost
Estimated variable manufacturing
overhead cost per MH
```

During the period, the company started and completed two jobs--Job E and Job M. Data concerning those two jobs follow:
$\begin{array}{lll}\text { Direct materials } & \$ 22,500 & \$ 8,400\end{array}$
$\begin{array}{lll}\text { Direct materials } & \$ 22,500 & \$ 8,400\end{array}$
Direct labor cost
$\$ 22,700 \$ 8,000$
Molding machine-hours
$2,500 \quad 1,500$
Assembly machine-hours
1,250

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job E. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job E. (Do not round intermediate calculations.)
d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Molding department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Assembly department? (Round your answer to 2 decimal places.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E? (Do not round intermediate calculations.)
h. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 80% on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
290) Harnett Corporation has two manufacturing departments--Molding and Assembly. The company used the following data at the beginning of the period to calculate predetermined overhead rates:

Molding	Assembly	Total
5,000	5,000	10,000
$\$ 29,000$	$\$ 13,500$	$\$ 42,500$
$\$ 1.20$	$\$ 2.30$	

```
Estimated total machine-hours (MHs)
Estimated total fixed manufacturing
overhead cost
Estimated variable manufacturing $ 1.20 $ 2.30
overhead cost per MH
```

During the period, the company started and completed two jobs--Job E and Job M. Data concerning those two jobs follow:

```
Job E Job M
$ 14,300 $ 9,400
$ 22,800 $ 8,900
    3,400 1,600
    2,000 3,000
```


Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job E. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the total manufacturing cost assigned to Job E. (Do not round intermediate calculations.)
d. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours and uses a markup of 60% on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Molding department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Assembly department? (Round your answer to 2 decimal places.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job E? (Do not round intermediate calculations.)
h. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. Further assume that the company uses a markup of 60% on manufacturing cost to establish selling prices. Calculate the selling price for Job E. (Do not round intermediate calculations.)
291) Bulla Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

```
15, 000
19,000
Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per
machine-hour
Variable manufacturing overhead per direct $ 3.00
    4,000 5,000
$67,500
$76,000
    $ 1.50
labor-hour
```

During the current month the company started and finished Job K369. The following data were recorded for this job:
Job K369:

Machine-hours
80
Customizing
30
Direct labor-hours

Required:

Calculate the total amount of overhead applied to Job K369 in both departments. (Do not round intermediate calculations.)
292) Bulla Corporation has two production departments, Machining and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Machining Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Machining	Customizing
Machine-hours	19,000	13,000
Direct labor-hours	2,000	9,000
Total fixed manufacturing overhead cost	$\$ 98,800$	$\$ 84,600$
Variable manufacturing overhead per	$\$ 2.10$	
machine-hour		$\$.60$
Variable manufacturing overhead per direct		
labor-hour		

During the current month the company started and finished Job K369. The following data were recorded for this job:

```
Job K369:
Machine-hours
Direct labor-hours
```

Machining
90
20

Customizing
10
50

Required:

Calculate the total amount of overhead applied to Job K369 in both departments. (Do not round intermediate calculations.)
293) Bierce Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

```
Machining Finishing Total
```

Estimated total machine-hours (MHs)	7,000	3,000	10,000
Estimated total fixed manufacturing	$\$ 8,400$	$\$ 11,700$	$\$ 20,100$
overhead cost			
Estimated variable manufacturing	$\$ 3.00$	$\$ 5.00$	

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job B	Job K
$\$ 21,400$	$\$ 8,600$
$\$ 21,800$	$\$ 1,250$
5,000	2,000
500	2,500

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job B. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K. (Do not round intermediate calculations. Round your answer to the nearest whole dollar amount.)
d. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department? (Round your answer to 2 decimal places.)
e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job B? (Do not round intermediate calculations.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job K? (Do not round intermediate calculations.)
294) Bierce Corporation has two manufacturing departments--Machining and Finishing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

```
Estimated total machine-hours (MHs)
    4,000 1,000 5,000
Estimated total fixed manufacturing $20,000 $2,100 $22,100
overhead cost
Estimated variable manufacturing $ 1.40 $ 2.80
overhead cost per MH
```

Machining Finishing

During the most recent month, the company started and completed two jobs--Job B and Job K. There were no beginning inventories. Data concerning those two jobs follow:

Job B Job K

Direct materials	$\$ 12,800$	$\$ 7,900$
Direct labor cost	$\$ 24,700$	$\$ 6,400$
Machining machine-hours	2,700	1,300
Finishing machine-hours	400	600

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate that overhead rate. (Round your answer to 2 decimal places.)
b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job B. (Do not round intermediate calculations.)
c. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job K. (Do not round intermediate calculations. Round your answer to the nearest whole dollar amount.)
d. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both departments. What is the departmental predetermined overhead rate in the Machining department? (Round your answer to 2 decimal places.) e. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. What is the departmental predetermined overhead rate in the Finishing department? (Round your answer to 2 decimal places.)
f. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job B? (Do not round intermediate calculations.)
g. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job K? (Do not round intermediate calculations.)
295) Gercak Corporation has two production departments, Forming and Assembly. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Assembly Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

Machine-hours	16,000	11,000
Direct labor-hours	2,000	7,000
Total fixed manufacturing overhead cost	$\$ 100,800$	$\$ 76,300$
Variable manufacturing overhead per machine-	$\$ 1.70$	
hour		$\$ 3.10$
Variable manufacturing overhead per direct		
labor-hour		

During the current month the company started and finished Job X560. The following data were recorded for this job:

Job X560	Forming	Assembly
Machine-hours	50	30
Direct labor-hours	30	40

Required:

a. Calculate the estimated total manufacturing overhead for the Assembly Department.
b. Calculate the predetermined overhead rate for the Forming Department.
c. Calculate the total amount of overhead applied to Job X560 in both departments.
296) Sonneborn Corporation has two manufacturing departments--Molding and Customizing. The company used the following data at the beginning of the year to calculate predetermined overhead rates:

Estimated total machine-hours (MHs)	1,000	9,000	10,000
Estimated total fixed manufacturing	$\$ 5,100$	$\$ 23,400$	$\$ 28,500$
overhead cost			
Estimated variable manufacturing	$\$ 1.50$	$\$ 2.50$	
overhead cost per MH			

During the most recent month, the company started and completed two jobs--Job D and Job G. There were no beginning inventories. Data concerning those two jobs follow:

Job D	Job G
$\$ 14,700$	$\$ 9,100$
$\$ 18,800$	$\$ 8,300$
700	300
3,600	5,400

Direct materials	$\$ 14,700$	$\$ 9,100$
Direct labor cost	$\$ 18,800$	$\$ 8,300$
Molding machine-hours	700	300
Customizing machine-hours	3,600	5,400

Required:

a. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job D. b. Assume that the company uses a plantwide predetermined manufacturing overhead rate based on machine-hours. Calculate the amount of manufacturing overhead applied to Job G. c. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job D?
d. Assume that the company uses departmental predetermined overhead rates with machinehours as the allocation base in both production departments. How much manufacturing overhead will be applied to Job G?
297) Rocher Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:
Machine-hours
Direct labor-hours
Total fixed manufacturing overhead cost
Variable manufacturing overhead per machine-
hour
Variable manufacturing overhead per direct
labor-hour

Casting	Finishing
17,000	13,000
4,000	6,000
$\$ 124,100$	$\$ 52,200$
$\$ 2.30$	
	$\$ 4.00$

During the current month the company started and finished Job A394. The following data were recorded for this job:

Job A394	Casting	Finishing
Machine-hours	80	20
Direct labor-hours	10	40

Required:

a. Calculate the estimated total manufacturing overhead for the Casting Department.
b. Calculate the predetermined overhead rate for the Casting Department.
c. Calculate the amount of overhead applied in the Casting Department to Job A394.
298) Marius Corporation has two production departments, Casting and Finishing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Casting Department's predetermined overhead rate is based on machine-hours and the Finishing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Casting	Finishing
Machine-hours	18,000	12,000
Direct labor-hours	4,000	6,000
Total fixed manufacturing overhead cost	$\$ 118,800$	$\$ 57,600$
Variable manufacturing overhead per machine-	$\$ 2.20$	
hour		
Variable manufacturing overhead per direct		4.00
labor-hour		

During the current month the company started and finished Job K895. The following data were recorded for this job:

Job K895:	Casting	Finishing
Machine-hours	70	30
Direct labor-hours	20	60

Required:

a. Calculate the estimated total manufacturing overhead for the Finishing Department.
b. Calculate the predetermined overhead rate for the Finishing Department.
c. Calculate the amount of overhead applied in the Finishing Department to Job K895.
299) Madole Corporation has two production departments, Forming and Customizing. The company uses a job-order costing system and computes a predetermined overhead rate in each production department. The Forming Department's predetermined overhead rate is based on machine-hours and the Customizing Department's predetermined overhead rate is based on direct labor-hours. At the beginning of the current year, the company had made the following estimates:

	Forming	Customizing
Machine-hours	19,000	12,000
Direct labor-hours	4,000	8,000
Total fixed manufacturing overhead cost	$\$ 119,700$	$\$ 67,200$
Variable manufacturing overhead per machine-	$\$ 2.00$	
hour		
Variable manufacturing overhead per direct		4.20
labor-hour		

During the current month the company started and finished Job K973. The following data were recorded for this job:

Job K973:	Forming	Customizing
Machine-hours	50	20
Direct labor-hours	20	50

Required:

a. Calculate the estimated total manufacturing overhead for the Forming Department.
b. Calculate the predetermined overhead rate for the Customizing Department.
c. Calculate the total overhead applied to Job K973 in both departments.
300) Sullen Corporation uses a predetermined overhead rate base on machine-hours that it recalculates at the beginning of each year. The company has provided the following data for the most recent year.

```
Predetermined overhead rate $ 14.30 per machine-hour
    Estimated total fixed manufacturing $572,000
    overhead from the beginning of the
    year
Estimated activity level from the 40,000 machine-hours
beginning of the year
Actual total fixed manufacturing $605,000
overhead
Actual activity level 36,700 machine-hours
```


Required:

Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
301) Levi Corporation uses a predetermined overhead rate of $\$ 23.40$ per direct labor-hour. This predetermined overhead rate was based on estimated total fixed manufacturing overhead of $\$ 702,000$ and 30,000 direct labor-hours for the period. The company incurred actual total fixed manufacturing overhead of $\$ 738,000$ and 27,100 total direct labor-hours during the period.

Required:

Determine the amount of manufacturing overhead that would have been applied to all jobs during the period.
302) Henkes Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 66,000 labor-hours. The estimated variable manufacturing overhead was $\$ 8.41$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 1,533,180$. The actual labor-hours for the year turned out to be 68,400 laborhours.

Required:

Compute the company's predetermined overhead rate for the recently completed year.
303) Mccaughan Corporation bases its predetermined overhead rate on the estimated laborhours for the upcoming year. Data for the most recently completed year appear below:

```
Estimates made at the beginning of the year:
    Estimated labor-hours 37,000
    Estimated variable manufacturing overhead $ 4.43 per labor-
                                    hour
Estimated total fixed manufacturing overhead $ 705,220
Actual labor-hours for the year 32,100
```


Required:

Compute the company's predetermined overhead rate for the recently completed year.
304) Moscone Corporation bases its predetermined overhead rate on the estimated labor-hours for the upcoming year. At the beginning of the most recently completed year, the company estimated the labor-hours for the upcoming year at 78,000 labor-hours. The estimated variable manufacturing overhead was $\$ 9.99$ per labor-hour and the estimated total fixed manufacturing overhead was $\$ 985,920$.

Required:

Compute the company's predetermined overhead rate.
305) Lightner Corporation bases its predetermined overhead rate on the estimated machinehours for the upcoming year. Data for the upcoming year appear below:

```
Estimated machine-hours
Estimated variable manufacturing
    $ 8.82 per machine-hour
overhead
Estimated total fixed manufacturing $ 1,077,000
overhead
```


Required:

Compute the company's predetermined overhead rate.
306) Job 243 was recently completed. The following data have been recorded on its job cost sheet:

```
Direct materials $ 48,870
Direct labor-hours 405 labor-hours
Direct labor wage rate $ 13 per labor-hour
Machine-hours 486 machine-hours
Number of units completed
2,700 units
```

The company applies manufacturing overhead on the basis of machine-hours. The predetermined overhead rate is $\$ 11$ per machine-hour.

Required:

Compute the unit product cost that would appear on the job cost sheet for this job.
307) Job 652 was recently completed. The following data have been recorded on its job cost sheet:

```
Direct materials
$ 59,400
```

Direct labor-hours	1,224 DLHs
Direct labor wage rate	$\$ 15$ per DLH
Number of units completed	3,600 units

The company applies manufacturing overhead on the basis of direct labor-hours. The predetermined overhead rate is $\$ 35$ per direct labor-hour.
Required:
Compute the unit product cost that would appear on the job cost sheet for this job.

Answer Key

Test name: Noreen 2

1) C
2) D
3) B
4) D
5) D
6) B
7) C
8) A
9) C
10) B
11) B
12) C
13) B
14) D
15) A

Rent on factory building
Depreciation on factory equipment
\$ 15,000

Indirect labor
Production supervisor's salary
Manufacturing overhead
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base

Predetermined overhead rate $=\$ 50,000 \div 20,000$ direct labor-hours $=$ $\$ 2.50$ per direct labor-hour
16) C

Department A Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base

Predetermined overhead rate $=\$ 90,000 \div \$ 60,000=150 \%$ of direct labor cost

Department B Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base

Predetermined overhead rate $=\$ 45,000 \div 15,000$ machine-hours $=$ $\$ 3.00$ per machine-hour
17) B

Estimated total fixed manufacturing overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) \div (b)

10,000
\$ 12.10
18) D

Salary of production supervisor \$ 2,000
Indirect materials
Rent on factory equipment
Total manufacturing overhead

400
1,000
\$ 3,400

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 3,400 \div 1,000$ machine-hours $=\$ 3.40$ per machine-hour
19) A

Estimated total fixed manufacturing overhead (a) \$ 534,000
Estimated activity level (b)
Predetermined overhead rate (a) $\div(b)$
20) C

Estimated total manufacturing overhead $=\$ 838,720+(\$ 3.40$ per machine-hour $\times 72,400$ machine-hours $)=\$ 1,084,880$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,084,880 \div$ 72,400 machine-hours $=\$ 14.98$ per machine-hour

21) B

Estimated total manufacturing overhead $=\$ 1,058,040+(\$ 3.01$ per machine-hour $\times 36,000$ machine-hours) $=\$ 1,166,400$
Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,166,400 \div$ 36,000 machine-hours $=\$ 32.40$ per machine-hour 22) A

Estimated total manufacturing overhead $=\$ 1,194,345+(\$ 4.10$ per machine-hour $\times 40,500$ machine-hours) $=\$ 1,360,395$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,360,395 \div$ 40,500 machine-hours $=\$ 33.59$ per machine-hour
23) A

Estimated total manufacturing overhead $=\$ 2,347,090+(\$ 7.38$ per machine-hour $\times 79,000$ machine-hours) $=\$ 2,930,110$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 2,930,110 \div$ 79,000 machine-hours $=\$ 37.09$ per machine-hour
24) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 144,000+(\$ 2.00$ per machine-hour $\times 60,000$ machine-hours $)=$ $\$ 144,000+\$ 120,000=\$ 264,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 264,000 \div 60,000$ machine-hours $=\$ 4.40$ per machine-hour 25) A

Estimated total manufacturing overhead $=\$ 1,037,855+(\$ 5.49$ per labor-hour $\times 45,500$ labor-hours) $=\$ 1,287,650$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,287,650 \div$ 45,500 labor-hours $=\$ 28.30$ per labor-hour 26) A

Estimated total manufacturing overhead $=\$ 1,026,260+(\$ 6.25$ per labor-hour $\times 46,000$ labor-hours) $=\$ 1,313,760$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,313,760 \div$ 46,000 labor-hours $=\$ 28.56$ per labor-hour

27) D

Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 440,000+(\$ 2.20$ per machine-hour $\times 50,000$ machine-hours $)=$ $\$ 440,000+\$ 110,000=\$ 550,000$
28) B

Estimated total manufacturing overhead $=\$ 775,840+(\$ 5.39$ per machine-hour $\times 37,300$ machine-hours) $=\$ 976,887$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 976,887 \div$ 37,300 machine-hours $=\$ 26.19$ per machine-hour 29) B

Estimated total manufacturing overhead $=\$ 794,430+(\$ 6.76$ per machine-hour $\times 39,000$ machine-hours) $=\$ 1,058,070$

Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base $=\$ 1,058,070 \div$ 39,000 machine-hours $=\$ 27.13$ per machine-hour 30) A

Rent on factory equipment
Manufacturing overhead
Predetermined overhead rate $=$ Estimated total manufacturing overhead \div Estimated total amount of the allocation base

Predetermined overhead rate $=\$ 68,000 \div 16,000$ machine-hours $=$ $\$ 4.25$ per machine-hour
31) D

Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 189,000+(\$ 2.50$ per direct labor-hour $\times 30,000$ direct laborhours) $=\$ 189,000+\$ 75,000=\$ 264,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 264,000 \div 30,000$ direct labor-hours $=\$ 8.80$ per direct labor-hour 32) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 357,000+(\$ 3.90$ per machine-hour $\times 70,000$ machine-hours $)=$ $\$ 357,000+\$ 273,000=\$ 630,000$
33) A

The first step is to calculate the estimated total overhead costs in the two departments.

Forming

```
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead ($1.30 per MH } 7,000 MHs)
```


Finishing

Estimated fixed manufacturing overhead	$\$ 8,100$
Estimated variable manufacturing overhead (\$2.80 per MH \times	8,400
$3,000 \mathrm{MHs})$	
Estimated total manufacturing overhead cost	$\$ 16,500$

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 49,700+\$ 16,500=\$ 66,200)$ to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
$\begin{array}{ll}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 6.62 \text { per } \mathrm{MH}\end{array}$

```
$ 66,200
    10,000 MHs
    $ 6.62 per MH
```

34) A

Estimated total fixed manufacturing overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) $\div(b) \quad \begin{aligned} & \text { (b) } 16.40\end{aligned}$
Actual activity level
Manufacturing overhead applied
$\$ 492,000$
Estimated activity level (b)
Predetermined overhead rate (a) $\div(b)$
Actual activity level
Manufacturing overhead applied

Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 344,000+(\$ 3.90$ per machine-hour $\times 40,000$ machine-hours $)=$ $\$ 344,000+\$ 156,000=\$ 500,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 500,000 \div 40,000$ machine-hours $=\$ 12.50$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 12.50$ per machinehour $\times 60$ machine-hours $=\$ 750$ 36) A

The first step is to calculate the estimated total overhead costs in the two departments.

Forming
Estimated fixed manufacturing overhead
\$ 52,200
Estimated variable manufacturing overhead (\$2.00 per MH \times
18,000 9,000 MHs)
Estimated total manufacturing overhead cost
Assembly
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.10 per MH \times

Estimated total manufacturing overhead cost
The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 70,200+\$ 4,500=\$ 74,700)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$74,700
$\begin{array}{ll}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 7.47 \mathrm{per} \mathrm{MH}\end{array}$
The overhead applied to Job B is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times Machine-hours incurred by the job
$=\$ 7.47$ per $\mathrm{MH} \times(6,100 \mathrm{MHs}+400 \mathrm{MHs})$
$=\$ 7.47$ per $\mathrm{MH} \times(6,500 \mathrm{MHs})$
$=\$ 48,555$
37) B

The first step is to calculate the estimated total overhead costs in the two departments.
Casting
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.90 per MH \times

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 59,200+\$ 10,200=\$ 69,400)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total machine hours 10,000 MHs
Predetermined overhead rate $ 6.94 per MH
```

The overhead applied to Job H is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job

$$
\begin{aligned}
&= \$ 6.94 \text { per } \mathrm{MH} \times(2,600 \mathrm{MHs}+1,200 \mathrm{MHs}) \\
&= \$ 6.94 \text { per } \mathrm{MH} \times(3,800 \mathrm{MHs}) \\
&=\$ 26,372 \\
&38) \mathrm{D}
\end{aligned}
$$

Overhead applied $=$ Predetermined overhead rate \times Amount of the allocation base incurred $\$ 600=$ Predetermined overhead rate $\times \$ 150$

Predetermined overhead rate $=\$ 600 \div \$ 150=4.0$
Direct materials $\quad \$ 480$
Direct labor (\$150 + \$100)
Manufacturing overhead applied (4.0 \times \$250)
Total product cost
39) B

Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 105,000+(\$ 3.00$ per machine-hour $\times 70,000$ machine-hours $)=$ $\$ 105,000+\$ 210,000=\$ 315,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 315,000 \div 70,000$ machine-hours $=\$ 4.50$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 4.50$ per machinehour $\times 60$ machine-hours $=\$ 270$
40) A

Estimated total fixed manufacturing overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) \div (b)
Actual activity level
Manufacturing overhead applied
 41) A

The first step is to calculate the estimated total overhead costs in the two departments.

Molding

Estimated fixed manufacturing overhead \$ 4,000
Estimated variable manufacturing overhead (\$2.00 per MH \times

Estimated total manufacturing overhead cost
$\$ 6,000$

Customizing

Estimated fixed manufacturing overhead \quad 25,200
Estimated variable manufacturing overhead (\$3.00 per MH x 9,000 MHs)
Estimated total manufacturing overhead cost
The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 6,000+\$ 52,200=\$ 58,200)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total machine hours 10,000 MHs
Predetermined overhead rate

The overhead applied to Job K is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.82\) per \(\mathrm{MH} \times(300 \mathrm{MHs}+5,400 \mathrm{MHs})\)
\(=\$ 5.82\) per \(\mathrm{MH} \times(5,700 \mathrm{MHs})\)
= \$33,174
Job K's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job K:
Total manufacturing cost
Markup (50\%)
Selling price 42) C
\(\$ 8,400\)
6,800
33,174
\$ 48, 374

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 665,000+(\$ 3.00\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 665,000+\$ 210,000=\$ 875,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 875,000 \div 70,000\) machine-hours \(=\$ 12.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.50\) per machinehour \(\times 90\) machine-hours \(=\$ 1,125\)
\begin{tabular}{lr} 
Direct materials & \(\$ 630\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Manufacturing overhead applied & 1,125 \\
\hline Total cost of Job T321 & \$ 4,635 \\
\hline Total cost of Job T321 (a) & \$ 4,635 \\
\hline Number of units (b) & 30 \\
\hline Unit product cost (a) \(\div\) (b) & \$ 154.50 \\
\hline
\end{tabular} 43) A

The first step is to calculate the estimated total overhead costs in the two departments.

Machining

Estimated fixed manufacturing overhead
\$ 22,000 9,000
Estimated variable manufacturing overhead (\$1.80 per MH \(\times\) 5,000 MHs)
Estimated total manufacturing overhead cost
\$ 31,000

\section*{Customizing}

Estimated fixed manufacturing overhead
\$ 11,500
Estimated variable manufacturing overhead (\$3.00 per MH \(\times\) 15,000 5,000 MHs)
Estimated total manufacturing overhead cost
\$ 26,500

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 31,000+\$ 26,500=\$ 57,500)\) to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
\(\begin{array}{ll}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 5.75 \mathrm{per} \mathrm{MH}\end{array}\)
```

\$ 57,500

```
    10,000 MHs
    \(\$ 5.75\) per MH

The overhead applied to Job E is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.75\) per \(\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})\)
\(=\$ 5.75\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs})\)
\(=\$ 31,050\)
Job E's manufacturing cost:
Direct materials \(\quad \$ 12,800\)
Direct labor cost 17,600
Manufacturing overhead applied
31,050

The overhead applied to Job J is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 5.75\) per \(\mathrm{MH} \times(1,600 \mathrm{MHs}+3,000 \mathrm{MHs})\)
\(=\$ 5.75\) per \(\mathrm{MH} \times(4,600 \mathrm{MHs})\)
\(=\$ 26,450\)
Job J's manufacturing cost:
Direct materials \$7,000
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Total manufacturing cost assigned to Job E
Total manufacturing cost assigned to Job J
Cost of goods sold
\begin{tabular}{r}
26,450 \\
\hline\(\$ 41,150\) \\
\hline \hline\(\$ 61,450\) \\
41,150 \\
\hline\(\$ 102,600\) \\
\hline
\end{tabular}
44) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 511,000+(\$ 2.10\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 511,000+\$ 147,000=\$ 658,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 658,000 \div 70,000\) direct labor-hours \(=\$ 9.40\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.40\) per direct labor-hour \(\times 150\) direct labor-hours \(=\$ 1,410\)

Direct materials
Direct labor cost
Manufacturing overhead applied
Total cost of Job K913
45) C
\$ 705
4,650
1,410
\$ 6,765

The first step is to calculate the estimated total overhead costs in the two departments.

Casting

Estimated fixed manufacturing overhead
\$ 9,800
Estimated variable manufacturing overhead (\$2.00 per MH \(\times\) 2,000 MHs)
Estimated total manufacturing overhead cost
\[
\$ 13,800
\]

Finishing
\begin{tabular}{lr} 
Estimated fixed manufacturing overhead & \(\$ 6,300\) \\
Estimated variable manufacturing overhead (\$2.40 per MH \(\times\) & 7,200 \\
\(3,000 \mathrm{MHs}\) ) & \\
Estimated total manufacturing overhead cost & \(\$ 13,500\)
\end{tabular}

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 13,800+\$ 13,500=\$ 27,300)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\$ 27,300

Estimated total machine hours 5,000 MHs
Predetermined overhead rate \(\quad \$ 5.46\) per MH
The overhead applied to Job L is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.46\) per \(\mathrm{MH} \times(600 \mathrm{MHs}+1,800 \mathrm{MHs})\)
\(=\$ 5.46\) per \(\mathrm{MH} \times(2,400 \mathrm{MHs})\)
= \$13,104
Job L's manufacturing cost:
Direct materials \(\quad \$ 9,600\)
Direct labor cost
Manufacturing overhead applied
6,200

Total manufacturing cost
46) B

The first step is to calculate the estimated total overhead costs in the two departments.

Forming

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.10 per MH \(\times\) 5,000 MHs)
Estimated total manufacturing overhead cost
Assembly
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.80 per MH \(\times\) 5,000 MHs)
Estimated total manufacturing overhead cost
\(\$ 32,500\)
\$ 27,000 5,500
\$ 10, 500
14,000
\$ 24,500

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 32,500+\$ 24,500=\$ 57,000)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$57,000
Estimated total machine hours \(\quad 10,000 \mathrm{MHs}\)
Predetermined overhead rate \(\quad \$ 5.70\) per MH
The overhead applied to Job C is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.70\) per \(\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})\)
\(=\$ 5.70\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs})\)
= \$30,780
Job C's manufacturing cost:

Direct materials
\$ 11,200
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job C:

Total manufacturing cost
Markup (40\%)
Selling price
47) D

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Machining}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.00 per MH \(\times\)
\$ 30,000
12,000 6,000 MHs)
Estimated total manufacturing overhead cost

\section*{Finishing}


The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 42,000+\$ 20,800=\$ 62,800)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\$ 62,800

Estimated total machine hours 10,000 MHs
Predetermined overhead rate \(\quad \$ 6.28\) per MH
The overhead applied to Job E is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.28\) per \(\mathrm{MH} \times(4,100 \mathrm{MHs}+1,600 \mathrm{MHs})\)
\(=\$ 6.28\) per \(\mathrm{MH} \times(5,700 \mathrm{MHs})\)
\(=\$ 35,796\)
Job E's manufacturing cost:
Direct materials \$ 13,400
Direct labor cost
Manufacturing overhead applied
35,796
Total manufacturing cost
\(\$ 73,696\)
48) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 249,000+(\$ 3.80\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 249,000+\$ 114,000=\$ 363,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 363,000 \div 30,000\) machine-hours \(=\$ 12.10\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.10\) per machinehour \(\times 250\) machine-hours \(=\$ 3,025\)

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job \(X 784\)
Total cost of Job X784 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job \(\mathrm{X784}\)
Markup (30\% × \$179.90)
Selling price
49) B
\(\$ 470\)
5,500
3,025
\$ 8,995
\(\$ 8,995\)
50
\$ 179.90
\$ 179.90
53.97
\$ 233.87

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 35,000+(\$ 2.20\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 35,000+\$ 22,000=\$ 57,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 57,000\) \(\div 10,000\) machine-hours \(=\$ 5.70\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.70\) per machinehour \(\times 40\) machine-hours \(=\$ 228\)

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job T369
Total cost of Job T369 (a)
Number of units (b)
Unit product cost (a) \(\div\) (b)
Unit product cost for Job T369
Markup (20\% × \$253.80)
Selling price
50) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 378,000+(\$ 2.20\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 378,000+\$ 132,000=\$ 510,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 510,000 \div 60,000\) direct labor-hours \(=\$ 8.50\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead ratex Amount of the allocation base incurred by the job \(=\$ 8.50\) per direct labor-hour \(\times 120\) direct labor-hours \(=\$ 1,020\)

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job M843
Total cost of Job M843 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
\$ 630
2,400
1,020
51) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 155,000+(\$ 3.40\) per machine-hour \(\times 50,000\) machine-hours \()=\) \(\$ 155,000+\$ 170,000=\$ 325,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 325,000 \div 50,000\) machine-hours \(=\$ 6.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per machinehour \(\times 100\) machine-hours \(=\$ 650\)
```

Direct materials
Direct labor 2,300

```

Total cost of Job A881
52) A

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\[
\begin{aligned}
& =\$ 99,000+(\$ 2.10 \text { per machine-hour } \times 18,000 \text { machine-hours }) \\
& =\$ 99,000+\$ 37,800=\$ 136,800
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 136,800 \div 18,000\) machine-hours \(=\$ 7.60\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.60\) per machinehour \(\times 90\) machine-hours \(=\$ 684\)

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 70,400+(\$ 3.70 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 70,400+\$ 29,600=\$ 100,000
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 100,000 \div 8,000\) direct labor-hours \(=\$ 12.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.50\) per direct labor-hour \(\times 60\) direct labor-hours \(=\$ 750\)
\begin{tabular}{lrrrr} 
& Forming & Finishing & Total \\
Direct materials & \(\$ 940\) & \(\$ 350\) & \(\$ 1,290\) \\
Direct labor & \(\$ 960\) & \(\$ 1,920\) & 2,880 \\
Manufacturing overhead applied & \(\$ 684\) & \(\$ 750\) & 1,434 \\
Total cost of Job T617 & & & \(\$ 5,604\)
\end{tabular}
53) A

\section*{Machining Department predetermined overhead rate:}

Estimated fixed manufacturing overhead \$ 9,400
Estimated variable manufacturing overhead (\$1.80 per MH 3,600 \(\times 2,000 \mathrm{MHs})\)
Estimated total manufacturing overhead cost (a) \$13,000
Estimated total machine-hours (b) 2,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 6.50\) per MH
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$ 8,100
Estimated variable manufacturing overhead (\$2.40 per MH 7,200 \(\times 3,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a) \$15,300
Estimated total machine-hours (b) 3,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 5.10\) per MH
Manufacturing overhead applied to Job L:
Machining (\$6.50 per MH \(\times 600 \mathrm{MHs}\) ) \(\quad\) ( 3,900
Assembly ( \(\$ 5.10\) per \(\mathrm{MH} \times 1,800 \mathrm{MHs}\) ) 9,180
Total manufacturing overhead applied
The selling price for Job L would be calculated as follows:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price
54) A

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 110,500+(\$ 1.60\) per machine-hour \(\times 17,000\) machine-hours \()\)
\(=\$ 110,500+\$ 27,200=\$ 137,700\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 137,700 \div 17,000\) machine-hours \(=\$ 8.10\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.10\) per machinehour \(\times 70\) machine-hours \(=\$ 567\)

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 78,300+(\$ 3.30 \text { per direct labor-hour } \times 9,000 \text { direct labor-hours }) \\
& =\$ 78,300+\$ 29,700=\$ 108,000
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 108,000 \div 9,000\) direct labor-hours \(=\$ 12.00\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.00\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 600\)
\begin{tabular}{lrrr} 
Total \\
Direct materials & Forming & Finishing & \\
Direct labor & \(\$ 650\) & \(\$ 330\) & \(\$ 980\) \\
Manufacturing overhead applied & \(\$ 380\) & \(\$ 1,900\) & 2,280 \\
Total cost of Job A948 & \(\$ 567\) & \(\$ 600\) & 1,167 \\
Total cost of Job A948 & & \\
Markup (\$4,427.00 \(\times 40 \%)\) & & \\
Selling price & & \\
\hline
\end{tabular} 55) B

Casting Department predetermined overhead rate:
Estimated fixed manufacturing overhead
```

\$ 10,200

```

Estimated variable manufacturing overhead (\$1.20 per MH 2,400 \(\times 2,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
\(\$ 12,600\)

Estimated total machine-hours (b)
2,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 6.30\) per MH
Finishing Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$ 19,200

Estimated variable manufacturing overhead (\$2.20 per
17,600
MH \(\times 8,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
\(\$ 36,800\)

Estimated total machine-hours (b)
8,000 MHs
Departmental predetermined overhead rate (a) \(\div\) (b) \(\$ 4.60\) per MH
Manufacturing overhead applied to Job F:
\begin{tabular}{lr} 
Casting \((\$ 6.30\) per MH \(\times 1,400 \mathrm{MHs})\) & \(\$ 8,820\) \\
Finishing \((\$ 4.60\) per MH \(\times 3,200 \mathrm{MHs})\) & 14,720 \\
Total manufacturing overhead applied & \(\$ 23,540\)
\end{tabular}

The selling price for Job F would be calculated as follows:

Direct materials
Direct labor cost
\$ 14, 400

Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price
\(\begin{array}{r}23,540 \\ \hline \$ 60,440\end{array}\)
\(\frac{30,220}{\$ 90,660}\)
56) D

Machining Department predetermined overhead rate:
\begin{tabular}{|c|c|}
\hline Estimated fixed manufacturing overhead & \$ 4,700 \\
\hline Estimated variable manufacturing overhead (\$1.10 per MH \(\times 1,000 \mathrm{MHs})\) & 1,100 \\
\hline Estimated total manufacturing overhead cost (a) & \$ 5,800 \\
\hline Estimated total machine-hours (b) & 1,000 MHs \\
\hline Departmental predetermined overhead rate (a) \(\div\) (b) & \$ 5.80 per MH \\
\hline
\end{tabular}
Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead ..... \(\$ 9,200\)
Estimated variable manufacturing overhead (\$2.60 per MH ..... 10,400
\(\times 4,000 \mathrm{MHs})\)
Estimated total manufacturing overhead cost (a) ..... \$ 19,600
Estimated total machine-hours (b) 4,000 MHs
Departmental predetermined overhead rate (a) \(\div\) (b) ..... \$ 4.90 per MH
Manufacturing overhead applied to Job K:
Machining (\$5.80 per MH \(\times 300 \mathrm{MHs}\) ) ..... \$ 1,740Customizing (\$4.90 per MH \(\times 2,400 \mathrm{MHs}\) )Total manufacturing overhead applied11,760\(\$ 13,500\)

Milling Department overhead cost \(=\) Fixed manufacturing overhead cost \(+(\) Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 120,600+(\$ 2.00\) per machine-hour \(\times 18,000\) machine-hours \()\)
\(=\$ 120,600+\$ 36,000=\$ 156,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 156,600 \div 18,000\) machine-hours \(=\$ 8.70\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.70\) per machinehour \(\times 50\) machine-hours \(=\$ 435\)

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 76,300+(\$ 4.30\) per direct labor-hour \(\times 7,000\) direct labor-hours \()\)
\(=\$ 76,300+\$ 30,100=\$ 106,400\)
Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 106,400 \div 7,000\) direct labor-hours \(=\$ 15.20\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 15.20\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 608\)

Overhead applied to Job T818
Milling Department
Assembly Department Total
58) C

Machining Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 102,600+(\$ 2.10\) per machine-hour \(\times 18,000\) machine-hours \()\)
\(=\$ 102,600+\$ 37,800=\$ 140,400\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 140,400 \div 18,000\) machine-hours \(=\$ 7.80\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.80\) per machinehour \(\times 80\) machine-hours \(=\$ 624\)
59) C

Customizing Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 56,240+(\$ 3.40\) per direct labor-hour \(\times 7,400\) direct labor-hours \()\)
\(=\$ 56,240+\$ 25,160=\$ 81,400\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 81,400 \div 7,400\) direct labor-hours \(=\$ 11.00\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.00\) per direct labor-hour \(\times 90\) direct labor-hours \(=\$ 990\) 60) C

Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 68,600+(\$ 3.80\) per direct labor-hour \(\times 7,000\) direct labor-hours \()\)
\(=\$ 68,600+\$ 26,600=\$ 95,200\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 95,200 \div 7,000\) direct labor-hours \(=\$ 13.60\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.60\) per direct labor-hour \(\times 60\) direct labor-hours \(=\$ 816\)
61) C

Forming Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.70 per MH \(\times 7,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate \((a) \div(b)\)
Assembly Department predetermined overhead rate:
Departmental predetermined overhead rate \((a) \div(b)\)
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.60 per \(\mathrm{MH} \times 3,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
Manufacturing overhead applied to Job B:

Forming ( \(\$ 7.00\) per \(\mathrm{MH} \times 4,800 \mathrm{MHs}\) )
Assembly (\$5.60 per MH \(\times 1,200 \mathrm{MHs}\) )
Total manufacturing overhead applied
\$ 37,100

11,900
\(\$ 49,000\)
\$ 33,600
62) C

Milling Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 118,400+(\$ 2.10\) per machine-hour \(\times 16,000\) machine-hours \()\)
\(=\$ 118,400+\$ 33,600=\$ 152,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 152,000 \div 16,000\) machine-hours \(=\$ 9.50\) per machine-hour 63) D

Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 57,400+(\$ 3.40 \text { per direct labor-hour } \times 7,000 \text { direct labor-hours }) \\
& =\$ 57,400+\$ 23,800=\$ 81,200
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 81,200 \div 7,000\) direct labor-hours \(=\$ 11.60\) per direct labor-hour 64) B

Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 86,400+(\$ 3.00 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 86,400+\$ 24,000=\$ 110,400
\end{aligned}
\]
65) D

Casting Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.30 per
MH \(\times 1,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estion
Departmental predetermined overhead rate (a) \(\div\) (b)
66) A

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 110,200+(\$ 2.00\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 110,200+\$ 38,000=\$ 148,200\)
67) C

Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead


Estimated total machine-hours (b)
2,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 4.80\) per MH 68) B

Manufacturing overhead applied to Work in Process:
Fabrication Assembly Total
```

Predetermined overhead
rate (a)

```

Actual total amount of the allocation base (b)
Manufacturing overhead applied (a) \(\times\) (b)
\(\$ 30\) per MH \(\$ 12\) per DLH

40 MHs 25 DLHs
\begin{tabular}{|c|c|c|}
\hline \$ & \$ & \$ \\
\hline 1,200 & 300 & 1,500 \\
\hline
\end{tabular}
69) A

Manufacturing overhead applied \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred
\(\$ 11,680=0.80 \times\) Direct labor cost
Direct labor cost \(=\$ 11,680 \div 0.80=\$ 14,600\)
70) A

Manufacturing overhead applied \(=\) Predetermined overhead rate \(\times\)
Amount of the allocation base incurred
\(\$ 10,000=0.80 \times\) Direct labor cost
Direct labor cost \(=\$ 10,000 \div 0.80=\$ 12,500\)
71) D

Predetermined overhead rate (a) \$22.30
Actual activity level (b)
Manufacturing overhead applied (a) \(\times\) (b)
18,200
405,860
72) A

Predetermined overhead rate
\(\$ 23.60\)
Actual activity level
Manufacturing overhead applied
73) B

Direct materials
\$ 2,412
Direct labor (74 direct labor-hours \(\times \$ 21\) per direct labor-
hour)
Overhead (137 machine-hours \(\times \$ 22\) per machine-hour)
3,014
Total manufacturing cost for Job 910
74) C

Direct materials
Direct labor ( 21 direct labor-hours \(\times \$ 12.00\) per direct labor-hour)
Overhead (166 machine-hours \(\times \$ 15.00\) per machine-hour)
Total manufacturing cost for Job 910
\begin{tabular}{r}
2,490 \\
\hline\(\$ 5,935\)
\end{tabular}
75) C

Department A manufacturing overhead \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred
\(\$ 80,000=200 \% \times\) Direct labor
Direct labor \(=\$ 40,000\)
Department B manufacturing overhead = Predetermined overhead rate
\(\times\) Amount of the allocation base incurred
\[
=50 \% \times \$ 60,000=\$ 30,000
\]
```

 Direct materials $ 50,000 $ 10,000
 Direct labor
 Manufacturing overhead
 Total product cost
 76) C
Direct materials
\$ 2,070
Direct labor (35 direct labor-hours x \$18 per direct labor- 630
hour)
Overhead (243 machine-hours x \$22 per machine-hour)
Total manufacturing cost for Job 450
5,346
\$ 8,046
77) D
Direct materials \$ 3,044
Direct labor (46 direct labor-hours x \$15.00 per direct 690
labor-hour)
Overhead (104 machine-hours }\times\$13.00\mathrm{ per machine-hour)
1,352
Total manufacturing cost for Job 450
78) C
Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 416,000+(\$ 3.10$ per machine-hour $\times 80,000$ machine-hours $)=$ $\$ 416,000+\$ 248,000=\$ 664,000$
79) A
Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 416,000+(\$ 3.10$ per machine-hour $\times 80,000$ machine-hours $)=$ $\$ 416,000+\$ 248,000=\$ 664,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 664,000 \div 80,000$ machine-hours $=\$ 8.30$ per machine-hour
```
80) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 36,000+(\$ 2.80\) per direct labor-hour \(\times 10,000\) direct laborhours) \(=\$ 36,000+\$ 28,000=\$ 64,000\)
81) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 36,000+(\$ 2.80\) per direct labor-hour \(\times 10,000\) direct laborhours \()=\$ 36,000+\$ 28,000=\$ 64,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 64,000\) \(\div 10,000\) direct labor-hours \(=\$ 6.40\) per direct labor-hour

\section*{82) D}

The first step is to calculate the estimated total overhead costs in the two departments.

Machining
Estimated fixed manufacturing overhead \$ 39,200
Estimated variable manufacturing overhead (\$1.90 per MH \(\times\)
7,000 MHs)
Estimated total manufacturing overhead cost
\(\$ 52,500\)

\section*{Assembly}

Estimated fixed manufacturing overhead
\(\$ 6,600\)
Estimated variable manufacturing overhead (\$2.10 per MH \(\times\) 3,000 MHs)
Estimated total manufacturing overhead cost

6,300
\$ 12,900

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 52,500+\$ 12,900=\$ 65,400)\) to calculate the plantwide predetermined overhead rate as follow:
```

Estimated total manufacturing overhead cost \$ 65,400
Estimated total machine hours 10,000 MHs
Predetermined overhead rate \$ 6.54 per MH

```
83) C

The first step is to calculate the estimated total overhead costs in the two departments.
Machining
Estimated fixed manufacturing overhead \$ 39,200
Estimated variable manufacturing overhead (\$1.90 per MH \(\times\)
13, 300
7,000 MHs)
Estimated total manufacturing overhead cost
\(\$ 52,500\)
Assembly

Estimated fixed manufacturing overhead
\(\$ 6,600\)
Estimated variable manufacturing overhead (\$2.10 per MH \(\times\) 3,000 MHs)
Estimated total manufacturing overhead cost
\$ 12,900

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 52,500+\$ 12,900=\$ 65,400)\) to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
Estimated total machine hours Predetermined overhead rate
\(\$ 65,400\)
10,000 MHs
\$ 6.54 per MH

The overhead applied to Job B is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\[
\begin{aligned}
& =\$ 6.54 \text { per } \mathrm{MH} \times(4,800 \mathrm{MHs}+1,200 \mathrm{MHs}) \\
& =\$ 6.54 \text { per } \mathrm{MH} \times(6,000 \mathrm{MHs}) \\
& =\$ 39,240
\end{aligned}
\]
84) B

The first step is to calculate the estimated total overhead costs in the two departments.

Machining
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.90 per MH \(\times\) 7,000 MHs)

Estimated total manufacturing overhead cost

Estimated total manufacturing overhead cost
erhead costs in the two departments \((\$ 52,500+\$ 12,900=\$ 65,400)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\$ 65,400

Estimated total machine hours
10,000 MHs
Predetermined overhead rate
\$ 6.54 per MH
The overhead applied to Job G is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.54\) per \(\mathrm{MH} \times(2,200 \mathrm{MHs}+1,800 \mathrm{MHs})\)
\(=\$ 6.54\) per \(\mathrm{MH} \times(4,000 \mathrm{MHs})\)
\(=\$ 26,160\)
85) D

Estimated total fixed manufacturing overhead (a)
\$ 310,000
Estimated activity level (b)
Predetermined overhead rate (a) \(\div\) (b)
86) D

Estimated total fixed manufacturing overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) \(\div(b)\)
Actual activity level
Manufacturing overhead applied
87) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 90,000+(\$ 3.70\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 90,000+\$ 185,000=\$ 275,000\)
88) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 90,000+(\$ 3.70\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 90,000+\$ 185,000=\$ 275,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 275,000 \div 50,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour 89) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 90,000+(\$ 3.70\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 90,000+\$ 185,000=\$ 275,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 275,000 \div 50,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.50\) per direct labor-hour \(\times 150\) direct labor-hours \(=\$ 825\)
90) D
\begin{tabular}{lr} 
Estimated total fixed manufacturing overhead (a) \\
Estimated activity level (b) & \begin{tabular}{r}
738,000 \\
Predetermined overhead rate (a) \(\div(b)\)
\end{tabular}\(\quad 30,000\) \\
\hline
\end{tabular}
91) C

Estimated total fixed manufacturing overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) \(\div\) (b)
Actual activity level
Manufacturing overhead applied

92) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 312,000+(\$ 2.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 312,000+\$ 168,000=\$ 480,000\)
93) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 312,000+(\$ 2.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 312,000+\$ 168,000=\$ 480,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 480,000 \div 80,000\) machine-hours \(=\$ 6.00\) per machine-hour 94) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 312,000+(\$ 2.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 312,000+\$ 168,000=\$ 480,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 480,000 \div 80,000\) machine-hours \(=\$ 6.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.00\) per machinehour \(\times 200\) machine-hours \(=\$ 1,200\)
95) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.00\) per direct labor-hour \(\times 40,000\) direct laborhours) \(=\$ 96,000+\$ 120,000=\$ 216,000\)
96) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.00\) per direct labor-hour \(\times 40,000\) direct laborhours) \(=\$ 96,000+\$ 120,000=\$ 216,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 216,000 \div 40,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour 97) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.00\) per direct labor-hour \(\times 40,000\) direct laborhours) \(=\$ 96,000+\$ 120,000=\$ 216,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 216,000 \div 40,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.40\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 540\) 98) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 235,600+(\$ 2.00\) per direct labor-hour \(\times 76,000\) direct laborhours) \(=\$ 235,600+\$ 152,000=\$ 387,600\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 387,600 \div 76,000\) direct labor-hours \(=\$ 5.10\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.10\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 510\)
```

99) D
```
Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job P951
\begin{tabular}{r}
\(\$ 870\) \\
7,600 \\
510 \\
\hline\(\$ 8,980\) \\
\hline
\end{tabular}

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.00\) per direct labor-hour \(\times 40,000\) direct laborhours) \(=\$ 96,000+\$ 120,000=\$ 216,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 216,000 \div 40,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.40\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 540\)
```

Direct materials

$\$ 755$
4,000
540
$\$ 5,295$

```
100) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 492,000+(\$ 6.00\) per direct labor-hour \(\times 82,000\) direct laborhours) \(=\$ 492,000+\$ 492,000=\$ 984,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 984,000 \div 82,000\) direct labor-hours \(=\$ 12.00\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.00\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 1,200\)
\begin{tabular}{lr} 
Direct materials & \(\$ 600\) \\
Direct labor & 8,200 \\
Manufacturing overhead applied & 1,200 \\
Total cost of Job P951 & \(\$ 10,000\) \\
Total cost of Job P951 (a) & \begin{tabular}{l}
10,000
\end{tabular}
\end{tabular}

Number of units (b)
Unit product cost (a) \(\div(b)\)
101) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.00\) per direct labor-hour \(\times 40,000\) direct laborhours) \(=\$ 96,000+\$ 120,000=\$ 216,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 216,000 \div 40,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.40\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 540\)
Direct materials
\begin{tabular}{r}
\(\$ 755\) \\
4,000 \\
540 \\
\hline\(\$ \quad 5,295\) \\
\hline\(\$ 5,295\) \\
20 \\
\(\$ \quad 264.75\)
\end{tabular}

Direct labor 4,000
Manufacturing overhead applied
Total cost of Job P951
Total cost of Job P951 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
\[
\$ 264.75
\]
102) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 160,000+(\$ 3.40\) per direct labor-hour \(\times 80,000\) direct laborhours) \(=\$ 160,000+\$ 272,000=\$ 432,000\) 103) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 160,000+(\$ 3.40\) per direct labor-hour \(\times 80,000\) direct laborhours) \(=\$ 160,000+\$ 272,000=\$ 432,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 432,000 \div 80,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour 104) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 160,000+(\$ 3.40\) per direct labor-hour \(\times 80,000\) direct laborhours) \(=\$ 160,000+\$ 272,000=\$ 432,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 432,000 \div 80,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.40\) per direct labor-hour \(\times 250\) direct labor-hours \(=\$ 1,350\)
105) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 160,000+(\$ 3.40\) per direct labor-hour \(\times 80,000\) direct laborhours) \(=\$ 160,000+\$ 272,000=\$ 432,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 432,000 \div 80,000\) direct labor-hours \(=\$ 5.40\) per direct labor-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.40\) per direct labor-hour \(\times 250\) direct labor-hours \(=\$ 1,350\)
```

Direct materials
\$ 715
Direct labor
Manufacturing overhead applied
Total cost of Job A578

```
106) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 176,000+(\$ 2.20\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 176,000+\$ 44,000=\$ 220,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 220,000 \div 20,000\) machine-hours \(=\$ 11.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.00\) per machinehour \(\times 200\) machine-hours \(=\$ 2,200\)
107) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 176,000+(\$ 2.20\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 176,000+\$ 44,000=\$ 220,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 220,000 \div 20,000\) machine-hours \(=\$ 11.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.00\) per machinehour \(\times 200\) machine-hours \(=\$ 2,200\)
\begin{tabular}{lr} 
Direct materials & \(\$ 540\) \\
Direct labor & 7,200 \\
Manufacturing overhead applied & 2,200 \\
Total cost of Job P505 & \(\$ 9,940\) \\
\hline \hline
\end{tabular}
108) C

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Molding}

Estimated fixed manufacturing overhead
\$ 13,000
Estimated variable manufacturing overhead (\$3.00 per MH \(\times\) 3,250 MHs)

Estimated total manufacturing overhead cost
Finishing
Estimated fixed manufacturing overhead
\(\$ 4,400\)
Estimated variable manufacturing overhead (\$6.00 per MH \(\times\) 1,750 MHs)

Estimated total manufacturing overhead cost

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 22,750+\$ 14,900=\$ 37,650)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$37,650
Estimated total machine hours 5,000 MHs

The overhead applied to Job M is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\[
=\$ 7.53 \text { per } \mathrm{MH} \times(2,000 \mathrm{MHs}+500 \mathrm{MHs})
\]
\(=\$ 7.53\) per \(\mathrm{MH} \times(2,500 \mathrm{MHs})\)
= \$18,825
Job M's manufacturing cost:
\begin{tabular}{lr} 
Direct materials & \(\$ 9,400\) \\
Direct labor cost & 9,700 \\
Manufacturing overhead applied & 18,825 \\
Total manufacturing cost & \(\$ 37,925\)
\end{tabular}
109) C

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Molding}


The second step is to combine the estimated manufacturing overhead costs in the two departments ( \(\$ 24,000+\$ 4,500=\$ 28,500\) ) to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
```

Estimated total machine hours

```

Predetermined overhead rate
\(\$ 28,500\)

5,000 MHs
\(\$ 5.70\) per MH

The overhead applied to Job M is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\[
\begin{aligned}
& =\$ 5.70 \text { per } \mathrm{MH} \times(1,300 \mathrm{MHs}+600 \mathrm{MHs}) \\
& =\$ 5.70 \text { per } \mathrm{MH} \times(1,900 \mathrm{MHs}) \\
& =\$ 10,830
\end{aligned}
\]

Job M's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost

110) B

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Molding}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.00 per MH \(\times\) \(6,500 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost \(\quad \$ 33,500\)

Finishing
Estimated fixed manufacturing overhead
\(\$ 6,500\)
Estimated variable manufacturing overhead (\$2.00 per MH \(x\) 3,500 MHs)

Estimated total manufacturing overhead cost \$13,500
The second step is to combine the estimated manufacturing overhead costs in the two departments ( \(\$ 33,500+\$ 13,500=\$ 47,000)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$ 47,000
\(\begin{array}{ll}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 4.70 \text { per } \mathrm{MH}\end{array}\)

The overhead applied to Job A is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 4.70\) per \(\mathrm{MH} \times(2,500 \mathrm{MHs}+2,500 \mathrm{MHs})\)
\(=\$ 4.70\) per \(\mathrm{MH} \times(5,000 \mathrm{MHs})\)
\(=\$ 23,500\)
Job A's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job A:
Total manufacturing cost
Markup (40\%)
Selling price

111) B

The first step is to calculate the estimated total overhead costs in the two departments.

Molding
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.10 per MH \(\times\)
4,000 MHs)
Estimated total manufacturing overhead cost
Finishing
Estimated fixed manufacturing overhead
\$ 2,400
Estimated variable manufacturing overhead (\$2.10 per MH \(\times\) 2,100 \(1,000 \mathrm{MHs})\)
Estimated total manufacturing overhead cost

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 24,000+\$ 4,500=\$ 28,500)\) to calculate the plantwide predetermined overhead rate as follow:

The overhead applied to Job A is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 5.70\) per \(\mathrm{MH} \times(2,700 \mathrm{MHs}+400 \mathrm{MHs})\)
\(=\$ 5.70\) per \(\mathrm{MH} \times(3,100 \mathrm{MHs})\)
= \$17,670
Job A's manufacturing cost:
```

Direct materials
\$ 13,600

```

Direct labor cost 20,700
Manufacturing overhead applied 17,670

Total manufacturing cost
\$ 51,970
The selling price for Job A:
Total manufacturing cost \$51,970
Markup (40\%)
Selling price
\begin{tabular}{r}
20,788 \\
\hline\(\$ 72,758\) \\
\end{tabular}
112) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 497,000+(\$ 2.40\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 497,000+\$ 168,000=\$ 665,000\)

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 497,000+(\$ 2.40\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 497,000+\$ 168,000=\$ 665,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 665,000 \div 70,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour 114) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 497,000+(\$ 2.40\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 497,000+\$ 168,000=\$ 665,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 665,000 \div 70,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.50\) per direct labor-hour \(\times 80\) direct labor-hours \(=\$ 760\)

\section*{115) A}

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 497,000+(\$ 2.40\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 497,000+\$ 168,000=\$ 665,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 665,000 \div 70,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.50\) per direct labor-hour \(\times 80\) direct labor-hours \(=\$ 760\)
```

116) D
```
Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job T498

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 497,000+(\$ 2.40\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 497,000+\$ 168,000=\$ 665,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 665,000 \div 70,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.50\) per direct labor-hour \(\times 80\) direct labor-hours \(=\$ 760\)

Direct materials
Direct labor 2,720
Manufacturing overhead applied
Total cost of Job T498
Total cost of Job T498 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
117) C

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Machining}

Estimated fixed manufacturing overhead \$ 4,700
Estimated variable manufacturing overhead (\$1.20 per MH \(\times \quad 1,200\)
\(1,000 \mathrm{MHs}\) )

Estimated total manufacturing overhead cost
\(\$ 5,900\)
Assembly
Estimated fixed manufacturing overhead
\(\quad\) Estimated variable manufacturing overhead (\$2.20 per MH \(\times\)
\(\quad 4,000 \mathrm{MHs})\)
Estimated total manufacturing overhead cost
\$ 10,800
8,800
\$ 19, 600

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 5,900+\$ 19,600=\$ 25,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \(\$ 25,500\)
\(\begin{array}{lr}\text { Estimated total machine hours } & 5,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ .10 \text { per } \mathrm{MH}\end{array}\)
The overhead applied to Job F is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.10\) per \(\mathrm{MH} \times(700 \mathrm{MHs}+1,600 \mathrm{MHs})\)
\(=\$ 5.10\) per \(\mathrm{MH} \times(2,300 \mathrm{MHs})\)
\(=\$ 11,730\)
Job F's manufacturing cost:
Direct materials \$13,000
Direct labor cost
20,400
Manufacturing overhead applied
11,730
Total manufacturing cost
\$ 45,130
118) B

The first step is to calculate the estimated total overhead costs in the two departments.
Machining
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.20 per MH \(\times \quad 1,200\) \(1,000 \mathrm{MHs}\) )

Estimated total manufacturing overhead cost
\(\$ 5,900\)
Assembly
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.20 per MH \(\times\) 4,000 MHs)
Estimated total manufacturing overhead cost

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 5,900+\$ 19,600=\$ 25,500)\) to calculate the plantwide predetermined overhead rate as follow:
```

Estimated total machine hours 5,000 MHs
Predetermined overhead rate \$ 5.10 per MH

```

The overhead applied to Job M is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.10\) per \(\mathrm{MH} \times(300 \mathrm{MHs}+2,400 \mathrm{MHs})\)
\(=\$ 5.10\) per \(\mathrm{MH} \times(2,700 \mathrm{MHs})\)
= \$13,770
Job M's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied
13,770
Total manufacturing cost
The selling price for Job M:
Total manufacturing cost \$ 29,970
Markup (40\%)
Selling price 11,988
119) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 33,000+(\$ 2.50\) per direct labor-hour \(\times 10,000\) direct laborhours) \(=\$ 33,000+\$ 25,000=\$ 58,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 58,000\) \(\div 10,000\) direct labor-hours \(=\$ 5.80\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.80\) per direct labor-hour \(\times 140\) direct labor-hours \(=\$ 812\)
120) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 33,000+(\$ 2.50\) per direct labor-hour \(\times 10,000\) direct laborhours) \(=\$ 33,000+\$ 25,000=\$ 58,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 58,000\) \(\div 10,000\) direct labor-hours \(=\$ 5.80\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.80\) per direct labor-hour \(\times 140\) direct labor-hours \(=\$ 812\)
```

Direct materials \$ 455
Direct labor
Manufacturing overhead applied
Total cost of Job K332

```

5,320
812
\(\$ 6,587\)
121) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 33,000+(\$ 2.50\) per direct labor-hour \(\times 10,000\) direct laborhours \()=\$ 33,000+\$ 25,000=\$ 58,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 58,000\) \(\div 10,000\) direct labor-hours \(=\$ 5.80\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.80\) per direct labor-hour \(\times 140\) direct labor-hours \(=\$ 812\)
\begin{tabular}{lr} 
Direct materials & \(\$ 455\) \\
Direct labor & 5,320 \\
Manufacturing overhead applied & 812 \\
Total cost of Job K332 & \(\$ 6,587\) \\
Total cost of Job K332 (a) & \begin{tabular}{l} 
(a,587
\end{tabular}
\end{tabular}

Number of units (b)

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)
123) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 330,000 \div\) 60,000 direct labor-hours \(=\$ 5.50\) per direct labor-hour
124) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 330,000 \div 60,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.50\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 275\)
125) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 330,000 \div 60,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.50\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 275\)
\begin{tabular}{lr} 
Direct materials & \(\$ 920\) \\
Direct labor & 1,400 \\
Manufacturing overhead applied & 275 \\
Total cost of Job K818 & \(\$ 2,595\) \\
\hline
\end{tabular}
126) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 330,000 \div 60,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.50\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 275\)
\begin{tabular}{lr} 
Direct materials & \(\$ 920\) \\
Direct labor & 1,400 \\
Manufacturing overhead applied & 275 \\
Total cost of Job K818 & \(\$ 2,595\) \\
Total cost of Job K818 (a) & \(\$ 2,595\)
\end{tabular}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 162,000+(\$ 2.80\) per direct labor-hour \(\times 60,000\) direct laborhours) \(=\$ 162,000+\$ 168,000=\$ 330,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 330,000 \div 60,000\) direct labor-hours \(=\$ 5.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 5.50\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 275\)
Direct materials
Direct labor 1,400
Manufacturing overhead applied
Total cost of Job K818
Total cost of Job K818 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job K818
Markup (40\% × \$259.50)
Selling price
128) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)
129) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 315,000 \div\) 30,000 machine-hours \(=\$ 10.50\) per machine-hour
130) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 660,000+(\$ 6\) per machine-hour \(\times 33,000\) machine-hours \()=\) \(\$ 660,000+\$ 198,000=\$ 858,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 858,000 \div 33,000\) machine-hours \(=\$ 26\) per machine-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 26.00\) per machinehour \(\times 40\) machine-hours \(=\$ 1,040\)
131) A

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 315,000 \div 30,000\) machine-hours \(=\$ 10.50\) per machine-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.50\) per machinehour \(\times 30\) machine-hours \(=\$ 315\)

\section*{132) D}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 455,000+(\$ 5\) per machine-hour \(\times 32,500\) machine-hours \()=\) \(\$ 455,000+\$ 162,500=\$ 617,500\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 617,500 \div 32,500\) machine-hours \(=\$ 19\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 19\) per machinehour \(\times 40\) machine-hours \(=\$ 760\)
\begin{tabular}{lr} 
Direct materials & \(\$ 710\) \\
Direct labor & 1,420 \\
Manufacturing overhead applied & 760 \\
Total cost of Job T687 & \(\$ 2,890\)
\end{tabular}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 315,000 \div 30,000\) machine-hours \(=\$ 10.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.50\) per machinehour \(\times 30\) machine-hours \(=\$ 315\)
\begin{tabular}{lr} 
Direct materials & \(\$ 675\) \\
Direct labor & 1,050 \\
Manufacturing overhead applied & 315 \\
Total cost of Job T687 & \(\$ 2,040\) \\
134) D &
\end{tabular}
134) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 156,000+(\$ 3\) per machine-hour \(\times 31,200\) machine-hours \()=\) \(\$ 156,000+\$ 93,600=\$ 249,600\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 249,600 \div 31,200\) machine-hours \(=\$ 8\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8\) per machinehour \(\times 30\) machine-hours \(=\$ 240\)
\begin{tabular}{lr} 
Direct materials & \(\$ 665\) \\
Direct labor & 1,330 \\
Manufacturing overhead applied & 240 \\
\hline Total cost of Job T687 & \(\$ 2,235\) \\
Total cost of Job T687 (a) & \(\$ 2,235\)
\end{tabular}

Number of units (b)
Unit product cost \((\mathrm{a}) \div(\mathrm{b}) \quad \$ 223.50\)
135) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 315,000 \div 30,000\) machine-hours \(=\$ 10.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.50\) per machinehour \(\times 30\) machine-hours \(=\$ 315\)
Direct materials
\(\$ 675\)

Direct labor 1,050
Manufacturing overhead applied
Total cost of Job T687
Total cost of Job T687 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)

136) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 352,000+(\$ 3.00\) per machine-hour \(\times 32,000\) machine-hours \()=\) \(\$ 352,000+\$ 96,000=\$ 448,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 448,000 \div 32,000\) machine-hours \(=\$ 14\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 14\) per machinehour \(\times 40\) machine-hours \(=\$ 560\)


Direct labor
Manufacturing overhead applied
Total cost of Job T687
Total cost of Job T687 (a)
Number of units (b)
Unit product cost (a) \(\div\) (b)
Unit product cost for Job T687
Markup (40\% x \$258.50)
Selling price


Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.10\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 63,000=\$ 315,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 315,000 \div 30,000\) machine-hours \(=\$ 10.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.50\) per machinehour \(\times 30\) machine-hours \(=\$ 315\)
\begin{tabular}{lr} 
Direct materials & \(\$ 675\) \\
Direct labor & 1,050 \\
Manufacturing overhead applied & 315 \\
\hline Total cost of Job T687 & \(\$ 2,040\) \\
Total cost of Job T687 (a) & \(\$ 2,040\) \\
Number of units (b) & 10 \\
Unit product cost (a) \(\div\) (b) & \(\$ 204.00\) \\
Unit product cost for Job T687 & \(\$ 204.00\) \\
Markup (40\% \(\times \mathbf{\$ 2 0 4 . 0 0 )}\) & 81.60 \\
\hline Selling price & \(\$ 285.60\)
\end{tabular}
138) A

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Casting}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.70 per MH \(\times\) 5,000 MHs)

Estimated total manufacturing overhead cost

\section*{Customizing}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.60 per MH \(\times\) 5,000 MHs)

Estimated total manufacturing overhead cost
\$ 27,500
8,500
\$ 36,000
\$ 10,500
13,000
\$ 23,500

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 36,000+\$ 23,500=\$ 59,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\(\$ 59,500\)

Estimated total machine hours \(\quad 10,000 \mathrm{MHs}\)
Predetermined overhead rate \(\quad \$ 5.95\) per MH
The overhead applied to Job C is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.95\) per \(\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})\)
\(=\$ 5.95\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs})\)
= \$32,130
139) A

The first step is to calculate the estimated total overhead costs in the two departments.
Casting
Estimated fixed manufacturing overhead \$ 27,500
Estimated variable manufacturing overhead (\$1.70 per MH \(\times \quad 8,500\)
5,000 MHs)
Estimated total manufacturing overhead cost
\(\$ 36,000\)
Customizing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.60 per MH \(\times\) 5,000 MHs)

Estimated total manufacturing overhead cost \(\$ 23,500\)
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 36,000+\$ 23,500=\$ 59,500)\) to calculate the plantwide predetermined overhead rate as follow:
```

Estimated total manufacturing overhead cost
Estimated total machine hours 10,000 MHs
Predetermined overhead rate \$ 5.95 per MH

```

The overhead applied to Job G is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 5.95\) per \(\mathrm{MH} \times(1,600 \mathrm{MHs}+3,000 \mathrm{MHs})\)
\(=\$ 5.95\) per \(\mathrm{MH} \times(4,600 \mathrm{MHs})\)
= \$27,370
Job G's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
140) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 624,000+(\$ 3.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 624,000+\$ 248,000=\$ 872,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 872,000 \div 80,000\) machine-hours \(=\$ 10.90\) per machine-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.90\) per machinehour \(\times 300\) machine-hours \(=\$ 3,270\)
141) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 624,000+(\$ 3.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 624,000+\$ 248,000=\$ 872,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 872,000 \div 80,000\) machine-hours \(=\$ 10.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.90\) per machinehour \(\times 300\) machine-hours \(=\$ 3,270\)
\begin{tabular}{lr} 
Direct materials & \(\$ 645\) \\
Direct labor & 9,000 \\
Manufacturing overhead applied & 3,270 \\
\hline Total cost of Job M598 & \(\$ 12,915\) \\
\hline
\end{tabular}
142) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 624,000+(\$ 3.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 624,000+\$ 248,000=\$ 872,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 872,000 \div 80,000\) machine-hours \(=\$ 10.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.90\) per machinehour \(\times 300\) machine-hours \(=\$ 3,270\)
\begin{tabular}{lr} 
Direct materials & \(\$ 645\) \\
Direct labor & 9,000 \\
Manufacturing overhead applied & 3,270 \\
\hline Total cost of Job M598 & \(\$ 12,915\) \\
Total cost of Job M598 (a) & \(\$ 12,915\)
\end{tabular}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 624,000+(\$ 3.10\) per machine-hour \(\times 80,000\) machine-hours \()=\) \(\$ 624,000+\$ 248,000=\$ 872,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 872,000 \div 80,000\) machine-hours \(=\$ 10.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.90\) per machinehour \(\times 300\) machine-hours \(=\$ 3,270\)

Direct materials
\$ 645
Direct labor 9,000
Manufacturing overhead applied
Total cost of Job M598
Total cost of Job M598 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job M598
Markup (40\% × \$215.25)
Selling price

3,270
\$ 12,915
= \(\$ 12,915\)
60
\$ 215.25
\(\$ 215.25\)
86.10
\(\$ 301.35\)
144) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 58,000+(\$ 2.00\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 58,000+\$ 40,000=\$ 98,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 98,000\) \(\div 20,000\) machine-hours \(=\$ 4.90\) per machine-hour

\section*{145) C}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 58,000+(\$ 2.00\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 58,000+\$ 40,000=\$ 98,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 98,000\) \(\div 20,000\) machine-hours \(=\$ 4.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.90\) per machinehour \(\times 80\) machine-hours \(=\$ 392\)
146) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 58,000+(\$ 2.00\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 58,000+\$ 40,000=\$ 98,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 98,000\) \(\div 20,000\) machine-hours \(=\$ 4.90\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.90\) per machinehour \(\times 80\) machine-hours \(=\$ 392\)
\begin{tabular}{lr} 
Direct materials & \(\$ 500\) \\
Direct labor & 2,640 \\
Manufacturing overhead applied & 392 \\
Total cost of Job P978 & \(\$ 3,532\) \\
\hline 147\()\) A
\end{tabular}

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 58,000+(\$ 2.00\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 58,000+\$ 40,000=\$ 98,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 98,000\) \(\div 20,000\) machine-hours \(=\$ 4.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.90\) per machinehour \(\times 80\) machine-hours \(=\$ 392\)
```

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job P978
Total cost of Job P978 (a)
Number of units (b)
Unit product cost (a) \div (b)

```
\begin{tabular}{r}
\(\$ 500\) \\
2,640 \\
392 \\
\hline\(\$ 3,532\) \\
\hline\(\$ 3,532\) \\
20 \\
\(\$ 176.60\)
\end{tabular}
148) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 58,000+(\$ 2.00\) per machine-hour \(\times 20,000\) machine-hours \()=\) \(\$ 58,000+\$ 40,000=\$ 98,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 98,000\) \(\div 20,000\) machine-hours \(=\$ 4.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 4.90\) per machinehour \(\times 80\) machine-hours \(=\$ 392\)
```

Direct materials
\$ 500
Direct labor 2,640

```

Manufacturing overhead applied
Total cost of Job \(P 978\)
Total cost of Job \(P 978\) (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job P 978
Markup (30\% x \$176.60)
Selling price
\begin{tabular}{r}
\hline\(\$ 3,532\) \\
\hline \hline 3,532
\end{tabular}

20
\(\$ 176.60\)
\$ 176.60
52.98
\(\$ 229.58\)
149) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 294,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 294,000+\$ 161,000=\$ 455,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 455,000 \div 70,000\) machine-hours \(=\$ 6.50\) per machine-hour 150) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 294,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 294,000+\$ 161,000=\$ 455,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 455,000 \div 70,000\) machine-hours \(=\$ 6.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per machinehour \(\times 80\) machine-hours \(=\$ 520\)
151) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 294,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 294,000+\$ 161,000=\$ 455,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 455,000 \div 70,000\) machine-hours \(=\$ 6.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per machinehour \(\times 80\) machine-hours \(=\$ 520\)
```

Direct materials \$665
Direct labor 1,840
Manufacturing overhead applied
Total cost of Job M825

520
$\$ 3,025$

```
152) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 294,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 294,000+\$ 161,000=\$ 455,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 455,000 \div 70,000\) machine-hours \(=\$ 6.50\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per machinehour \(\times 80\) machine-hours \(=\$ 520\)
\begin{tabular}{lr} 
Direct materials & \(\$ 665\) \\
Direct labor & 1,840 \\
Manufacturing overhead applied & 520 \\
\hline Total cost of Job M825 & \(\$ 3,025\) \\
Total cost of Job M825 (a) & \(\$ 3,025\)
\end{tabular}

Number of units (b)
Unit product cost (a) \(\div(\mathrm{b}) \quad\) \$ 151.25
153) C

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 294,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 294,000+\$ 161,000=\$ 455,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 455,000 \div\) 70,000 machine-hours \(=\$ 6.50\) per machine-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per machinehour \(\times 80\) machine-hours \(=\$ 520\)

Direct materials
\$ 665
Direct labor \(\quad 1,840\)
Manufacturing overhead applied 520
Total cost of Job M825
Total cost of Job M825 (a)
Number of units (b)
Unit product cost (a) \(\div\) (b)
Unit product cost for Job M825


20

Markup (40\% × \$151.25)
Selling price
\begin{tabular}{r}
\hline\(\$ 3,025\) \\
\hline \hline\(\$ 3,025\) \\
2151.25 \\
\(\$ 151.25\) \\
\(\$ 60.50\) \\
\hline\(\$ 211.75\) \\
\hline \hline
\end{tabular}
154) B

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 462,000+(\$ 2.20\) per machine-hour \(\times 60,000\) machine-hours \()=\) \(\$ 462,000+\$ 132,000=\$ 594,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 594,000 \div 60,000\) machine-hours \(=\$ 9.90\) per machine-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.90\) per machinehour \(\times 80\) machine-hours \(=\$ 792\)
155) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 462,000+(\$ 2.20\) per machine-hour \(\times 60,000\) machine-hours \()=\) \(\$ 462,000+\$ 132,000=\$ 594,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 594,000 \div 60,000\) machine-hours \(=\$ 9.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.90\) per machinehour \(\times 80\) machine-hours \(=\$ 792\)
\begin{tabular}{lr} 
Direct materials & \(\$ 940\) \\
Direct labor & 2,240 \\
Manufacturing overhead applied & 792 \\
Total cost of Job X455 & \(\$ 3,972\)
\end{tabular}
156) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 462,000+(\$ 2.20\) per machine-hour \(\times 60,000\) machine-hours \()=\) \(\$ 462,000+\$ 132,000=\$ 594,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 594,000 \div 60,000\) machine-hours \(=\$ 9.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.90\) per machinehour \(\times 80\) machine-hours \(=\$ 792\)
```

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job X455
Total cost of Job X455 (a)
Number of units (b)
Unit product cost (a) \div (b)

```
\begin{tabular}{r}
\(\$ 940\) \\
2,240 \\
792 \\
\hline\(\$ 3,972\) \\
\hline\(\$ 3,972\) \\
20 \\
\(\$ 198.60\)
\end{tabular}
157) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 308,000+(\$ 2.60\) per machine-hour \(\times 44,000\) machine-hours \()=\) \(\$ 308,000+\$ 114,400=\$ 422,400\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 422,400 \div 44,000\) machine-hours \(=\$ 9.60\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.60\) per machinehour \(\times 80\) machine-hours \(=\$ 768\)
```

Direct materials
Direct labor 1,940

```

Manufacturing overhead applied
Total cost of Job X455
Total cost of Job X 455 (a)
Number of units (b)
Unit product cost (a) \(\div\) (b)
Unit product cost for Job X455
Markup (20\% x \$183.90)
Selling price
\begin{tabular}{r}
768 \\
\hline \hline\(\$ 3,678\) \\
\hline\(\$ 3,678\) \\
20 \\
\(\$ 183.90\) \\
\(\$ 183.90\) \\
36.78 \\
\hline\(\$ 220.68\) \\
\hline
\end{tabular}
158) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 462,000+(\$ 2.20\) per machine-hour \(\times 60,000\) machine-hours \()=\) \(\$ 462,000+\$ 132,000=\$ 594,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 594,000 \div 60,000\) machine-hours \(=\$ 9.90\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.90\) per machinehour \(\times 80\) machine-hours \(=\$ 792\)

Direct materials
Direct labor 2,240
Manufacturing overhead applied
Total cost of Job X455
Total cost of Job X455 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job X455
Markup (20\% x \$198.60)
Selling price
159) C


Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 237,000+(\$ 3.90\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 237,000+\$ 117,000=\$ 354,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 354,000 \div 30,000\) machine-hours \(=\$ 11.80\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.80\) per machinehour \(\times 80\) machine-hours \(=\$ 944\)

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 237,000+(\$ 3.90\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 237,000+\$ 117,000=\$ 354,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 354,000 \div 30,000\) machine-hours \(=\$ 11.80\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.80\) per machinehour \(\times 80\) machine-hours \(=\$ 944\)
\begin{tabular}{lr} 
Direct materials & \(\$ 500\) \\
Direct labor & 2,160 \\
Manufacturing overhead applied & 944 \\
Total cost of Job A496 & \$3,604
\end{tabular}
161) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 288,600+(\$ 2.60\) per machine-hour \(\times 39,000\) machine-hours \()=\) \(\$ 288,600+\$ 101,400=\$ 390,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 390,000 \div 39,000\) machine-hours \(=\$ 10.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 10.00\) per machinehour \(\times 80\) machine-hours \(=\$ 800\)

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job A496
Total cost of Job A496 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
\(\$ 830\)


20
\$ 164.50
162) D

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 237,000+(\$ 3.90\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 237,000+\$ 117,000=\$ 354,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 354,000 \div 30,000\) machine-hours \(=\$ 11.80\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.80\) per machinehour \(\times 80\) machine-hours \(=\$ 944\)
```

Direct materials
Direct labor 2,160

```

Manufacturing overhead applied
Total cost of Job A496
Total cost of Job A496 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
\begin{tabular}{r}
944 \\
\hline\(\$ 3,604\) \\
\hline\(\$ 3,604\) \\
20 \\
\(\$ 180.20\)
\end{tabular}
163) D

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 237,000+(\$ 3.90\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 237,000+\$ 117,000=\$ 354,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 354,000 \div 30,000\) machine-hours \(=\$ 11.80\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.80\) per machinehour \(\times 80\) machine-hours \(=\$ 944\)
\begin{tabular}{lr} 
Direct materials & \(\$ 500\) \\
Direct labor & 2,160 \\
Manufacturing overhead applied & 944 \\
Total cost of Job A496 & 3,604 \\
Total cost of Job A496 (a) & \begin{tabular}{r} 
(b) \\
Number of units (b) \\
Unit product cost (a) \(\div\) (b) \\
Unit product cost for Job A496 \\
Markup (40\% × \$180.20) \\
Selling price
\end{tabular}
\end{tabular}
164) A

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Machining}

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead ( \(\$ 1.80\) per MH \(\times\)
\$ 33,600
10,800 6,000 MHs)

\section*{Customizing}

Estimated fixed manufacturing overhead
\(\$ 10,000\)
Estimated variable manufacturing overhead (\$2.80 per MH \(x\) 4,000 MHs)

Estimated total manufacturing overhead cost
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 44,400+\$ 21,200=\$ 65,600)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \(\$ 65,600\)

Estimated total machine hours \(\quad 10,000 \mathrm{MHs}\)
Predetermined overhead rate \$ 6.56 per MH
The overhead applied to Job J is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 6.56\) per \(\mathrm{MH} \times(1,900 \mathrm{MHs}+2,400 \mathrm{MHs})\)
\(=\$ 6.56\) per \(\mathrm{MH} \times(4,300 \mathrm{MHs})\)
= \$28,208
165) B

The first step is to calculate the estimated total overhead costs in the two departments.
Machining

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.80 per MH \(\times\) \(6,000 \mathrm{MHs}\) )

Estimated total manufacturing overhead cost
\$ 33,600
10,800
\$ 44, 400
Customizing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.80 per MH \(\times\) 4,000 MHs)
Estimated total manufacturing overhead cost \(\quad\) \$ 21,200

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 44,400+\$ 21,200=\$ 65,600)\) to calculate the plantwide predetermined overhead rate as follow:
```

Estimated total manufacturing overhead cost \$ 65,600

```
```

Estimated total machine-hours 10,000 MHs
Predetermined overhead rate \$ 6.56 per MH

```

The overhead applied to Job C is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 6.56\) per \(\mathrm{MH} \times(4,100 \mathrm{MHs}+1,600 \mathrm{MHs})\)
\(=\$ 6.56\) per \(\mathrm{MH} \times(5,700 \mathrm{MHs})\)
= \$37,392
Job C's manufacturing cost:
Direct materials
\$ 11,300
Direct labor cost
Manufacturing overhead applied 37,392
Total manufacturing cost
166) A

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 285,000+(\$ 3.80\) per direct labor-hour \(\times 50,000\) direct laborhours \()=\$ 285,000+\$ 190,000=\$ 475,000\)
167) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 285,000+(\$ 3.80\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 285,000+\$ 190,000=\$ 475,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 475,000 \div\) 50,000 direct labor-hours \(=\$ 9.50\) per direct labor-hour
168) B

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 285,000+(\$ 3.80\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 285,000+\$ 190,000=\$ 475,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 475,000 \div 50,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.50\) per direct labor-hour \(\times 20\) direct labor-hours \(=\$ 190\)
169) C

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 285,000+(\$ 3.80\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 285,000+\$ 190,000=\$ 475,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 475,000 \div 50,000\) direct labor-hours \(=\$ 9.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.50\) per direct labor-hour \(\times 20\) direct labor-hours \(=\$ 190\)
```

170) C
```
Direct materials
\$ 710
Direct labor
Manufacturing overhead applied
Total cost of Job P513
\begin{tabular}{r}
190 \\
\hline\(\$ 1,400\) \\
\hline
\end{tabular}

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 90,000+(\$ 3.50\) per direct labor-hour \(\times 30,000\) direct laborhours) \(=\$ 90,000+\$ 105,000=\$ 195,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 195,000 \div 30,000\) direct labor-hours \(=\$ 6.50\) per direct labor-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 650\)

\section*{171) C}

Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 90,000+(\$ 3.50\) per direct labor-hour \(\times 30,000\) direct laborhours) \(=\$ 90,000+\$ 105,000=\$ 195,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 195,000 \div 30,000\) direct labor-hours \(=\$ 6.50\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.50\) per direct labor-hour \(\times 100\) direct labor-hours \(=\$ 650\)

\section*{172) B}

Direct materials
\$ 520
Direct labor
Manufacturing overhead applied
Total cost of Job A477
\begin{tabular}{r}
650 \\
\hline\(\$ 3,970\) \\
\hline
\end{tabular}

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
=\$ 77,600+(\$ 3.00 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours })
\]
\[
=\$ 77,600+\$ 24,000=\$ 101,600
\]
173) B

Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 77,600+(\$ 3.00\) per direct labor-hour \(\times 8,000\) direct labor-hours \()\)
\(=\$ 77,600+\$ 24,000=\$ 101,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 101,600 \div 8,000\) direct labor-hours \(=\$ 12.70\) per direct labor-hour 174) A

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 77,600+(\$ 3.00\) per direct labor-hour \(\times 8,000\) direct labor-hours \()\)
\(=\$ 77,600+\$ 24,000=\$ 101,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 101,600 \div 8,000\) direct labor-hours \(=\$ 12.70\) per direct labor-hour Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.70\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 508\) 175) D

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 129,200+(\$ 1.60\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 129,200+\$ 30,400=\$ 159,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 159,600 \div 19,000\) machine-hours \(=\$ 8.40\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.40\) per machinehour \(\times 80\) machine-hours \(=\$ 672\)
Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 77,600+(\$ 3.00\) per direct labor-hour \(\times 8,000\) direct labor-hours \()\)
\(=\$ 77,600+\$ 24,000=\$ 101,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 101,600 \div 8,000\) direct labor-hours \(=\$ 12.70\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.70\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 508\)

Overhead applied to Job T288

Forming Department
Assembly Department Total
176) D

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 129,200+(\$ 1.60\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 129,200+\$ 30,400=\$ 159,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 159,600 \div 19,000\) machine-hours \(=\$ 8.40\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.40\) per machinehour \(\times 80\) machine-hours \(=\$ 672\)

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 77,600+(\$ 3.00 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 77,600+\$ 24,000=\$ 101,600
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 101,600 \div 8,000\) direct labor-hours \(=\$ 12.70\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.70\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 508\)
\begin{tabular}{lrrr} 
& Forming & Assembly & Total \\
Direct materials & \(\$ 730\) & \(\$ 380\) & \(\$ 1,110\) \\
Direct labor & \(\$ 900\) & \(\$ 1,200\) & 2,100 \\
Manufacturing overhead applied & \(\$ 672\) & \(\$ 508\) & 1,180 \\
Total cost of Job T288 & & & \(\$ 4,390\)
\end{tabular} 177) C

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 129,200+(\$ 1.60\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 129,200+\$ 30,400=\$ 159,600\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 159,600 \div 19,000\) machine-hours \(=\$ 8.40\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.40\) per machinehour \(\times 80\) machine-hours \(=\$ 672\)

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 77,600+(\$ 3.00 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 77,600+\$ 24,000=\$ 101,600
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 101,600 \div 8,000\) direct labor-hours \(=\$ 12.70\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.70\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 508\)
\begin{tabular}{|c|c|c|c|}
\hline & Forming & Assembly & Total \\
\hline Direct materials & \$ 730 & \$ 380 & \$ 1,110 \\
\hline Direct labor & \$ 900 & \$ 1,200 & 2,100 \\
\hline Manufacturing overhead applied & \$ 672 & \$ 508 & 1,180 \\
\hline Total cost of Job T288 & & & \$ 4,390 \\
\hline Total cost of Job T288 & \$ 4,390.00 & & \\
\hline Markup (\$4,390.00 \(\times 20 \%\) ) & 878.00 & & \\
\hline Selling price & \$ 5,268.00 & & \\
\hline
\end{tabular}
178) B

Casting Department predetermined overhead rate:

\section*{Estimated fixed manufacturing overhead \\ Estimated variable manufacturing overhead (\$1.80 per MH \(\times 1,000 \mathrm{MHs}\) )}

Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
Finishing Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.90 per MH \(\times 4,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
Manufacturing overhead applied to Job F:
Casting ( \(\$ 6.60\) per MH \(\times 700 \mathrm{MHs}\) )
Finishing (\$5.10 per MH \(\times 1,600 \mathrm{MHs})\)
Total manufacturing overhead applied

\section*{179) D}

Casting Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead ( \(\$ 1.80\) per \(\mathrm{MH} \times 1,000 \mathrm{MHs}\) )

Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div\) (b)
Finishing Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.90 per MH \(\times 4,000 \mathrm{MHs}\) )

Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b)\)
\(\$ 4,800\)

1,800
\[
\$ 6,600
\]

1,000 MHs
\(\$ 6.60\) per MH
\$ 8,800

11,600
\(\$ 20,400\)

4,000 MHs
\$ 5.10 per MH
\$ 4,620
\begin{tabular}{r}
8,160 \\
\hline\(\$ 12,780\)
\end{tabular}
\$ 4,800

1,800
\$ 6,600

1,000 MHs
\$ 6.60 per MH
\(\$ 8,800\)

11,600
\$ 20,400

4,000 MHs
\$ 5.10 per MH

Manufacturing overhead applied to Job M:
Casting ( \(\$ 6.60\) per MH \(\times 300 \mathrm{MHs}\) ) \(\$ 1,980\)
Finishing ( \(\$ 5.10\) per MH \(\times 2,400 \mathrm{MHs}\) )
Total manufacturing overhead applied

12,240
\$ 14,220

The selling price for Job M would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price

7,400
\(\begin{array}{r}14,220 \\ \hline \$ 30,620\end{array}\)
\begin{tabular}{r}
15,310 \\
\hline\(\$ 45,930\)
\end{tabular}
180) B

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 96,900+(\$ 2.00\) per machine-hour \(\times 17,000\) machine-hours \()\)
\(=\$ 96,900+\$ 34,000=\$ 130,900\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 130,900 \div 17,000\) machine-hours \(=\$ 7.70\) per machine-hour 181) B

Finishing Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 65,800+(\$ 3.60\) per direct labor-hour \(\times 7,000\) direct labor-hours \()\)
\(=\$ 65,800+\$ 25,200=\$ 91,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 91,000 \div 7,000\) direct labor-hours \(=\$ 13.00\) per direct labor-hour 182) C

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\[
\begin{aligned}
& =\$ 96,900+(\$ 2.00 \text { per machine-hour } \times 17,000 \text { machine-hours }) \\
& =\$ 96,900+\$ 34,000=\$ 130,900
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 130,900 \div 17,000\) machine-hours \(=\$ 7.70\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.70\) per machinehour \(\times 80\) machine-hours \(=\$ 616\)

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 65,800+(\$ 3.60 \text { per direct labor-hour } \times 7,000 \text { direct labor-hours }) \\
& =\$ 65,800+\$ 25,200=\$ 91,000
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 91,000 \div 7,000\) direct labor-hours \(=\$ 13.00\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.00\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 520\)
\begin{tabular}{lrrr} 
& Forming & Finishing & Total \\
Direct materials & \(\$ 840\) & \(\$ 350\) & \(\$ 1,190\) \\
Direct labor & \(\$ 750\) & \(\$ 1,000\) & 1,750 \\
Manufacturing overhead applied & \(\$ 616\) & \(\$ 520\) & 1,136 \\
Total cost of Job M381 & & & \(\$ 4,076\)
\end{tabular}

Machining Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 136,800+(\$ 1.80\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 136,800+\$ 34,200=\$ 171,000\)
184) B

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\[
=\$ 136,800+(\$ 1.80 \text { per machine-hour } \times 19,000 \text { machine-hours })
\]
\(=\$ 136,800+\$ 34,200=\$ 171,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 171,000 \div 19,000\) machine-hours \(=\$ 9.00\) per machine-hour 185) B

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 136,800+(\$ 1.80\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 136,800+\$ 34,200=\$ 171,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 171,000 \div 19,000\) machine-hours \(=\$ 9.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.00\) per machinehour \(\times 90\) machine-hours \(=\$ 810\)
186) A

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 136,800+(\$ 1.80\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 136,800+\$ 34,200=\$ 171,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 171,000 \div 19,000\) machine-hours \(=\$ 9.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.00\) per machinehour \(\times 90\) machine-hours \(=\$ 810\)

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 69,600+(\$ 3.20\) per direct labor-hour \(\times 8,000\) direct labor-hours \()\)
\(=\$ 69,600+\$ 25,600=\$ 95,200\)
Predetermined overhead rate \(=\) Estimated total manufacturing
overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 95,200 \div 8,000\) direct labor-hours \(=\$ 11.90\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.90\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 595\)
Overhead applied to Job K928
\begin{tabular}{lr} 
Machining Department & \(\$ 810\) \\
Finishing Department & 595 \\
Total & \begin{tabular}{l} 
\$ \\
187) B
\end{tabular}
\end{tabular}

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 136,800+(\$ 1.80\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 136,800+\$ 34,200=\$ 171,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 171,000 \div 19,000\) machine-hours \(=\$ 9.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.00\) per machinehour \(\times 90\) machine-hours \(=\$ 810\)

Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\[
\begin{aligned}
& =\$ 69,600+(\$ 3.20 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 69,600+\$ 25,600=\$ 95,200
\end{aligned}
\]

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base incurred \(=\) \(\$ 95,200 \div 8,000\) direct labor-hours \(=\$ 11.90\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.90\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 595\)

Machining
Direct materials
Direct labor
Manufacturing overhead
applied
Total cost of Job K928
\$ 775
\$ 630
\$ 810
188) C
```

Finishing Total

```
Finishing Total
$415 $ 1,190
$415 $ 1,190
    $ 1,050 1,680
    $ 1,050 1,680
    $ 595 1,405
    $ 595 1,405
                            $ 4,275
```

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 136,800+(\$ 1.80$ per machine-hour $\times 19,000$ machine-hours $)$
$=\$ 136,800+\$ 34,200=\$ 171,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 171,000 \div 19,000$ machine-hours $=\$ 9.00$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.00$ per machinehour $\times 90$ machine-hours $=\$ 810$

Finishing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 69,600+(\$ 3.20 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 69,600+\$ 25,600=\$ 95,200
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 95,200 \div 8,000$ direct labor-hours $=\$ 11.90$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 11.90$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 595$

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job K928
Total cost of Job K928
Markup ($\$ 4,275.00 \times 20 \%$)
Selling price
$189) \mathrm{C}$

The first step is to calculate the estimated total overhead costs in the two departments.

Machining

Estimated fixed manufacturing overhead
\$ 4,800
Estimated variable manufacturing overhead
1,100
(\$1.10 per MH $\times 1,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost
Customizing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.50 per MH $\times 9,000 \mathrm{MHs}$)

Estimated total manufacturing overhead cost
$\$ 5,900$
\$ 23, 400
22,500
$\$ 45,900$

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 5,900+\$ 45,900=\$ 51,800)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total manufacturing overhead cost
Estimated total machine-hours 10,000 MHs
Predetermined overhead rate $ 5.18 per MH
```

The overhead applied to Job A is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.18$ per $\mathrm{MH} \times(700 \mathrm{MHs}+3,600 \mathrm{MHs})$
$=\$ 5.18$ per $\mathrm{MH} \times(4,300 \mathrm{MHs})$
$=\$ 22,274$
Job A's manufacturing cost:
Direct materials \$ 12,000
Direct labor cost 20,700
Manufacturing overhead applied
Total manufacturing cost
22,274

The selling price for Job A:
Total manufacturing cost
Markup (50\%)
Selling price
190) B

The first step is to calculate the estimated total overhead costs in the two departments.

Machining

Estimated fixed manufacturing overhead
\$ 4,800
Estimated variable manufacturing overhead
(\$1.10 per MH $\times 1,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost
Customizing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.50 per MH $\times 9,000 \mathrm{MHs}$)

Estimated total manufacturing overhead cost

1,100
$\$ 5,900$

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 5,900+\$ 45,900=\$ 51,800)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\$ 51,800

Estimated total machine-hours $\quad 10,000 \mathrm{MHs}$
Predetermined overhead rate $\quad \$ 5.18$ per MH
The overhead applied to Job J is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.18$ per $\mathrm{MH} \times(300 \mathrm{MHs}+5,400 \mathrm{MHs})$
$=\$ 5.18$ per $\mathrm{MH} \times(5,700 \mathrm{MHs})$
= \$29,526
Job J's manufacturing cost:
Direct materials \$ 7,700
Direct labor cost 6,400
Manufacturing overhead applied
Total manufacturing cost
29,526

The selling price for Job J:
Total manufacturing cost
\$ 43,626
Markup (50\%)
Selling price
191) C

Machining Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead
$\quad(\$ 1.10$ per $\mathrm{MH} \times 1,000 \mathrm{MHs})$
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b)
Customizing Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.50 per MH $\times 9,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(\mathbf{b}) \quad \$ 5.10$ per MH
Manufacturing overhead applied to Job A:

Machining (\$5.90 per MH $\times 700 \mathrm{MHs})$	$\$ 4,130$
Customizing ($\$ 5.10$ per MH $\times 3,600 \mathrm{MHs})$	18,360
Total manufacturing overhead applied	$\$ 22,490$

The selling price for Job A would be calculated as follows:
Direct materials

$\$ 12,000$
20,700
22,490
$\$ 55,190$
27,595
$\$ 82,785$

192) A

Machining Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.10 per MH $\times 1,000 \mathrm{MHs}$)

Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b)
Customizing Department predetermined overhead rate:
$\$ 4,800$

1,100
\$ 5,900

1,000 MHs
\$ 5.90 per MH

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.50 per MH $\times 9,000 \mathrm{MHs}$)

Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b)$
Manufacturing overhead applied to Job J:
Machining (\$5.90 per MH $\times 300 \mathrm{MHs}$)
Customizing (\$5.10 per MH $\times 5,400 \mathrm{MHs}$)
Total manufacturing overhead applied

The selling price for Job J would be calculated as follows:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price
193) D

Milling Department overhead cost $=$ Fixed manufacturing overhead cost $+($ Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 113,400+(\$ 1.60$ per machine-hour $\times 18,000$ machine-hours $)$
$=\$ 113,400+\$ 28,800=\$ 142,200$
Predetermined overhead rate $=$ Estimated total manufacturing
overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 142,200 \div 18,000$ machine-hours $=\$ 7.90$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.90$ per machinehour $\times 60$ machine-hours $=\$ 474$
194) B

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 64,400+(\$ 3.90$ per direct labor-hour $\times 7,000$ direct labor-hours $)$
$=\$ 64,400+\$ 27,300=\$ 91,700$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 91,700 \div 7,000$ direct labor-hours $=\$ 13.10$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 13.10$ per direct labor-hour $\times 60$ direct labor-hours $=\$ 786$
195) B

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 91,000+(\$ 2.00$ per machine-hour $\times 26,000$ machine-hours $)$
$=\$ 91,000+\$ 52,000=\$ 143,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 143,000 \div 26,000$ machine-hours $=\$ 5.50$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 5.50$ per machinehour $\times 40$ machine-hours $=\$ 220$
Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)

$$
\begin{aligned}
& =\$ 44,000+(\$ 4.40 \text { per direct labor-hour } \times 8,000 \text { direct labor-hours }) \\
& =\$ 44,000+\$ 35,200=\$ 79,200
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 79,200 \div 8,000$ direct labor-hours $=\$ 9.90$ per direct labor-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.90$ per direct labor-hour $\times 40$ direct labor-hours $=\$ 396$

	Milling	Customizing	Total
Direct materials	\$ 400	\$ 200	\$ 600
Direct labor	\$ 570	\$ 600	1,170
Manufacturing overhead applied	\$ 220	\$ 396	616
Total cost of Job A319			\$ 2,386
Total cost of Job A319	\$ 2,386		
Markup (\$2,386 $\times 20 \%$)	477		
Selling price	\$ 2,863		

196) B

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 113,400+(\$ 1.60$ per machine-hour $\times 18,000$ machine-hours $)$
$=\$ 113,400+\$ 28,800=\$ 142,200$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 142,200 \div 18,000$ machine-hours $=\$ 7.90$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.90$ per machinehour $\times 60$ machine-hours $=\$ 474$

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)
$=\$ 64,400+(\$ 3.90$ per direct labor-hour $\times 7,000$ direct labor-hours $)$
$=\$ 64,400+\$ 27,300=\$ 91,700$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 91,700 \div 7,000$ direct labor-hours $=\$ 13.10$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 13.10$ per direct labor-hour $\times 60$ direct labor-hours $=\$ 786$

	Milling	Customizing	Total
Direct materials	$\$ 655$	$\$ 305$	$\$ 960$
Direct labor	$\$ 400$	$\$ 1,200$	1,600
Manufacturing overhead	$\$ 474$	$\$ 786$	1,260
applied			
Total cost of Job A319			
Total cost of Job A319			
Markup (\$3,820.00 $\times \mathbf{2 0 \%})$	$3,820.00$		

Selling price
197) C
Machining Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead

\quad| (\$2.00 per MH $\times 5,000 \mathrm{MHs})$ |
| :--- |

Estimated total manufacturing overhead cost
(a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate

Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$3.00 per MH $\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate $(a) \div(b)$
Manufacturing overhead applied to Job L:
Machining ($\$ 7.30$ per $\mathrm{MH} \times 1,600 \mathrm{MHs}$)
Finishing (\$5.70 per MH $\times 3,000 \mathrm{MHs})$
Total manufacturing overhead applied
$\$ 13,500$

15,000
\$ 28,500

5,000 MHs
$\$ 5.70$ per MH
198) D

Machining Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.00 per MH $\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b)$

10,000
$\$ 36,500$
$\$ 26,500$

5,000 MHs
$\$ 7.30$ per MH

Finishing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$3.00 per
MH $\times 5,000 \mathrm{MHs})$
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)

Departmental predetermined overhead rate $(\mathbf{a}) \div(b) \quad \$ 5.70$ per MH

Manufacturing overhead applied to Job C:

Machining $(\$ 7.30$ per MH $\times 3,400 \mathrm{MHs})$	$\$ 24,820$
Finishing $(\$ 5.70$ per MH $\times 2,000 \mathrm{MHs})$	11,400
Total manufacturing overhead applied	$\$ 36,220$

The selling price for Job C would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (20\%)
Selling price
199) D

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times
Total machine-hours in the department)
$=\$ 102,000+(\$ 1.70$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 102,000+\$ 28,900=\$ 130,900$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation
base incurred $=\$ 130,900 \div 17,000$ machine-hours $=\$ 7.70$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.70$ per machinehour $\times 80$ machine-hours $=\$ 616$

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct
labor-hour \times Total direct labor-hours in the department)
$=\$ 61,200+(\$ 4.10$ per direct labor-hour $\times 6,000$ direct labor-hours $)=$ $\$ 61,200+\$ 24,600=\$ 85,800$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 85,800 \div 6,000$ direct labor-hours $=\$ 14.30$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.30$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 715$
Overhead applied to Job T268
Machining Department

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 102,000+(\$ 1.70$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 102,000+\$ 28,900=\$ 130,900$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 130,900 \div 17,000$ machine-hours $=\$ 7.70$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.70$ per machinehour $\times 80$ machine-hours $=\$ 616$

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)
$=\$ 61,200+(\$ 4.10$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 61,200+\$ 24,600=\$ 85,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 85,800 \div 6,000$ direct labor-hours $=\$ 14.30$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.30$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 715$

	Machining	Customizing	Total
Direct materials	$\$ 720$	$\$ 380$	$\$ 1,100$
Direct labor	$\$ 900$	$\$ 1,500$	2,400
Manufacturing overhead applied	$\$ 616$	$\$ 715$	1,331
Total cost of Job T268		$\$ 4,831$	

201) B

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 102,000+(\$ 1.70$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 102,000+\$ 28,900=\$ 130,900$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 130,900 \div 17,000$ machine-hours $=\$ 7.70$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.70$ per machinehour $\times 80$ machine-hours $=\$ 616$

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)
$=\$ 61,200+(\$ 4.10$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 61,200+\$ 24,600=\$ 85,800$
Predetermined overhead rate $=$ Estimated total manufacturing
overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 85,800 \div 6,000$ direct labor-hours $=\$ 14.30$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.30$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 715$

		Machining		Customizing			Total	
Direct materials		\$	720		\$	380	\$	1,100
Direct labor		\$	900	\$, 500		2,400
Manufacturing overhead applied		\$	616		\$	715		1,331
Total cost of Job T268							\$	4,831
Total cost of Job T268	\$	4,83	1.00					
Markup (\$4,831.00 $\times 40 \%$)		1,93	2.40					
Selling price	\$	6,76	3.40					

202) A

The first step is to calculate the estimated total overhead costs in the two departments.
Forming

Estimated fixed manufacturing overhead	$\$ 16,500$
\quad Estimated variable manufacturing overhead ($\$ 1.70$ per MH \times	5,100
3,000 MHs)	
Estimated total manufacturing overhead cost	$\$ 21,600$
Customizing	
Estimated fixed manufacturing overhead	
Estimated variable manufacturing overhead (\$2.50 per MH $\times 20,300$	
7,000 MHs)	17,500
Estimated total manufacturing overhead cost	$\$ 37,800$

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 21,600+\$ 37,800=\$ 59,400)$ to calculate the plantwide predetermined overhead rate as follow:

```
Estimated total manufacturing overhead cost $ 59,400
Estimated total machine hours 10,000 MHs
Predetermined overhead rate $5.94 per MH
```

The overhead applied to Job A is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times Machine-hours incurred by the job

$$
\begin{aligned}
& =\$ 5.94 \text { per } \mathrm{MH} \times(2,000 \mathrm{MHs}+2,800 \mathrm{MHs}) \\
& =\$ 5.94 \text { per } \mathrm{MH} \times(4,800 \mathrm{MHs}) \\
& =\$ 28,512 \\
& 203) \mathrm{C}
\end{aligned}
$$

The first step is to calculate the estimated total overhead costs in the two departments.
Forming
Estimated fixed manufacturing overhead
\$ 16,500
Estimated variable manufacturing overhead ($\$ 1.70$ per MH \times
3,000 MHs)
Estimated total manufacturing overhead cost

Customizing

Estimated fixed manufacturing overhead	$\$ 20,300$
Estimated variable manufacturing overhead (\$2.50 per MH \times	17,500
$7,000 \mathrm{MHs}$)	
Estimated total manufacturing overhead cost	$\$ 37,800$

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 21,600+\$ 37,800=\$ 59,400)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$59,400
Estimated total machine hours $\quad 10,000 \mathrm{MHs}$
Predetermined overhead rate $\$ 5.94$ per MH
The overhead applied to Job H is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.94$ per $\mathrm{MH} \times(1,000 \mathrm{MHs}+4,200 \mathrm{MHs})$
$=\$ 5.94$ per $\mathrm{MH} \times(5,200 \mathrm{MHs})$
$=\$ 30,888$
204) D

Forming Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead 5,100 ($\$ 1.70$ per $\mathrm{MH} \times 3,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div
$\$ 16,500$
5,100
\$ 21,600
3,000 MHs
$\$ 7.20$ per MH (b)

Customizing Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead
(\$2.50 per MH $\times 7,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div
\$ 20,300

17,500
$\$ 37,800$

7,000 MHs
\$ 5.40 per MH

(b)

Manufacturing overhead applied to Job A:
Forming ($\$ 7.20$ per MH $\times 2,000 \mathrm{MHs}) \quad \$ 14,400$
Customizing ($\$ 5.40$ per MH $\times 2,800 \mathrm{MHs}$)
15,120
Total manufacturing overhead applied
205) C

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$ 16,500

Estimated variable manufacturing overhead (\$1.70 per $\mathrm{MH} \times 3,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
\$ 21,600
Estimated total machine-hours (b)
3,000 MHs
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 7.20$ per MH
Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.50
\$ 20,300
per $\mathrm{MH} \times 7,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
$\$ 37,800$

Estimated total machine-hours (b)
7,000 MHs
Departmental predetermined overhead rate (a) \div (b) $\$ 5.40$ per MH
Manufacturing overhead applied to Job H:
Forming (\$7.20 per MH $\times 1,000 \mathrm{MHs}$) $\$ 7,200$
Customizing (\$5.40 per MH $\times 4,200 \mathrm{MHs}$)
17,500

Total manufacturing overhead applied
\$ 29,880
206) A

Casting Department overhead cost $=$ Fixed manufacturing overhead cost $+($ Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 129,200+(\$ 1.80$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 129,200+\$ 30,600=\$ 159,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 159,800 \div 17,000$ machine-hours $=\$ 9.40$ per machine-hour 207) D

Assembly Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 46,500+(\$ 3.80 \text { per direct labor-hour } \times 5,000 \text { direct labor-hours }) \\
& =\$ 46,500+\$ 19,000=\$ 65,500
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 65,500 \div 5,000$ direct labor-hours $=\$ 13.10$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 13.10$ per direct labor-hour $\times 60$ direct labor-hours $=\$ 786$
208) A

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 154,000+(\$ 2.00 \text { per machine-hour } \times 28,000 \text { machine-hours }) \\
& =\$ 154,000+\$ 56,000=\$ 210,000 \\
& \text { 209) } \mathrm{A}
\end{aligned}
$$

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 104,000+(\$ 2.10 \text { per machine-hour } \times 16,000 \text { machine-hours }) \\
& =\$ 104,000+\$ 33,600=\$ 137,600
\end{aligned}
$$

210) D

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 56,400+(\$ 3.30 \text { per direct labor-hour } \times 6,000 \text { direct labor-hours }) \\
& =\$ 56,400+\$ 19,800=\$ 76,200
\end{aligned}
$$

211) D

Machining Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 104,000+(\$ 2.10 \text { per machine-hour } \times 16,000 \text { machine-hours }) \\
& =\$ 104,000+\$ 33,600=\$ 137,600
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 137,600 \div 16,000$ machine-hours $=\$ 8.60$ per machine-hour 212) B

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 56,400+(\$ 3.30 \text { per direct labor-hour } \times 6,000 \text { direct labor-hours }) \\
& =\$ 56,400+\$ 19,800=\$ 76,200
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 76,200 \div 6,000$ direct labor-hours $=\$ 12.70$ per direct labor-hour 213) C

Machining Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 104,000+(\$ 2.10$ per machine-hour $\times 16,000$ machine-hours $)$
$=\$ 104,000+\$ 33,600=\$ 137,600$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 137,600 \div 16,000$ machine-hours $=\$ 8.60$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.60$ per machinehour $\times 60$ machine-hours $=\$ 516$ 214) B

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 56,400+(\$ 3.30$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 56,400+\$ 19,800=\$ 76,200$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 76,200 \div 6,000$ direct labor-hours $=\$ 12.70$ per direct labor-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 12.70$ per direct labor-hour $\times 60$ direct labor-hours $=\$ 762$
215) C

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 138,000+(\$ 2.30$ per machine-hour $\times 20,000$ machine-hours $)$
$=\$ 138,000+\$ 46,000=\$ 184,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 184,000 \div 20,000$ machine-hours $=\$ 9.20$ per machine-hour Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.20$ per machinehour $\times 80$ machine-hours $=\$ 736$
216) C

Assembly Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 58,100+(\$ 3.00$ per direct labor-hour $\times 7,000$ direct labor-hours $)$
$=\$ 58,100+\$ 21,000=\$ 79,100$
Predetermined overhead rate $=$ Estimated total manufacturing
overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 79,100 \div 7,000$ direct labor-hours $=\$ 11.30$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 11.30$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 565$
217) C

Finishing Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 52,800+(\$ 3.80$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 52,800+\$ 22,800=\$ 75,600$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 75,600 \div 6,000$ direct labor-hours $=\$ 12.60$ per direct labor-hour 218) A

Machining Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 138,700+(\$ 1.90 \text { per machine-hour } \times 19,000 \text { machine-hours }) \\
& =\$ 138,700+\$ 36,100=\$ 174,800
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 174,800 \div 19,000$ machine-hours $=\$ 9.20$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.20$ per machinehour $\times 90$ machine-hours $=\$ 828$
219) D

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 102,400+(\$ 2.30 \text { per machine-hour } \times 16,000 \text { machine-hours }) \\
& =\$ 102,400+\$ 36,800=\$ 139,200 \\
& 220) \mathrm{C}
\end{aligned}
$$

Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 55,200+(\$ 4.50 \text { per direct labor-hour } \times 6,000 \text { direct labor-hours }) \\
& =\$ 55,200+\$ 27,000=\$ 82,200
\end{aligned}
$$

221) A

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 102,400+(\$ 2.30$ per machine-hour $\times 16,000$ machine-hours $)$
$=\$ 102,400+\$ 36,800=\$ 139,200$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 139,200 \div 16,000$ machine-hours $=\$ 8.70$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.70$ per machinehour $\times 70$ machine-hours $=\$ 609$
Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 55,200+(\$ 4.50 \text { per direct labor-hour } \times 6,000 \text { direct labor-hours }) \\
& =\$ 55,200+\$ 27,000=\$ 82,200
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 82,200 \div 6,000$ direct labor-hours $=\$ 13.70$ per direct labor-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 13.70$ per direct labor-hour $\times 40$ direct labor-hours $=\$ 548$
Overhead applied to Job T924
Forming Department \$609
Assembly Department

Forming Department predetermined overhead rate:
Estimate
Estimate
$\times 5,000$
Estimate
Estimate
Departme
$223) \mathrm{B}$
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
$\$ 10,500$
Estimated variable manufacturing overhead (\$2.60 per $\mathrm{MH} \times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a) \$23,500
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 4.70$ per MH 224) D

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead
$\$ 28,000$
Estimated variable manufacturing overhead (\$1.80 per MH 9,000 $\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 7.40$ per MH
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\$ 10,500
Estimated variable manufacturing overhead (\$2.60 per MH 13,000
$\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 4.70$ per MH

Manufacturing overhead applied to Job B:

Forming (\$7.40 per MH $\times 3,400 \mathrm{MHs})$	$\$ 25,160$
Assembly ($\$ 4.70$ per $\mathrm{MH} \times 2,000 \mathrm{MHs})$	9,400
Total manufacturing overhead applied	$\$ 34,560$

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.80 per MH 9,000
$\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
$\$ 37,000$

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 7.40$ per MH
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
$\$ 10,500$

Estimated variable manufacturing overhead (\$2.60 per MH 13,000
$\times 5,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
\$ 23,500

Estimated total machine-hours (b)
Departmental predetermined overhead rate $(a) \div(b)$
5,000 MHs
$\$ 4.70$ per MH
Manufacturing overhead applied to Job L:
Forming ($\$ 7.40$ per $\mathrm{MH} \times 1,600 \mathrm{MHs}) \quad \$ 11,840$
Assembly ($\$ 4.70$ per MH $\times 3,000 \mathrm{MHs}$) $\quad 14,100$
Total manufacturing overhead applied
226) A

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 42,000+(\$ 4.30$ per direct labor-hour $\times 5,000$ direct labor-hours $)$
$=\$ 42,000+\$ 21,500=\$ 63,500$
227) D

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 119,000+(\$ 1.60$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 119,000+\$ 27,200=\$ 146,200$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 146,200 \div 17,000$ machine-hours $=\$ 8.60$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.60$ per machinehour $\times 90$ machine-hours $=\$ 774$
228) B

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 112,200+(\$ 1.70$ per machine-hour $\times 17,000$ machine-hours $)$ $=\$ 112,200+\$ 28,900=\$ 141,100$

229) C

Customizing Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 81,000+(\$ 4.30 \text { per direct labor-hour } \times 9,000 \text { direct labor-hours }) \\
& =\$ 81,000+\$ 38,700=\$ 119,700
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 119,700 \div 9,000$ direct labor-hours $=\$ 13.30$ per direct labor-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 13.30$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 665$
230) D

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 148,000+(\$ 1.90$ per machine-hour $\times 20,000$ machine-hours $)$
$=\$ 148,000+\$ 38,000=\$ 186,000$
231) D

Finishing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 88,000+(\$ 3.60$ per direct labor-hour $\times 8,000$ direct labor-hours $)$
$=\$ 88,000+\$ 28,800=\$ 116,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 116,800 \div 8,000$ direct labor-hours $=\$ 14.60$ per direct labor-hour 232) C

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 8,600+(\$ 3.10 \text { per direct labor-hour } \times 2,000 \text { direct labor-hours }) \\
& =\$ 8,600+\$ 6,200=\$ 14,800
\end{aligned}
$$

233) C

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 68,600+(\$ 4.30 \text { per direct labor-hour } \times 7,000 \text { direct labor-hours }) \\
& =\$ 68,600+\$ 30,100=\$ 98,700 \\
& 234) \mathrm{A}
\end{aligned}
$$

Casting Department overhead cost $=$ Fixed manufacturing overhead cost $+($ Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 152,000+(\$ 2.10$ per machine-hour $\times 20,000$ machine-hours $)$
$=\$ 152,000+\$ 42,000=\$ 194,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 194,000 \div 20,000$ machine-hours $=\$ 9.70$ per machine-hour 235) B

Casting Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 105,400+(\$ 1.70$ per machine-hour $\times 17,000$ machine-hours $)$ $=\$ 105,400+\$ 28,900=\$ 134,300$
236) A

Finishing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 52,000+(\$ 3.90 \text { per direct labor-hour } \times 5,000 \text { direct labor-hours }) \\
& =\$ 52,000+\$ 19,500=\$ 71,500 \\
& 237) \mathrm{D}
\end{aligned}
$$

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)

$$
\begin{aligned}
& =\$ 100,700+(\$ 2.00 \text { per machine-hour } \times 19,000 \text { machine-hours }) \\
& =\$ 100,700+\$ 38,000=\$ 138,700
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=\$ 138,700$ $\div 19,000$ machine-hours $=\$ 7.30$ per machine-hour
238) D

Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 63,000+(\$ 3.90$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 63,000+\$ 23,400=\$ 86,400$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base incurred $=$ $\$ 86,400 \div 6,000$ direct labor-hours $=\$ 14.40$ per direct labor-hour 239) C

The first step is to calculate the estimated total overhead costs in the two departments.

Casting		
Estimated fixed manufacturing overhead		17,700
Estimated variable manufacturing overhead ($\$ 1.50$ per MH \times $3,000 \mathrm{MHs}$)		4,500
Estimated total manufacturing overhead cost		22,200
Assembly		
Estimated fixed manufacturing overhead		\$ 5,800
Estimated variable manufacturing overhead (\$2.20 per MH \times 2,000 MHs)		4,400
Estimated total manufacturing overhead cost		10,200

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 22,200+\$ 10,200=\$ 32,400)$ to calculate the plantwide predetermined overhead rate as follow:

Estimated total manufacturing overhead cost
$\$ 32,400$
5,000 MHs
Estimated total machine hours
$\$ 6.48$ per MH
Predetermined overhead rate
240) B

Casting Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$ 17,700

```
Estimated variable manufacturing overhead ($1.50 per MH 4,500
x 3,000 MHs)
Estimated total manufacturing overhead cost (a) $ 22,200
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b) $ 7.40 per MH
241) C
Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead $ 5,800
Estimated variable manufacturing overhead ($2.20 per MH 4,400
* 2,000 MHs)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b) $ 5.10 per MH
242) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 144,000+(\$ 4.00\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 144,000+\$ 120,000=\$ 264,000\)
243) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 287,000+(\$ 3.50\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 287,000+\$ 245,000=\$ 532,000\)
b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 532,000 \div 70,000\) machine-hours \(=\$ 7.60\) per machine-hour 244) Estimated total manufacturing overhead \(=\$ 1,043,200+(\$ 8.30\) per labor-hour \(\times 64,000\) labor-hours) \(=\$ 1,574,400\)
Predetermined overhead rate \(=\$ 1,574,400 \div 64,000\) labor-hours \(=\) \$24.60 per labor-hour
```

245) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 390,000+(\$ 3.60$ per machine-hour $\times 50,000$ machine-hours $)=$ $\$ 390,000+\$ 180,000=\$ 570,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 570,000 \div 50,000$ machine-hours $=\$ 11.40$ per machine-hour 246) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 248,000+(\$ 3.80$ per machine-hour $\times 40,000$ machine-hours $)=$ $\$ 248,000+\$ 152,000=\$ 400,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 400,000 \div 40,000$ machine-hours $=\$ 10.00$ per machine-hour 247) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 152,000+(\$ 3.10$ per machine-hour $\times 40,000$ machine-hours $)=$ $\$ 152,000+\$ 124,000=\$ 276,000$
248) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 31,000+(\$ 2.50$ per direct labor-hour $\times 10,000$ direct laborhours) $=\$ 31,000+\$ 25,000=\$ 56,000$
b. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=\$ 56,000$ $\div 10,000$ direct labor-hours $=\$ 5.60$ per direct labor-hour
249) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 88,200+(\$ 2.90$ per direct labor-hour $\times 63,000$ direct laborhours) $=\$ 88,200+\$ 182,700=\$ 270,900$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 270,900 \div 63,000$ direct labor-hours $=\$ 4.30$ per direct labor-hour Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 4.30$ per direct labor-hour $\times 210$ direct labor-hours $=\$ 903$ 250) Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 160,000+(\$ 2.30$ per direct labor-hour $\times 80,000$ direct laborhours) $=\$ 160,000+\$ 184,000=\$ 344,000$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 344,000 \div 80,000$ direct labor-hours $=\$ 4.30$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 4.30$ per direct labor-hour $\times 120$ direct labor-hours $=\$ 516$ 251)

```
Estimated total fixed manufacturing
overhead (a)
Estimated activity level (b)
Predetermined overhead rate (a) \div (b)
Actual activity level
Manufacturing overhead applied
```

$\$ 358,000$

20,000 machine-hours
\$ 17.90 per machine-
hour
18, 300 machine-hours $\$ 327,570$
252) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 96,000+(\$ 3.30$ per direct labor-hour $\times 60,000$ direct laborhours) $=\$ 96,000+\$ 198,000=\$ 294,000$
b. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 294,000 \div 60,000$ direct labor-hours $=\$ 4.90$ per direct labor-hour
c. Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 4.90$ per direct labor-hour $\times 100$ direct labor-hours $=\$ 490$
253) Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 50,000+(\$ 3.90$ per machine-hour $\times 10,000$ machine-hours $)=$ $\$ 50,000+\$ 39,000=\$ 89,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=\$ 89,000$ $\div 10,000$ machine-hours $=\$ 8.90$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.90$ per machinehour $\times 160$ machine-hours $=\$ 1,424$
254) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 342,000+(\$ 2.40$ per direct labor-hour $\times 60,000$ direct laborhours) $=\$ 342,000+\$ 144,000=\$ 486,000$
b. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 486,000 \div 60,000$ direct labor-hours $=\$ 8.10$ per direct labor-hour
c. Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.10$ per direct labor-hour $\times 90$ direct labor-hours $=\$ 729$ 255)

Estimated total fixed manufacturing overhead \$114,000
(a)

256) The first step is to calculate the estimated total overhead costs in the two departments.

Casting
Estimated fixed manufacturing overhead \$11,600
Estimated variable manufacturing overhead (\$1.90 per MH \times 3,800 2,000 MHs)
Estimated total manufacturing overhead cost
Customizing
Estimated fixed manufacturing overhead \$ 7,200
Estimated variable manufacturing overhead (\$2.80 per MH \times 8,400
3,000 MHs)
Estimated total manufacturing overhead cost
\$15,600

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 15,400+\$ 15,600=\$ 31,000)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cos

Estimated total machine hours
$\$ 31,000$

Predetermined overhead rate

5,000 MHs
$\$ 6.20$ per MH

The overhead applied to Job F is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times Machine-hours incurred by the job
$=\$ 6.20$ per $\mathrm{MH} \times(1,400 \mathrm{MHs}+1,200 \mathrm{MHs})$
$=\$ 6.20$ per $\mathrm{MH} \times(2,600 \mathrm{MHs})$
= \$16,120
The overhead applied to Job L is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 6.20$ per $\mathrm{MH} \times(600 \mathrm{MHs}+1,800 \mathrm{MHs})$
$=\$ 6.20$ per $\mathrm{MH} \times(2,400 \mathrm{MHs})$
= $\$ 14,880$
Job F's manufacturing cost:
Direct materials $\quad \$ 10,600$
Direct labor cost 24,400
Manufacturing overhead applied Total manufacturing cost

Job L's manufacturing cost:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job F:

Total manufacturing cost
Markup (50\%)
Selling price

The selling price for Job L:
Total manufacturing cost
\$ 30,080
Markup (50\%)
Selling price
257) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 460,000+(\$ 3.10$ per machine-hour $\times 50,000$ machine-hours $)=$ $\$ 460,000+\$ 155,000=\$ 615,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 615,000 \div 50,000$ machine-hours $=\$ 12.30$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 12.30$ per machinehour $\times 150$ machine-hours $=\$ 1,845$
b.

```
Direct materials

Direct labor 6,000
Manufacturing overhead applied
Total cost of Job P647
1,845
C.

Total cost of Job P647 (a) \$ 8,585
Number of units (b) 50
Unit product cost \((\mathrm{a}) \div(\mathrm{b}) \quad \$ 171.70\)
258) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 390,000+(\$ 4.40\) per direct labor-hour \(\times 50,000\) direct laborhours) \(=\$ 390,000+\$ 220,000=\$ 610,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 610,000 \div 50,000\) direct labor-hours \(=\$ 12.20\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.20\) per direct labor-hour \(\times 300\) direct labor-hours \(=\$ 3,660\)
```

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job X941
Total cost of Job X941 (a)

```
\begin{tabular}{r}
\(\$ 600\) \\
7,000 \\
3,660 \\
\hline\(\$ 11,260\) \\
\hline\(\$ 11,260\)
\end{tabular}
259) Estimated total manufacturing overhead cost \(=\overline{\overline{\text { Estimated}} \text { total }}\) fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 182,000+(\$ 2.50\) per direct labor-hour \(\times 20,000\) direct laborhours) \(=\$ 182,000+\$ 50,000=\$ 232,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 232,000 \div 20,000\) direct labor-hours \(=\$ 11.60\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.60\) per direct labor-hour \(\times 250\) direct labor-hours \(=\$ 2,900\)

Direct materials
\$ 740
Direct labor 6,500
Manufacturing overhead applied 2,900
Total cost of Job X941
Total cost of Job X941 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
Unit product cost for Job X941
Markup (20\% x \$202.80)
Selling price
260) Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 630,000+(\$ 3.40\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 630,000+\$ 238,000=\$ 868,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 868,000 \div 70,000\) machine-hours \(=\$ 12.40\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.40\) per machinehour \(\times 200\) machine-hours \(=\$ 2,480\)
Direct materials
Direct labor
Manufacturing overhead applied
261) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 156,000+(\$ 2.20\) per machine-hour \(\times 40,000\) machine-hours \()=\) \(\$ 156,000+\$ 88,000=\$ 244,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 244,000 \div 40,000\) machine-hours \(=\$ 6.10\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.10\) per machinehour \(\times 60\) machine-hours \(=\$ 366\)
\begin{tabular}{|c|c|}
\hline Direct materials & \$ 725 \\
\hline Direct labor & 1,680 \\
\hline Manufacturing overhead applied & 366 \\
\hline Total cost of Job M242 & \$2,771 \\
\hline \multicolumn{2}{|l|}{b.} \\
\hline Total cost of Job M242 (a) & \$ 2,771 \\
\hline Number of units (b) & 20 \\
\hline Unit product cost (a) \(\div\) (b) & \$138.55 \\
\hline
\end{tabular}
262) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 71,000+(\$ 2.50\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 71,000+\$ 25,000=\$ 96,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\$ 96,000\) \(\div 10,000\) machine-hours \(=\$ 9.60\) per machine-hour
b. Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.60\) per machine-hour \(\times 60\) machine-hours \(=\$ 576\)
c.

Direct materials

Manufacturing overhead applied
576
Total cost of Job P512
d.

Total cost of Job P512 (a)
Number of units (b)
\(\$ 3,846\)

Unit product cost (a) \(\div\) (b)
263) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 136,000+(\$ 2.90\) per machine-hour \(\times 40,000\) machine-hours \()=\) \(\$ 136,000+\$ 116,000=\$ 252,000\)
b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 252,000 \div 40,000\) machine-hours \(=\$ 6.30\) per machine-hour
c. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.30\) per machine-hour \(\times 300\) machine-hours \(=\$ 1,890\)
d.
\begin{tabular}{lr} 
Direct materials & \(\$ 585\) \\
Direct labor & 7,200 \\
Manufacturing overhead applied & 1,890 \\
Total cost of Job A290 & \(\$ 9,675\) \\
\hline \hline
\end{tabular}
264) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 342,000+(\$ 2.70\) per machine-hour \(\times 60,000\) machine-hours \()=\) \(\$ 342,000+\$ 162,000=\$ 504,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 504,000 \div 60,000\) machine-hours \(=\$ 8.40\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.40\) per machinehour \(\times 140\) machine-hours \(=\$ 1,176\)
\begin{tabular}{lr} 
Direct materials & \(\$ 945\) \\
Direct labor & 2,800 \\
Manufacturing overhead applied & 1,176 \\
\hline Total cost of Job M238 & \(\$ 4,921\) \\
\hline
\end{tabular}
265) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 96,000+(\$ 3.60\) per direct labor-hour \(\times 10,000\) direct laborhours) \(=\$ 96,000+\$ 36,000=\$ 132,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 132,000 \div 10,000\) direct labor-hours \(=\$ 13.20\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.20\) per direct labor-hour \(\times 200\) direct labor-hours \(=\$ 2,640\)
b.
```

Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job A735
c.

b. The overhead applied to Job F is calculated as follows:

Overhead applied to a particular job $=$ Predetermined overhead rate \times Machine-hours incurred by the job
$=\$ 5.45$ per $\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})$
$=\$ 5.45$ per $\mathrm{MH} \times(5,400 \mathrm{MHs})$
= $\$ 29,430$
c. The overhead applied to Job K is calculated as follows:

Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.45$ per $\mathrm{MH} \times(1,600 \mathrm{MHs}+3,000 \mathrm{MHs})$
$=\$ 5.45$ per $\mathrm{MH} \times(4,600 \mathrm{MHs})$
$=\$ 25,070$
d. Job F's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
e. Job K's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
f. The selling price for Job F:

Total manufacturing cost
Markup (30\%)
Selling price
g. The selling price for Job K:

Total manufacturing cost
Markup (30\%)
Selling price
h.

Total manufacturing cost assigned to Job F Total manufacturing cost assigned to Job K
\$ 12,700
19,100
29,430
\$ 61,230
$\$ 6,400$
7,900
25,070
\$39,370
\$ 61,230
18, 369
\$79,599
267) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 308,000+(\$ 2.10$ per machine-hour $\times 70,000$ machine-hours $)=$ $\$ 308,000+\$ 147,000=\$ 455,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 455,000 \div 70,000$ machine-hours $=\$ 6.50$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 6.50$ per machinehour $\times 100$ machine-hours $=\$ 650$
Direct materials \$ 555
Direct labor 2,700
Manufacturing overhead applied
Total cost of Job M556
b.

Total cost of Job M556 (a)
$\$ 3,905$
Number of units (b)
Unit product cost (a) $\div(b)$
268) a.

The first step is to calculate the estimated total overhead costs in the two departments.

Casting

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.50 per MH \times
\$ 18,000
6,000 4,000 MHs)
Estimated total manufacturing overhead cost
\$ 24,000
Finishing
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.30 per MH \times 6,000 MHs)
Estimated total manufacturing overhead cost
\$ 31,800

The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 24,000+\$ 31,800=\$ 55,800)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$55,800

```
Estimated total machine hours 10,000 MHs
Predetermined overhead rate $ 5.58 per MH
```

The overhead applied to Job D is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.58$ per $\mathrm{MH} \times(2,700 \mathrm{MHs}+2,400 \mathrm{MHs})$
$=\$ 5.58$ per $\mathrm{MH} \times(5,100 \mathrm{MHs})$
$=\$ 28,458$
Job D's manufacturing cost:
Direct materials $\quad \$ 14,300$
Direct labor cost
Manufacturing overhead applied 28,458
Total manufacturing cost
b.

The overhead applied to Job J is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 5.58$ per $\mathrm{MH} \times(1,300 \mathrm{MHs}+3,600 \mathrm{MHs})$
$=\$ 5.58$ per $\mathrm{MH} \times(4,900 \mathrm{MHs})$
$=\$ 27,342$
Job J's manufacturing cost:
Direct materials $\quad \$ 6,800$
Direct labor cost 8,800
Manufacturing overhead applied 27,342
Total manufacturing cost
269) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 130,000+(\$ 3.00$ per machine-hour $\times 20,000$ machine-hours $)=$ $\$ 130,000+\$ 60,000=\$ 190,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 190,000 \div 20,000$ machine-hours $=\$ 9.50$ per machine-hour
b. Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.50$ per machine-hour $\times 30$ machine-hours $=\$ 285$
C.

```
Direct materials
Direct labor 1,170
Manufacturing overhead applied
Total cost of Job K789
d.
Total cost of Job K789 (a) $ 2,230
Number of units (b)
Unit product cost (a) \div (b)
270) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 252,000+(\$ 2.90\) per machine-hour \(\times 30,000\) machine-hours \()=\) \(\$ 252,000+\$ 87,000=\$ 339,000\)
b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 339,000 \div 30,000\) machine-hours \(=\$ 11.30\) per machine-hour
c. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.30\) per machine-hour \(\times 210\) machine-hours \(=\$ 2,373\)
d.
```

Direct materials
\$ 665
Direct labor 6,720
Manufacturing overhead applied
Total cost of Job T506
e.
Total cost of Job T506 (a) \$ 9,758
Number of units (b)
Unit product cost (a) $\div(\mathrm{b})$
f.
Unit product cost for Job T506 \$ 139.40
Markup ($20 \% \times \$ 139.40$)
Selling price
271) a. Estimated total manufacturing overhead cost $=$ Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 76,000+(\$ 2.10$ per direct labor-hour $\times 10,000$ direct laborhours) $=\$ 76,000+\$ 21,000=\$ 97,000$
b. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=\$ 97,000$ $\div 10,000$ direct labor-hours $=\$ 9.70$ per direct labor-hour
c. Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.70$ per direct labor-hour $\times 270$ direct labor-hours $=\$ 2,619$
d.

```
Direct materials $ 590
```

Direct labor 6,480
Manufacturing overhead applied
Total cost of Job X701
272) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 258,000+(\$ 2.00$ per direct labor-hour $\times 30,000$ direct laborhours) $=\$ 258,000+\$ 60,000=\$ 318,000$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 318,000 \div 30,000$ direct labor-hours $=\$ 10.60$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 10.60$ per direct labor-hour $\times 250$ direct labor-hours $=\$ 2,650$
Direct materials \quad \$ 645

Direct labor
Manufacturing overhead applied
Total cost of Job P660
Total cost of Job P660 (a)
Number of units (b)
Unit product cost (a) \div (b)
Unit product cost for Job P 660
Markup (20\% × \$265.90)
Selling price
273) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \times Estimated total amount of the allocation base $)=\$ 215,000+(\$ 3.80$ per machine-hour $\times 50,000$ machine-hours $)=$ $\$ 215,000+\$ 190,000=\$ 405,000$
b. Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the allocation base $=$ $\$ 405,000 \div 50,000$ machine-hours $=\$ 8.10$ per machine-hour
c. Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.10$ per machine-hour $\times 240$ machine-hours $=\$ 1,944$
d.

```
Direct materials
Direct labor 8,880
Manufacturing overhead applied
Total cost of Job T496
e.

Total cost of Job T496 (a)
\$ 11,559
Number of units (b)
Unit product cost (a) \(\div(b)\)
274) Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 525,000+(\$ 2.30\) per machine-hour \(\times 70,000\) machine-hours \()=\) \(\$ 525,000+\$ 161,000=\$ 686,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 686,000 \div 70,000\) machine-hours \(=\$ 9.80\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.80\) per machinehour \(\times 80\) machine-hours \(=\$ 784\)

Manufacturing overhead applied
Total cost of Job P987
Total cost of Job P987 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
275) Estimated total manufacturing overhead cost \(=\) Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 238,000+(\$ 2.70\) per direct labor-hour \(\times 70,000\) direct laborhours) \(=\$ 238,000+\$ 189,000=\$ 427,000\)

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 427,000 \div 70,000\) direct labor-hours \(=\$ 6.10\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.10\) per direct labor-hour \(\times 200\) direct labor-hours \(=\$ 1,220\)
Direct materials
Direct labor
Manufacturing overhead applied
Total cost of Job P873
Total cost of Job P873 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
276) a.

Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 88,000+(\$ 3.20\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 88,000+\$ 32,000=\$ 120,000\)
b.

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 120,000 \div 10,000\) machine-hours \(=\$ 12.00\) per machine-hour
c.

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.00\) per machinehour \(\times 150\) machine-hours \(=\$ 1,800\)
d.

Direct materials
Direct labor 3,900
Manufacturing overhead applied
Total cost of Job K418
e.

Total cost of Job K418 (a)
Number of units (b)
Unit product cost (a) \(\div(b)\)
f.

Unit product cost for Job K418
Markup (30\% × \$125.60)
Selling price
277) a. Estimated total manufacturing overhead cost = Estimated total fixed manufacturing overhead cost + (Estimated variable overhead cost per unit of the allocation base \(\times\) Estimated total amount of the allocation base \()=\$ 91,000+(\$ 2.40\) per machine-hour \(\times 10,000\) machine-hours \()=\) \(\$ 91,000+\$ 24,000=\$ 115,000\)
b. Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the allocation base \(=\) \(\$ 115,000 \div 10,000\) machine-hours \(=\$ 11.50\) per machine-hour
c. Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 11.50\) per machine-hour \(\times 120\) machine-hours \(=\$ 1,380\)
d.
```

Direct materials
Direct labor 3,720
Manufacturing overhead applied
Total cost of Job K373

Total cost of Job K373 (a) \$ 5,745
Number of units (b)
Unit product cost (a) $\div(b)$
278) Molding Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.50 18,000
per MH $\times 12,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
$\$ 44,400$

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b)

Customizing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.00 5,600 per $\mathrm{MH} \times 2,800 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
\$14,840
$2,800 \mathrm{MHs}$

Departmental predetermined overhead rate (a) \div (b)
Manufacturing overhead applied to Job C:
Molding ($\$ 3.70$ per $\mathbf{M H} \times 2,500 \mathrm{MHs}$) \quad 9,250

Customizing (\$5.30 per MH $\times 1,800 \mathrm{MHs}$)
Total manufacturing overhead applied
9,540
\$ 18,790
Manufacturing overhead applied to Job M:
Molding (\$3.70 per MH $\times 9,500 \mathrm{MHs}$) $\mathbf{~} \mathbf{~} \mathbf{~ 3 5 , 1 5 0}$
Customizing (\$5.30 per MH $\times 1,000 \mathrm{MHs}$)
Total manufacturing overhead applied
The selling price for Job C would be calculated as follows:

Direct materials	$\$ 15,800$
Direct labor cost	22,600
Manufacturing overhead applied	18,790
Total manufacturing cost	$\$ 57,190$
Markup (20\%)	11,438
Selling price	$\$ 68,628$

The selling price for Job M would be calculated as follows:
Direct materials $\quad \$ 9,300$

Direct labor cost 9,500
Manufacturing overhead applied
Total manufacturing cost
40,450
$\$ 59,250$

Markup (20\%)
Selling price
$\frac{11,850}{\$ 71,100}$
279) Molding Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.20 3,600
per $\mathrm{MH} \times 3,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a) \$19,500

Estimated total machine-hours (b) 3,000 MHs
Departmental predetermined overhead rate (a) \div (b) $\$ 6.50$ per MH

Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$2.40
per MH $\times 2,000 \mathrm{MHs})$
Estimated total manufacturing overhead cost (a)
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) $\div(b)$

Manufacturing overhead applied to Job C:

Molding (\$6.50 per MH $\times 2,000 \mathrm{MHs}$) \quad 13,000
Customizing (\$4.50 per MH $\times 800 \mathrm{MHs}$)
Total manufacturing overhead applied
16,600
Manufacturing overhead applied to Job M:

Molding (\$6.50 per MH $\times 1,000 \mathrm{MHs}$) \quad (6,500
Customizing (\$4.50 per MH $\times 1,200 \mathrm{MHs}$)
Total manufacturing overhead applied

5,400
\$11,900

The selling price for Job C would be calculated as follows:
Direct materials \$ 15,600
Direct labor cost 25,100
Manufacturing overhead applied
Total manufacturing cost
Markup (20\%)
Selling price

16,600
$\$ 57,300$
11,460
$\$ 68,760$

The selling price for Job M would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (20\%)
$\$ 8,600$
8, 300
11,900
\$28,800
5,760
280) Forming Department:

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 102,400+(\$ 1.90$ per machine-hour $\times 16,000$ machine-hours $)$
$=\$ 102,400+\$ 30,400=\$ 132,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 132,800 \div 16,000$ machine-hours $=\$ 8.30$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 8.30$ per machinehour $\times 50$ machine-hours $=\$ 415$

Assembly Department:
Assembly Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)

$$
\begin{aligned}
& =\$ 66,000+(\$ 3.80 \text { per direct labor-hour } \times 6,000 \text { direct labor-hours }) \\
& =\$ 66,000+\$ 22,800=\$ 88,800
\end{aligned}
$$

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 88,800 \div 6,000$ direct labor-hours $=\$ 14.80$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.80$ per direct labor-hour $\times 40$ direct labor-hours $=\$ 592$

Overhead applied to Job A950
Forming Department
Assembly Department
Total

$\$ 415$
592
$\$ 1,007$

281) a. Milling Department:

Milling Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 91,800+(\$ 2.00$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 91,800+\$ 34,000=\$ 125,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 125,800 \div 17,000$ machinehours $=\$ 7.40$ per machine-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.40$ per machinehour $\times 70$ machine-hours $=\$ 518$

Finishing Department:
Finishing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct laborhours in the department)
$=\$ 64,200+(\$ 3.40$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 64,200+\$ 20,400=\$ 84,600$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 84,600 \div 6,000$ direct labor-hours $=\$ 14.10$ per direct labor-hour
Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.10$ per direct labor-hour $\times 40$ direct labor-hours $=\$ 564$

Overhead applied to Job M565

Milling Department	$\$ 518$
Finishing Department	564
Total	$\$ 1,082$

b.

Milling Finishing Total
Direct materials
Direct labor
Manufacturing overhead applied Total cost of Job M565
c.

Total cost of Job M565
Markup (\$3,892.00 $\times 20 \%$)
Selling price
$\$ 3,892.00$
$\begin{array}{r}778.40 \\ \hline \$ 4,670.40 \\ \hline\end{array}$

282) Forming Department:

Forming Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 91,200+(\$ 2.10$ per machine-hour $\times 16,000$ machine-hours $)$
$=\$ 91,200+\$ 33,600=\$ 124,800$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 124,800 \div 16,000$ machine-hours $=\$ 7.80$ per machine-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 7.80$ per machinehour $\times 50$ machine-hours $=\$ 390$

Customizing Department:
Customizing Department overhead cost $=$ Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)
$=\$ 99,000+(\$ 3.10$ per direct labor-hour $\times 9,000$ direct labor-hours $)$
$=\$ 99,000+\$ 27,900=\$ 126,900$
Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 126,900 \div 9,000$ direct labor-hours $=\$ 14.10$ per direct labor-hour

Overhead applied to a particular job $=$ Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 14.10$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 705$

Overhead applied to Job M109
Forming Department
Customizing Department
Total

Direct materials
Direct labor
Manufacturing overhead applied Total cost of Job M109

Forming
Customizing
Total
\$ 915
$\$ 620$
\$ 390

$\$ 355$	$\$ 1,270$
$\$ 1,550$	2,170
$\$ 705$	1,095
	$\$ 4,535$

\$1,550 2,170
\$ 705
283) a. Casting Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \times Total machine-hours in the department)
$=\$ 119,000+(\$ 2.10$ per machine-hour $\times 17,000$ machine-hours $)$
$=\$ 119,000+\$ 35,700=\$ 154,700$
b. Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \times Total direct labor-hours in the department)
$=\$ 51,000+(\$ 3.10$ per direct labor-hour $\times 6,000$ direct labor-hours $)$
$=\$ 51,000+\$ 18,600=\$ 69,600$

c. Casting Department:

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 154,700 \div 17,000$ machine-hours $=\$ 9.10$ per machine-hour

d. Assembly Department:

Predetermined overhead rate $=$ Estimated total manufacturing overhead cost \div Estimated total amount of the $=\$ 69,600 \div 6,000$ direct labor-hours $=\$ 11.60$ per direct labor-hour
e. Casting Department: Overhead applied to a particular job = Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 9.10$ per machine-hour $\times 50$ machine-hours $=\$ 455$
Assembly Department: Overhead applied to a particular job = Predetermined overhead rate \times Amount of the allocation base incurred by the job $=\$ 11.60$ per direct labor-hour $\times 50$ direct labor-hours $=\$ 580$

Overhead applied to Job A182

b.

The overhead applied to Job L is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 7.10$ per $\mathrm{MH} \times(2,750 \mathrm{MHs}+4,750 \mathrm{MHs})$
$=\$ 7.10$ per $\mathrm{MH} \times(7,500 \mathrm{MHs})$
$=\$ 53,250$
c.

Job L's manufacturing cost:
Direct materials $\quad \$ 9,400$
Direct labor cost 9,700
Manufacturing overhead applied
Total manufacturing cost
d.

The selling price for Job L:
Total manufacturing cost
\$ 72,350
Markup (80\%)
Selling price

53,250
$\$ 72,350$
e.

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$ 8,000
Estimated variable manufacturing overhead (\$3.00 12.000
per MH $\times 4,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a) \$20,000

Estimated total machine-hours (b) 4,000 MHs
Departmental predetermined overhead rate (a) $\div(b) \quad \$ 5.00$ per MH f.

Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$6.00 36,000
per MH $\times 6,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
$\$ 51,000$

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \div (b) $\quad \$ 8.00 \mathrm{MHs}$
per MH

Manufacturing overhead applied to Job L:
Forming ($\$ 5.00$ per $\mathrm{MH} \times 2,750 \mathrm{MHs}$)
\$ 13,750
Customizing (\$8.50 per MH $\times 4,750 \mathrm{MHs}$)
40,375
Total manufacturing overhead applied
h.

The selling price for Job L would be calculated as follows:
Direct materials \$ 9,400
Direct labor cost 9,700
Manufacturing overhead applied
Total manufacturing cost
Markup (80\%)
Selling price
54,125
$\$ 73,225$
285) a.

The first step is to calculate the estimated total overhead costs in the two departments.

Forming

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.70 per MH \times 9,000 MHs)
Estimated total manufacturing overhead cost $\quad \$ \quad 65,700$

Customizing
Estimated fixed manufacturing overhead \$ 2,600
Estimated variable manufacturing overhead (\$2.10 per MH \times 2,100
1,000 MHs)
Estimated total manufacturing overhead cost \$ 4,700
The second step is to combine the estimated manufacturing overhead costs in the two departments $(\$ 65,700+\$ 4,700=\$ 70,400)$ to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
$\$ 70,400$
$\begin{array}{lr}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 7.04 \mathrm{per} \mathrm{MH}\end{array}$
b.

The overhead applied to Job L is calculated as follows:
Overhead applied to a particular job $=$ Predetermined overhead rate \times
Machine-hours incurred by the job
$=\$ 7.04$ per $\mathrm{MH} \times(2,900 \mathrm{MHs}+600 \mathrm{MHs})$
$=\$ 7.04$ per $\mathrm{MH} \times(3,500 \mathrm{MHs})$
$=\$ 24,640$
C.

Job L's manufacturing cost:	
Direct materials	$\$ 6$,
Direct labor cost	8,
Manufacturing overhead applied	24,
Total manufacturing cost	
d.	
\quad The selling price for Job L:	$\$ 40,0$
Total manufacturing cost	32,040
Markup (80\%)	$\$ 72,072$

e.

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead $\$ 50,400$
Estimated variable manufacturing overhead (\$1.70 per 15,300 MH $\times 9,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a) \$65,700

Estimated total machine-hours (b) 9,000 MHs
Departmental predetermined overhead rate (a) \div (b) $\$ 7.30$ per MH f.

Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead
$\$ 2,600$

Estimated variable manufacturing overhead (\$2.10 per 2,100 $\mathrm{MH} \times 1,000 \mathrm{MHs}$)
Estimated total manufacturing overhead cost (a)
$\$ 4,700$

```
Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 4.70\) per MH g.

Manufacturing overhead applied to Job L:
Forming ( \(\$ 7.30\) per MH \(\times 2,900 \mathrm{MHs}\) ) \(\$ 21,170\)
Customizing ( \(\$ 4.70\) per MH \(\times 600 \mathrm{MHs}\) )
Total manufacturing overhead applied \(\quad \$ 23,990\)
h.

The selling price for Job L would be calculated as follows:
Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup ( \(80 \%\) )
Selling price
286) a.
Machining Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.90 per 1,900
MH \(\times 1,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
\$ 6,100

Estimated total machine-hours (b)
Departmental predetermined overhead rate \((a) \div\) (b)
\[
\$ 4,200
\]
b. Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead
\(\$ 8,800\)

Estimated variable manufacturing overhead (\$2.90 per 11,600
MH \(\times 4,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
4,000 MHs
Departmental predetermined overhead rate (a) \(\div(\mathbf{b}) \quad \$ 5.10\) per MH
c. Manufacturing overhead applied to Job E:

Machining ( \(\$ 6.10\) per MH \(\times 700 \mathrm{MHs}\) )
\(\$ 4,270\)

Finishing (\$5.10 per MH \(\times 1,600 \mathrm{MHs})\)
Total manufacturing overhead applied
\begin{tabular}{r}
8,160 \\
\hline\(\$ 12,430\)
\end{tabular}
d. Manufacturing overhead applied to Job G:

Machining (\$6.10 per MH \(\times 300 \mathrm{MHs}\) )
Finishing ( \(\$ 5.10\) per \(\mathrm{MH} \times 2,400 \mathrm{MHs})\)
Total manufacturing overhead applied
\$ 1,830
12,240
\$ 14, 070
e.

The selling price for Job E would be calculated as follows:
Direct materials
\$ 11,800
Direct labor cost
19,200
Manufacturing overhead applied
Total manufacturing cost
Markup (80\%)
Selling price

12,430
\$ 43,430
\(\begin{array}{r}34,744 \\ \hline \$ 78,174\end{array}\)
f.

The selling price for Job G would be calculated as follows:
Direct materials
Direct labor cost
\(\$ 8,000\)

Manufacturing overhead applied
Total manufacturing cost
Markup (80\%)
Selling price
g.

Total manufacturing cost Job E
\$ 43,430
Total manufacturing cost Job G
Cost of goods sold
\begin{tabular}{r}
\(\$ 8,000\) \\
6,700 \\
14,070 \\
\hline\(\$ 28,770\) \\
23,016 \\
\hline\(\$ 51,786\) \\
\hline \hline
\end{tabular}
\(\begin{array}{r}28,770 \\ \hline \$ 72,200\end{array}\)
287) a. Casting Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 110,000+(\$ 1.60\) per machine-hour \(\times 20,000\) machine-hours \()\)
\(=\$ 110,000+\$ 32,000=\$ 142,000\)
b.

Assembly Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct laborhours in the department)
\(=\$ 65,400+(\$ 4.50\) per direct labor-hour \(\times 6,000\) direct labor-hours \()\)
\(=\$ 65,400+\$ 27,000=\$ 92,400\)
c.

Casting Department:
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 142,000 \div 20,000\) machine-hours \(=\$ 7.10\) per machine-hour
d.

Assembly Department:
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 92,400 \div 6,000\) direct labor-hours \(=\$ 15.40\) per direct labor-hour
e.

Casting Department:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.10\) per machinehour \(\times 60\) machine-hours \(=\$ 426\)
f.

Assembly Department:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 15.40\) per direct
labor-hour \(\times 40\) direct labor-hours \(=\$ 616\)
\begin{tabular}{|c|c|c|c|}
\hline & Casting & Assembly & Total \\
\hline Direct materials & \$ 950 & \$ 305 & \$ 1,255 \\
\hline Direct labor & \$ 460 & \$ 920 & 1,380 \\
\hline Manufacturing overhead applied & \$ 426 & \$ 616 & 1,042 \\
\hline Total cost of Job K246 & & & \$ 3,677 \\
\hline \multicolumn{4}{|l|}{h .} \\
\hline Total cost of Job K246 & & \$ & 3,677.00 \\
\hline Markup ( \(\$ 3,677.00 \times 40 \%\) ) & & & 1,470.80 \\
\hline Selling price & & \$ & 5,147.80 \\
\hline 288) a. & & & \\
\hline
\end{tabular}

The first step is to calculate the estimated total overhead costs in the two departments.

\section*{Forming}

Estimated fixed manufacturing overhead
\(\$ 36,800\)
Estimated variable manufacturing overhead ( \(\$ 1.60\) per MH \(\times\) 12,800 \(8,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost
\[
\$ 49,600
\]

Customizing
Estimated fixed manufacturing overhead
\$ 4,800
Estimated variable manufacturing overhead ( \(\$ 2.90\) per MH \(\times\)
5,800 2,000 MHs)
Estimated total manufacturing overhead cost
\[
\$ 10,600
\]

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 49,600+\$ 10,600=\$ 60,200)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\begin{tabular}{ll} 
Estimated total machine hours & \(10,000 \mathrm{MHs}\) \\
Predetermined overhead rate & \(\$ 6.02 \mathrm{per} \mathrm{MH}\)
\end{tabular}

The overhead applied to Job D is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 6.02\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs}+800 \mathrm{MHs})\)
\(=\$ 6.02\) per \(\mathrm{MH} \times(6,200 \mathrm{MHs})\)
= \$37,324
The selling price for Job D :
Direct materials
\begin{tabular}{r}
\(\$ 15,600\) \\
19,100 \\
37,324 \\
\hline\(\$ 72,024\) \\
36,012 \\
\hline\(\$ 108,036\)
\end{tabular}
b.

The overhead applied to Job K is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.02\) per \(\mathrm{MH} \times(2,600 \mathrm{MHs}+1,200 \mathrm{MHs})\)
\(=\$ 6.02\) per \(\mathrm{MH} \times(3,800 \mathrm{MHs})\)
\(=\$ 22,876\)
Job K's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
The selling price for Job K:
Total manufacturing cost
Markup (50\%)
Selling price
C.

Forming Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\(\$ 36,800\)
\begin{tabular}{|c|c|}
\hline Estimated variable manufacturing overhead (\$1.60 per \(\mathrm{MH} \times 8,000 \mathrm{MHs}\) ) & 12,800 \\
\hline Estimated total manufacturing overhead cost (a) & \$49,600 \\
\hline Estimated total machine-hours (b) & 8,000 MHs \\
\hline Departmental predetermined overhead rate (a) \(\div\) (b) & \$ 6.20 per MH \\
\hline \multicolumn{2}{|l|}{Customizing Department predetermined overhead rate:} \\
\hline Estimated fixed manufacturing overhead & \$4,800 \\
\hline Estimated variable manufacturing overhead (\$2.90 per MH \(\times 2,000 \mathrm{MHs}\) ) & 5,800 \\
\hline Estimated total manufacturing overhead cost (a) & \$10,600 \\
\hline Estimated total machine-hours (b) & 2,000 MHs \\
\hline Departmental predetermined overhead rate (a) \(\div(b)\) & \$ 5.30 per MH \\
\hline \multicolumn{2}{|l|}{Manufacturing overhead applied to Job D:} \\
\hline Forming (\$6.20 per MH \(\times 5,400 \mathrm{MHs}\) ) & \$ 33,480 \\
\hline Customizing (\$5.30 per MH \(\times 800 \mathrm{MHs}\) ) & 4,240 \\
\hline Total manufacturing overhead applied & \$ 37,720 \\
\hline
\end{tabular}

The selling price for Job D would be calculated as follows:
\begin{tabular}{lr} 
Direct materials & \(\$ 15,600\) \\
Direct labor cost & 19,100 \\
Manufacturing overhead applied & 37,720 \\
Total manufacturing cost & \(\$ 72,420\) \\
Markup (50\%) & 36,210 \\
Selling price & \(\$ 108,630\) \\
\hline \hline
\end{tabular}
d.

Manufacturing overhead applied to Job K:
Forming (\$6.20 per MH \(\times 2,600 \mathrm{MHs}\) )
\$ 16,120

Customizing (\$5.30 per MH \(\times 1,200 \mathrm{MHs}\) )
Total manufacturing overhead applied
6,360
\(\$ 22,480\)

The selling price for Job K would be calculated as follows:
Direct materials
Direct labor cost
\[
\$ 6,900
\]

8,700
Manufacturing overhead applied
Total manufacturing cost
Markup (50\%)
Selling price
19,040
\$57,120

The first step is to calculate the estimated total overhead costs in the two departments.

Molding


The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 34,000+\$ 56,400=\$ 90,400)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \(\$ 90,400\)
\begin{tabular}{ll} 
Estimated total machine hours & \(10,000 \mathrm{MHs}\) \\
Predetermined overhead rate & \(\$ 9.04 \mathrm{per} \mathrm{MH}\)
\end{tabular}
b.

The overhead applied to Job E is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 9.04\) per \(\mathrm{MH} \times(2,500 \mathrm{MHs}+1,250 \mathrm{MHs})\)
\(=\$ 9.04\) per \(\mathrm{MH} \times(3,750 \mathrm{MHs})\)
\(=\$ 33,900\)
c.

Job E's manufacturing cost:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
\(\$ 22,500\)
22,700
33,900
\$79,100
d.

The selling price for Job E:
Total manufacturing cost
\[
\$ 79,100
\]

Markup (80\%)
Selling price

\author{
\$142,380
}
e.

Molding Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$3.00
12,000
per \(\mathrm{MH} \times 4,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a) \$34,000
Estimated total machine-hours (b)
4,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 8.50\) per MH
f.

Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\(\$ 20,400\)

Estimated variable manufacturing overhead (\$6.00
36,000
per MH \(\times 6,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
\(\$ 56,400\)

Estimated total machine-hours (b)
6,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 9.40\) per MH
g.

Manufacturing overhead applied to Job E:
Molding (\$8.50 per MH \(\times 2,500 \mathrm{MHs}\) ) \$ 21,250
Assembly (\$9.40 per MH \(\times 1,250 \mathrm{MHs}\) )
Total manufacturing overhead applied
\begin{tabular}{r}
11,750 \\
\hline\(\$ 33,000\)
\end{tabular}
h.

The selling price for Job E would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (80\%)
\(\$ 22,500\)
22,700
33,000
\(\$ 78,200\)
62,560

The first step is to calculate the estimated total overhead costs in the two departments.

Molding

Estimated fixed manufacturing overhead
\$ 29,000
Estimated variable manufacturing overhead (\$1.20 per MH \(\times\) 5,000 MHs)
Estimated total manufacturing overhead cost
\$ 35,000
Assembly
Estimated fixed manufacturing overhead \$ 13,500
Estimated variable manufacturing overhead (\$2.30 per MH \(\times \quad 11,500\) 5,000 MHs)
Estimated total manufacturing overhead cost
\$ 25,000

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 35,000+\$ 25,000=\$ 60,000)\) to calculate the plantwide predetermined overhead rate as follow: Estimated total manufacturing overhead cost \(\$ 60,000\)
\begin{tabular}{ll} 
Estimated total machine hours & \(10,000 \mathrm{MHs}\) \\
Predetermined overhead rate & \(\$ 6.00\) per MH
\end{tabular}
b.

The overhead applied to Job E is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.00\) per \(\mathrm{MH} \times(3,400 \mathrm{MHs}+2,000 \mathrm{MHs})\)
\(=\$ 6.00\) per \(\mathrm{MH} \times(5,400 \mathrm{MHs})\)
\(=\$ 32,400\)
c.

Job E's manufacturing cost:
Direct materials \(\quad \$ 14,300\)
Direct labor cost 22,800
Manufacturing overhead applied Total manufacturing cost

32,400
\$ 69,500
d.

The selling price for Job E:
Total manufacturing cost
\$ 69,500
Markup (60\%)
Selling price

41,700
\$111,200
e.

Molding Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\(\$ 29,000\)

Estimated variable manufacturing overhead (\$1.20
6,000
per \(\mathrm{MH} \times 5,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a) \$35,000
Estimated total machine-hours (b)
5,000 MHs
Departmental predetermined overhead rate \((\mathrm{a}) \div(\mathrm{b}) \quad \$ 7.00\) per MH
f.

Assembly Department predetermined overhead rate:
Estimated fixed manufacturing overhead
\$13,500

Estimated variable manufacturing overhead (\$2.30
11,500
per \(\mathrm{MH} \times 5,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)
\[
\$ 25,000
\]

Estimated total machine-hours (b)
5,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 5.00\) per MH
g.

Manufacturing overhead applied to Job E:
Molding (\$7.00 per MH \(\times 3,400 \mathrm{MHs}) \quad \$ 23,800\)
Assembly (\$5.00 per MH \(\times 2,000 \mathrm{MHs}\) )
Total manufacturing overhead applied
h.

The selling price for Job E would be calculated as follows:

Direct materials
Direct labor cost
Manufacturing overhead applied
Total manufacturing cost
Markup (60\%)
\$ 14, 300
22,800
33, 800
\(\$ 70,900\)
42,540
291) Machining Department:

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 67,500+(\$ 1.50\) per machine-hour \(\times 15,000\) machine-hours \()\)
\(=\$ 67,500+\$ 22,500=\$ 90,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 90,000 \div 15,000\) machine-hours \(=\$ 6.00\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 6.00\) per machinehour \(\times 80\) machine-hours \(=\$ 480\)

Customizing Department:
Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department)
\(=\$ 76,000+(\$ 3.00\) per direct labor-hour \(\times 5,000\) direct labor-hours \()\)
\(=\$ 76,000+\$ 15,000=\$ 91,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 91,000 \div 5,000\) direct labor-hours \(=\$ 18.20\) per direct labor-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 18.20\) per direct labor-hour \(\times 70\) direct labor-hours \(=\$ 1,274\)

Overhead applied to Job K369
\begin{tabular}{lr} 
Machining Department & \(\$ 480\) \\
Customizing Department & 1,274 \\
Total & \(\$ 1,754\) \\
\hline \hline
\end{tabular}
292) Machining Department:

Machining Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 98,800+(\$ 2.10\) per machine-hour \(\times 19,000\) machine-hours \()\)
\(=\$ 98,800+\$ 39,900=\$ 138,700\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 138,700 \div 19,000\) machine-hours \(=\$ 7.30\) per machine-hour

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 7.30\) per machinehour \(\times 90\) machine-hours \(=\$ 657\)

Customizing Department:
Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department)
\(=\$ 84,600+(\$ 3.60\) per direct labor-hour \(\times 9,000\) direct labor-hours \()\)
\(=\$ 84,600+\$ 32,400=\$ 117,000\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 117,000 \div 9,000\) direct labor-hours \(=\$ 13.00\) per direct labor-hour
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.00\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 650\)

Overhead applied to Job K369

Machining Department Customizing Department Total

\footnotetext{
\$ 657
650
\(\$ 1,307\)
}
293) a.

The first step is to calculate the estimated total overhead costs in the two departments.

Machining
Estimated fixed manufacturing overhead \(\quad \$ 8,400\)
Estimated variable manufacturing overhead (\$3.00 per MH \(\times\) 21,000 7,000 MHs)

Estimated total manufacturing overhead cost
Finishing
\begin{tabular}{lr} 
Estimated fixed manufacturing overhead & \(\$ 11,700\) \\
Estimated variable manufacturing overhead (\$5.00 per MH \(\times\) & 15,000 \\
\(3,000 \mathrm{MHs})\) & \\
Estimated total manufacturing overhead cost & \(\$ 26,700\)
\end{tabular}

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 29,400+\$ 26,700=\$ 56,100)\) to calculate the plantwide predetermined overhead rate as follows:

Estimated total manufacturing overhead cost

Estimated total machine hours

Predetermined overhead rate
\$56, 100
\(10,000 \mathrm{MHs}\)
b.

The overhead applied to Job B is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.61\) per \(\mathrm{MH} \times(5,000 \mathrm{MHs}+500 \mathrm{MHs})\)
\(=\$ 5.61\) per \(\mathrm{MH} \times(5,500 \mathrm{MHs})\)
\(=\$ 30,855\)
c.

The overhead applied to Job K is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.61\) per \(\mathrm{MH} \times(2,000 \mathrm{MHs}+2,500 \mathrm{MHs})\)
\(=\$ 5.61\) per \(\mathrm{MH} \times(4,500 \mathrm{MHs})\)
\(=\$ 25,245\)
d.

Machining Department predetermined overhead rate:
Estimated fixed manufacturing overhead \$8,400
Estimated variable manufacturing overhead (\$3.00
21,000
per MH \(\times 7,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a) \$29,400

Estimated total machine-hours (b)
7,000 MHs
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 4.20\) per MH
e.

Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$5.00 15,000
per \(\mathrm{MH} \times 3,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate \((\mathrm{a}) \div(\mathrm{b}) \quad \$ 8.90\) per MH

\section*{f.}

Manufacturing overhead applied to Job B:
Machining ( \(\$ 4.20\) per \(\mathrm{MH} \times 5,000 \mathrm{MHs}\) )
\$ 21, 000
Finishing (\$8.90 per MH \(\times 500 \mathrm{MHs}\) )
Total manufacturing overhead applied \(\quad \$ 25,450\)
g.

Manufacturing overhead applied to Job K:
Machining ( \(\$ 4.20\) per \(\mathbf{M H} \times 2,000 \mathrm{MHs}) \quad \$ 8,400\)
Finishing (\$8.90 per MH \(\times 2,500 \mathrm{MHs})\)
22,250
Total manufacturing overhead applied
294) a.

The first step is to calculate the estimated total overhead costs in the two departments.

Machining

Estimated fixed manufacturing overhead
\$ 20,000
Estimated variable manufacturing overhead (\$1.40 per MH \(\times\) 5,600 \(4,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost
\[
\$ 25,600
\]

\section*{Finishing}

Estimated fixed manufacturing overhead \(\quad \$ 2,100\)
Estimated variable manufacturing overhead (\$2.80 per MH \(\times \quad 2,800\) \(1,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost
\(\$ 4,900\)
The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 25,600+\$ 4,900=\$ 30,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost
\(\$ 30,500\)
Estimated total machine hours
5,000 MHs
Predetermined overhead rate
\$ 6.10 per MH
b.

The overhead applied to Job B is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.10\) per \(\mathrm{MH} \times(2,700 \mathrm{MHs}+400 \mathrm{MHs})\)
\(=\$ 6.10\) per \(\mathrm{MH} \times(3,100 \mathrm{MHs})\)
\(=\$ 18,910\)
c.

The overhead applied to Job K is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 6.10\) per \(\mathrm{MH} \times(1,300 \mathrm{MHs}+600 \mathrm{MHs})\)
\(=\$ 6.10\) per \(\mathrm{MH} \times(1,900 \mathrm{MHs})\)
\(=\$ 11,590\)
d.

Machining Department predetermined overhead rate:
Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead (\$1.40 5,600
per MH \(\times 4,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a) \$25,600

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 6.40\) per MH
e.

Finishing Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.80 2,800
per \(\mathrm{MH} \times 1,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 4.90\) per MH

\section*{f.}

Manufacturing overhead applied to Job B:

Machining ( \(\$ 6.40\) per MH \(\times 2,700 \mathrm{MHs}\) )
Finishing ( \(\$ 4.90\) per MH \(\times 400 \mathrm{MHs}\) )
Total manufacturing overhead applied
\$ 17,280
1,960
\$ 19,240
g.

Manufacturing overhead applied to Job K:
Machining ( \(\$ 6.40\) per MH \(\times 1,300 \mathrm{MHs}\) )
Finishing ( \(\$ 4.90\) per MH \(\times 600 \mathrm{MHs}\) )
Total manufacturing overhead applied
\$ 8,320
2,940
\$11,260
295) a. Assembly Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department)
\(=\$ 76,300+(\$ 3.10\) per direct labor-hour \(\times 7,000\) direct labor-hours \()\)
\(=\$ 76,300+\$ 21,700=\$ 98,000\)
b.

Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 100,800+(\$ 1.70\) per machine-hour \(\times 16,000\) machine-hours \()\)
\(=\$ 100,800+\$ 27,200=\$ 128,000\)
Forming Department: Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 128,000 \div 16,000\) machine-hours \(=\$ 8.00\) per machine-hour c.

Forming Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.00\) per machine-hour \(\times 50\) machine-hours \(=\$ 400\)

Assembly Department: Predetermined overhead rate = Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 98,000\) \(\div 7,000\) direct labor-hours \(=\$ 14.00\) per direct labor-hour

Assembly Department: Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 14.00\) per direct labor-hour \(\times 40\) direct labor-hours \(=\$ 560\)

Overhead applied to Job X560

Forming Department
Assembly Department
Total
\begin{tabular}{r}
\(\$ 400\) \\
560 \\
\hline\(\$ 960\) \\
\hline
\end{tabular}
296) a.

The first step is to calculate the estimated total overhead costs in the two departments.
Molding
Estimated fixed manufacturing overhead \(\quad\) 5,100
Estimated variable manufacturing overhead (\$1.50 per MH \(\times \quad 1,500\)
1,000 MHs)
Estimated total manufacturing overhead cost \(\quad \$ 6,600\)
Customizing
Estimated fixed manufacturing overhead \$ 23,400
Estimated variable manufacturing overhead (\$2.50 per MH \(\times\) 22,500 9,000 MHs)
Estimated total manufacturing overhead cost \$ 45,900

The second step is to combine the estimated manufacturing overhead costs in the two departments \((\$ 6,600+\$ 45,900=\$ 52,500)\) to calculate the plantwide predetermined overhead rate as follow:
Estimated total manufacturing overhead cost \$52,500
\(\begin{array}{ll}\text { Estimated total machine hours } & 10,000 \mathrm{MHs} \\ \text { Predetermined overhead rate } & \$ 5.25 \mathrm{per} \mathrm{MH}\end{array}\)

The overhead applied to Job D is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Machine-hours incurred by the job
\(=\$ 5.25\) per \(\mathrm{MH} \times(700 \mathrm{MHs}+3,600 \mathrm{MHs})\)
\(=\$ 5.25\) per \(\mathrm{MH} \times(4,300 \mathrm{MHs})\)
= \$22,575
b.

The overhead applied to Job G is calculated as follows:
Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\)
Machine-hours incurred by the job
\(=\$ 5.25 \mathrm{per} \mathrm{MH} \times(300 \mathrm{MHs}+5,400 \mathrm{MHs})\)
\(=\$ 5.25\) per \(\mathrm{MH} \times(5,700 \mathrm{MHs})\)
= \$29,925
c.

Molding Department predetermined overhead rate:

Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$1.50 1,500
per \(\mathrm{MH} \times 1,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 6.60\) per MH

Customizing Department predetermined overhead rate:
Estimated fixed manufacturing overhead

Estimated variable manufacturing overhead (\$2.50 per MH \(\times 9,000 \mathrm{MHs}\) )
Estimated total manufacturing overhead cost (a)

Estimated total machine-hours (b)
Departmental predetermined overhead rate (a) \(\div(b) \quad \$ 5.10\) per MH Manufacturing overhead applied to Job D:
Molding ( \(\$ 6.60\) per MH \(\times 700 \mathrm{MHs}) \quad \$ 4,620\)
Customizing (\$5.10 per MH \(\times 3,600 \mathrm{MHs}\) )
Total manufacturing overhead applied
d.Manufacturing overhead applied to Job G:

Molding ( \(\$ 6.60\) per \(\mathbf{~ M H} \times 300 \mathrm{MHs}\) ) \(\$ 1,980\)
Customizing ( \(\$ 5.10\) per MH \(\times 5,400 \mathrm{MHs}\) ) 27,540
Total manufacturing overhead applied
297) a. Casting Department overhead cost = Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department)
\(=\$ 124,100+(\$ 2.30\) per machine-hour \(\times 17,000\) machine-hours \()\)
\(=\$ 124,100+\$ 39,100=\$ 163,200\)
b. Casting Department:

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 163,200 \div 17,000\) machine-hours \(=\$ 9.60\) per machine-hour
c. Casting Department:

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 9.60\) per machinehour \(\times 80\) machine-hours \(=\$ 768\)
298) a. Finishing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department)
\(=\$ 57,600+(\$ 4.00\) per direct labor-hour \(\times 6,000\) direct labor-hours \()\)
\(=\$ 57,600+\$ 24,000=\$ 81,600\)
b. Finishing Department:

Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 81,600 \div 6,000\) direct labor-hours \(=\$ 13.60\) per direct labor-hour

\section*{c. Finishing Department:}

Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 13.60\) per direct labor-hour \(\times 60\) direct labor-hours \(=\$ 816\)
299) a.Forming Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per machine-hour \(\times\) Total machine-hours in the department \()=\$ 119,700+(\$ 2.00\) per machinehour \(\times 19,000\) machine-hours)
\(=\$ 119,700+\$ 38,000=\$ 157,700\)
b. Customizing Department overhead cost \(=\) Fixed manufacturing overhead cost + (Variable overhead cost per direct labor-hour \(\times\) Total direct labor-hours in the department)
\(=\$ 67,200+(\$ 4.20\) per direct labor-hour \(\times 8,000\) direct labor-hours \()\)
\(=\$ 67,200+\$ 33,600=\$ 100,800\)
Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\$ 100,800 \div 8,000\) direct labor-hours \(=\$ 12.60\) per direct labor-hour
c. Forming Department: Predetermined overhead rate \(=\) Estimated total manufacturing overhead cost \(\div\) Estimated total amount of the \(=\) \(\$ 157,700 \div 19,000\) machine-hours \(=\$ 8.30\) per machine-hour

Forming Department: Overhead applied to a particular job = Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 8.30\) per machine-hour \(\times 50\) machine-hours \(=\$ 415\)

Customizing Department: Overhead applied to a particular job \(=\) Predetermined overhead rate \(\times\) Amount of the allocation base incurred by the job \(=\$ 12.60\) per direct labor-hour \(\times 50\) direct labor-hours \(=\$ 630\)

Overhead applied to Job K973
Forming Department
Customizing Department
Total
300)

Predetermined overhead rate (a)
Actual activity level (b)
Manufacturing overhead applied (a) \(\times\) (b)

Predetermined overhead rate (a)
Actual activity level (b)
\(\$ 23.40\) per direct labor-hour 27,100 direct labor-hours

Manufacturing overhead applied (a) \$634,140
\(\times\) (b)
302) Estimated total manufacturing overhead \(=\$ 1,533,180+(\$ 8.41\) per labor-hour \(\times 66,000\) labor-hours) \(=\$ 2,088,240\)
Predetermined overhead rate \(=\$ 2,088,240 \div 66,000\) labor-hours \(=\) \(\$ 31.64\) per labor-hour
303) Estimated total manufacturing overhead \(=\$ 705,220+(\$ 4.43\) per labor-hour \(\times 37,000\) labor-hours) \(=\$ 869,130\)
Predetermined overhead rate \(=\$ 869,130 \div 37,000\) labor-hours \(=\) \$23.49 per labor-hour
304) Estimated total manufacturing overhead \(=\$ 985,920+(\$ 9.99\) per labor-hour \(\times 78,000\) labor-hours) \(=\$ 1,765,140\)
Predetermined overhead rate \(=\$ 1,765,140 \div 78,000\) labor-hours \(=\) \(\$ 22.63\) per labor-hour
305) Estimated total manufacturing overhead \(=\$ 1,077,000+(\$ 8.82\) per machine-hour \(\times 50,000\) machine-hours) \(=\$ 1,518,000\)
Predetermined overhead rate \(=\$ 1,518,000 \div 50,000\) machine-hours \(=\) \(\$ 30.36\) per machine-hour

\section*{306) Cost Summary}
```

Direct materials \$ 48,870
Direct labor (\$13 per DLH * 405 DLHs) 5,265
Manufacturing overhead (\$11 per MH * 486 MHs) 5,346
Total product cost
Unit product cost

```

```

$\$ 22.03$

```

\section*{307) Cost Summary}
```

Direct materials
Direct labor ($\$ 15$ per DLH $\times 1,224$ DLHs)

$\$ 59,400$
18,360
42,840
$\$ 120,600$
$\$ 33.50$

```
```

