Chapter 2—Fundamental Economic Concepts

MULTIPLE CHOICE

- 1. A change in the level of an economic activity is desirable and should be undertaken as long as the marginal benefits exceed the _____.
 - a. marginal returns
 - b. total costs
 - c. marginal costs
 - d. average costs
 - e. average benefits

ANS: C PTS: 1

- 2. The level of an economic activity should be increased to the point where the _____ is zero.
 - a. marginal cost
 - b. average cost
 - c. net marginal cost
 - d. net marginal benefit
 - e. none of the above

ANS: D PTS: 1

- 3. The net present value of an investment represents
 - a. an index of the desirability of the investment
 - b. the expected contribution of that investment to the goal of shareholder wealth maximization
 - c. the rate of return expected from the investment
 - d. a and b only
 - e. a and c only

ANS: B PTS: 1

- 4. Generally, investors expect that projects with high expected net present values also will be projects with
 - a. low risk
 - b. high risk
 - c. certain cash flows
 - d. short lives
 - e. none of the above

ANS: B PTS: 1

- 5. An closest example of a risk-free security is
 - a. General Motors bonds
 - b. AT&T commercial paper
 - c. U.S. Government Treasury bills
 - d. San Francisco municipal bonds
 - e. an I.O.U. that your cousin promises to pay you \$100 in 3 months

ANS: C PTS: 1

162

Test Bank Chapter 2

- 6. The standard deviation is appropriate to compare the risk between two investments only if
 - a. the expected returns from the investments are approximately equal
 - b. the investments have similar life spans
 - c. objective estimates of each possible outcome is available
 - d. the coefficient of variation is equal to 1.0
 - e. none of the above

ANS: A PTS: 1

- 7. The approximate probability of a value occurring that is greater than one standard deviation from the mean is approximately (assuming a normal distribution)
 - a. 68.26%
 - b. 2.28%
 - c. 34%
 - d. 15.87%
 - e. none of the above

ANS: D PTS: 1

- 8. Based on risk-return tradeoffs observable in the financial marketplace, which of the following securities would you expect to offer higher expected returns than corporate bonds?
 - a. U.S. Government bonds
 - b. municipal bonds
 - c. common stock
 - d. commercial paper
 - e. none of the above

ANS: C PTS: 1

- 9. The primary difference(s) between the standard deviation and the coefficient of variation as measures of risk are:
 - a. the coefficient of variation is easier to compute
 - b. the standard deviation is a measure of relative risk whereas the coefficient of variation is a measure of absolute risk
 - c. the coefficient of variation is a measure of relative risk whereas the standard deviation is a measure of absolute risk
 - d. the standard deviation is rarely used in practice whereas the coefficient of variation is widely used
 - e. c and d

ANS: C PTS: 1

- 10. The _____ is the ratio of _____ to the _____.
 - a. standard deviation; covariance; expected value
 - b. coefficient of variation; expected value; standard deviation
 - c. correlation coefficient; standard deviation; expected value
 - d. coefficient of variation; standard deviation; expected value
 - e. none of the above

ANS: D PTS: 1

- 11. Sources of positive net present value projects include
 - a. buyer preferences for established brand names
 - b. economies of large-scale production and distribution
 - c. patent control of superior product designs or production techniques
 - d. a and b only
 - e. a, b, and c

ANS: E PTS: 1

- 12. Receiving \$100 at the end of the next three years is worth more to me than receiving \$260 right now, when my required interest rate is 10%.
 - a. True
 - b. False

ANS: B PTS: 1

13. The number of standard deviations z that a particular value of r is from the mean \hat{r} can be computed as $z = (r - \hat{n})/\sigma$. Suppose that you work as a commission-only insurance agent earning \$1,000 per week on average. Suppose that your standard deviation of weekly earnings is \$500. What is the probability that you zero in a week? Use the following brief z-table to help with this problem.

Probability
.0013
.0228
.1587
.5000

- a. 1.3% chance of earning nothing in a week
- b. 2.28% chance of earning nothing in a week
- c. 15.87% chance of earning nothing in a week
- d. 50% chance of earning nothing in a week
- e. none of the above

ANS: B PTS: 1

14. Consider an investment with the following payoffs and probabilities:

State of the Economy	Probability	Return
Stability	.50	1,000
Good Growth	.50	2,000

Determine the expected return for this investment.

- a. 1,300
- b. 1,500
- c. 1,700
- d. 2,000
- e. 3,000

ANS: B PTS: 1

Test Bank Chapter 2

15. Consider an investment with the following payoffs and probabilities:

State of the Economy	Probability	Return
GDP grows slowly	.70	1,000
GDP grow fast	.30	2,000

Let the expected value in this example be 1,300. How do we find the *standard deviation* of the investment?

a. $\sigma = \sqrt{\{(1000 - 1300)^2 + (2000 - 1300)^2\}}$

- b. $\sigma = \sqrt{\{(1000-1300) + (2000-1300)\}}$
- c. $\sigma = \sqrt{\{(.5)(1000-1300)^2 + (.5)(2000-1300)^2\}}$
- d. $\sigma = \sqrt{\{(.7)(1000-1300) + (.3)(2000-1300)\}}$
- e. $\sigma = \sqrt{\{(.7)(1000 1300)^2 + (.3)(2000 1300)^2\}}$

ANS: E PTS: 1

- 16. An investment advisor plans a portfolio your 85 year old risk-averse grandmother. Her portfolio currently consists of 60% bonds and 40% blue chip stocks. This portfolio is estimated to have an expected return of **6%** and with a standard deviation **12%**. What is the probability that she makes less than 0% in a year? [A portion of Appendix B1 is given below, where $z = (x \mu)/\sigma$, with μ as the mean and σ as the standard deviation.]
 - a. 2.28%
 - b. 6.68%
 - c. 15.87%
 - d. 30.85%
 - e. 50%

		Table	B1 for Z
		Ζ	Prob.
		-3	.0013
		-2.5	.0062
		-2.	.0228
		-1.5	.0668
		-1	.1587
		5	3085
		0	.5000
ANS: D	PTS: 1		

17. Two investments have the following expected returns (net present values) and standard deviations: PROJECT Expected Value Standard Deviation

PROJECT	Expected Value	Standard Devia
Q	\$100,000	\$20,000
Х	\$50,000	\$16,000

Based on the <u>Coefficient of Variation</u>, where the C.V. is the standard deviation dividend by the expected value.

- a. All coefficients of variation are always the same.
- b. Project Q is riskier than Project X
- c. Project X is riskier than Project Q
- d. Both projects have the same relative risk profile
- e. There is not enough information to find the coefficient of variation.
- ANS: C PTS: 1

PROBLEMS

1. Suppose that the firm's cost function is given in the following schedule (where Q is the level of output):

Output	Total
Q (units)	Cost
0	7
1	25
2	37
3	45
4	50
5	53
6	58
7	66
8	78
9	96
10	124

Determine the (a) marginal cost and (b) average total cost schedules

ANS:

		(a)	(b)
	Total	Marginal	Average Total
Output	Cost	Cost	Cost
		$\Delta(TC)$	TC
Q		ΔQ	Q
0	7		
1	25	18	25.00
2	37	12	18.50
3	45	8	15.00
4	50	5	12.50
5	53	3	10.60
6	58	5	9.67
7	66	8	9.43
8	78	12	9.75
9	96	18	10.67
10	124	28	12.40

PTS: 1

166

2.Complete the following table.

Output	Total Profit	Marginal Profit	Average Profit
0	-48	0	
1	-26		
2	-48 -26 -8		
3	6		
4	16		
5	22		
6	24		
7	22		
8	16		
9	6		
10	-8		

ANS:

Output	Total Profit	Marginal Profit	Average Profit
0	-48	0	
1	-26	22	-26.
2	-8	18	-4.
3	6	14	2.
4	16	10	4.
5	22	6	4.40
6	24	2	4.
7	22	-2	3.14
8	16	-6	2.
9	6	-10	0.67
10	-8	-14	-0.80

PTS: 1

3. A firm has decided to invest in a piece of land. Management has estimated that the land can be sold in 5 years for the following possible prices:

Price	Probability
10,000	.20
15,000	.20
20,000	.40
25,000	.10

Test Bank Chapter 2

- (a) Determine the expected selling price for the land.
- (b) Determine the standard deviation of the possible sales prices.
- (c) Determine the coefficient of variation.

ANS:

(a)

$$\bar{\mathbf{r}} = \sum_{j=1}^{n} r_{j} P_{j}$$

$$= 10,000(.20) + 15,000(.30) + 20,000(.40) + 25,000(.10)$$

$$= \$17,000$$
(b)

$$\sigma = \left[\sum_{j=1}^{n} (r_{j} - \bar{\mathbf{r}})^{2} P_{j}\right]^{5}$$

$$= \left[(10,000 - 17,000)^{2}(.20) + (15,000 - 17,000)^{2}(.30) + (20,000 - 17,000)^{2}(.40) + (25,000 - 17,000)^{2}(.10)\right]^{5}$$

$$= \left[21,000,000\right]^{5}$$

$$= \$4583$$

(c)
$$v = \sigma/\bar{r}$$

$$=\frac{4583}{17,000}$$

= 0.270

PTS: 1