2.1 A Preview of Calculus

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second.
a. calculus, 320 ft
b. calculus, 340 ft
c. precalculus, 320 ft
d. calculus, 640 ft
e. precalculus, 640 ft
2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t)=8+6 \cos t$ feet per second.
a. calculus, 162.4485 ft
b. precalculus, 163.7985 ft
c. calculus, 165.4777 ft
d. precalculus, 165.4777 ft
e. precalculus, 162.4485 ft
3. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.08\left(16 x-x^{2}\right)$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=4$.

a. precalculus, 0.08
b. calculus, 0.2
c. calculus, 0.64
d. calculus, 0.08
e. precalculus, 0.2
4. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.2 x$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=5$.
$y=f(x)$

a. calculus, 2
b. precalculus, 0.2
c. calculus, 0.2
d. precalculus, 2
e. precalculus, 0.45
5. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region bounded by the triangle with vertices $(0,0),(8,9),(17,0)$.

a. precalculus, 153
b. calculus, 229.5
c. precalculus , 76.5
d. precalculus, 229.5
e. calculus , 153
6. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region.

a. calculus , 11
b. precalculus , 11
c. precalculus , 13
d. calculus , 16
e. precalculus , 16
7. Consider the function $f(x)=\sqrt{x}$ and the point $P(4,2)$ on the graph of f. Graph f and the secant line passing through $P(4,2)$ and $Q(x, f(x))$ for $x=3$.
a.

d.

b.

e.

c.

8. Consider the function $f(x)=\sqrt{x}$ and the point $P(81,9)$ on the graph of f. Find the slope of the secant line passing through $P(81,9)$ and $Q(x, f(x))$ for $x=1$. Round your answer to four decimal places.
a. $\mathrm{m}=0.1000$
b. $\mathrm{m}=0.0122$
c. $\mathrm{m}=0.0122$
d. $\mathrm{m}=0.3133$
e. $m=0.1000$
-_ 9. Consider the function $f(x)=\sqrt{x}$ and the point $P(9,3)$ on the graph of f. Estimate the slope m of the tangent line of f at $P(9,3)$. Round your answer to four decimal places.
a. $\mathrm{m}=0.1667$
b. $m=0.0832$
c. $m=0.3800$
d. $\mathrm{m}=0.0556$
e. $\mathrm{m}=0.0833$
\qquad 10. Consider the function $f(x)=6 x-x^{2}$ and the point $P(2,8)$ on the graph of f. Graph f and the secant line passing through $P(2,8)$ and $Q(x, f(x))$ for $x=3$.
a.

d.

b.

e.

C.

11. Consider the function $f(x)=11 x-x^{2}$ and the point $P(4,28)$ on the graph of f. Find the slope of the secant line passing through $P(4,28)$ and $Q(x, f(x))$ for $x=5$. Round your answer to one decimal place.
a. 3.5
b. 2.0
c. 3.0
d. 4.5
e. 9.0
_12. Consider the function $f(x)=8 x-x^{2}$ and the point $P(3,15)$ on the graph of f. Estimate the slope of the tangent line of f at $P(3,15)$.
a. 10
b. 3
c. 8
d. 2
e. 9
__ 13. Use the rectangles in the following graph to approximate the area of the region bounded by $y=\cos x, y=0, x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$.

a. 3.9082
b. 2.6055
c. 1.9541
d. 1.4656
e. 0.9770
14. Use the rectangles in the following graph to approximate the area of the region bounded by $y=\sin x, y=0, x=0$, and $x=\pi$.

a. 0.7850
b. 1.5700
c. 3.1400
d. 1.1775
e. 1.0519
15. Use the rectangles in the graph given below to approximate the area of the region bounded by $y=4 / x, y=0, x=1$, and $x=4$ Round your answer to three decimal places.

a. $\quad 2.481$ units 2
b. 6.371 units 2
c. $\quad 3.585$ units 2
d. 6.872 units 2
e. 6.903 units 2
16. Consider the length of the graph of $f(x)=5 / x$ from $(1,5)$ to $(5,1)$

Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places.

a. 6.11
b. 8.12
c. 5.66
d. 8.49
e. 7.11

2.1 A Preview of Calculus

Answer Section

1. ANS: C PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 2. ANS: C PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solutions 3. ANS: C PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solutions
2. ANS: B PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 5. ANS: C PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 6. ANS: A PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solution
3. ANS: D PTS: 1 DIF: Easy OBJ: Graph a function and the secant line passing through given points 8. ANS: A PTS: 1 DIF: Easy OBJ: Calculate the slope of a secant line passing through given points 9. ANS: A PTS: 1 DIF: Med OBJ: Estimate the slope of a tangent line
4. ANS: D PTS: 1 DIF: Easy OBJ: Graph a function and the secant line passing through given points 11. ANS: B PTS: 1 DIF: Easy OBJ: Calculate the slope of a secant line passing through given points
5. ANS: D PTS: 1 DIF: Med OBJ: Calculate the slope of secant line passing through the given points 13. ANS: C PTS: 1 DIF: Med

OBJ: Estimate the area of a region using rectangles
14. ANS: B PTS: 1 DIF: Med

OBJ: Estimate the area of a region using rectangles
15. ANS: B PTS: 1 DIF: Med

OBJ: Estimate the area of a region using rectangles
16. ANS: A PTS: 1 DIF: Med OBJ: Estimate the length of the curve using a piecewise linear function

REF: Section 2.1
MSC: Skill

2.2 Finding Limits Graphically and Numerically

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_ 1. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-16 x+39}$

x	2.9	2.99	2.999	3.001	3.01	3.1
$f(x)$						

a. 0.525000
b. 0.275000
c. -0.100000
d. 0.400000
e. -0.475000
_ 2. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 7} \frac{\frac{1}{x-3}-\frac{1}{4}}{x-7}$

x	6.9	6.99	6.999	7.001	7.01	7.1
$f(x)$						

a. -0.062500
b. 0.067500
c. -0.192500
d. 0.047500
e. -0.172500
_ 3. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow-10} \frac{\sqrt{-6 x-54}-\sqrt{6}}{x+10}$

x	-10.1	-10.01	-10.001	-9.999	-9.99	-9.9
$f(x)$						

a. 0.974745
b. -1.099745
c. -1.224745
d. 1.058078
e. 1.224745
\qquad 4. Complete the table and use the result to estimate the limit.

$$
\lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x^{3}}
$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

a. -0.5
b. 0
c. 1
d. 0.5
e. -1
\qquad 5. Complete the table and use the result to estimate the limit.

$$
\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{3 x}
$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

a. -1
b. -0.5
c. 0
d. 0.5
e. 1
\qquad 6. Determine the following limit. (Hint: Use the graph to calculate the limit.)

a. 6
b. 1
c. 5
d. 4
e. does not exist
_ 7. Determine the following limit. (Hint: Use the graph to calculate the limit.) $\lim _{x \rightarrow 1}\left(x^{2}+4\right)$

a. 5
b. 1
c. 0
d. 4
e. does not exist

- 8. Let $f(x)= \begin{cases}4-x, & x \neq 1 \\ 0, & x=1\end{cases}$

Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim f(x)$
$x \rightarrow 1$

a. 5
b. 4
c. 3
d. 0
e. does not exist

- 9. Let $f(x)=\left\{\begin{array}{ll}x^{2}+5, & x \neq 1 \\ 1, & x=1\end{array}\right.$.

Determine the following limit. (Hint: Use the graph to calculate the limit.)

$$
\lim _{x \rightarrow 1} f(x)
$$

a. 6
b. 25
c. 1
d. 5
e. does not exist.
_ 10. Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim _{x \rightarrow 2} \frac{1}{x-2}$

a. -2
b. 0
c. -4
d. 2
e. does not exist
11. A ring has a inner circumference of 10 centimeters. What is the radius of the ring? Round your answer to four decimal places.
a. 0.7958 centimeter
b. 3.1831 centimeters
c. $\quad 1.5915$ centimeters
d. 1.7841 centimeters
e. $\quad 10.1321$ centimeters
12. A ring has a inner circumference of 9 centimeters. If the ring's inner circumference can vary between 8 centimeters and 10 centimeters how can the radius vary? Round your answer to five decimal places.
a. Radius can vary between 6.48456 centimeters and 10.13212 centimeters.
b. Radius can vary between 1.59577 centimeters and 1.78412 centimeters.
c. Radius can vary between 1.27324 centimeters and 1.59155 centimeters.
d. Radius can vary between 2.54648 centimeters and 3.18310 centimeters.
e. Radius can vary between 0.43239 centimeter and 2.43239 centimeters.
13. A sphere has a volume of 4.76 cubic inches. What is the radius of the sphere? Round your answer to four decimal places.
a. 1.0435 inches
b. 1.6565 inches
c. 1.0660 inches
d. 2.1320 inches
e. 1.9335 inches
14. A sphere has a volume of 5.2 cubic inches. If the sphere's volume can vary between 4.4 cubic inches and 6.1 cubic inches, how can the radius vary? Round your answer to five decimal places.
a. Radius can vary between 1.01653 inches and 1.13348 inches.
b. Radius can vary between 1.61365 inches and 1.79929 inches.
c. Radius can vary between 0.27474 inch and 1.97474 inches.
d. Radius can vary between 1.85897 inches and 2.18882 inches.
e. Radius can vary between 1.02490 inches and 1.20676 inches.

2.2 Finding Limits Graphically and Numerically Answer Section

1. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
2. ANS: A PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
3. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
4. ANS: C PTS: 1

OBJ: Estimate a limit from a table of values
5. ANS: C PTS: 1

OBJ: Estimate a limit from a table of values
6. ANS: D PTS: 1 DIF: Easy

OBJ: Estimate the limit of a function from its graph
7. ANS: A PTS: 1 DIF: Med

OBJ: Estimate the limit of a function from its graph
8. ANS: C PTS: 1 DIF: Med

OBJ: Estimate the limit of a function from its graph
9. ANS: A PTS: 1 DIF: Med

OBJ: Estimate the limit of a function from its graph
10. ANS: E PTS: 1 DIF

OBJ: Estimate the limit of a function from its graph
11. ANS: C PTS: 1 DIF: Easy

OBJ: Solve a linear equation in applications
12. ANS: C PTS: 1

OBJ: Solve a linear equation in applications
13. ANS: A PTS: 1

DIF:
Med

OBJ: Solve a cubic equation in applications
14. ANS: A PTS: 1 DIF: Med

OBJ: Solve a linear equation in applications

REF: Section 2.1
MSC: Skill
REF: Section 2.1
MSC: Application

2.3 Evaluating Limits Analytically

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find the limit.
$\lim _{x \rightarrow-4} 9 x^{2}+36 x$
a. 108
b. -108
c. 288
d. -288
e. [
\qquad 2. Find the limit.
$\lim _{x \rightarrow 6} \frac{x}{x^{2}+8}$
a. $\frac{1}{14}$
b. $\frac{1}{10}$
c. $\frac{3}{22}$
d. $\frac{3}{7}$
e. $\frac{3}{10}$
\qquad 3. Find the limit.

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x+5}}{x-1}
$$

a. 3
b. -1
c. -3
d. 1
e. 9
$\lim _{x \rightarrow \frac{3 \pi}{4}} \sin x$

$\operatorname{lin}_{x} \quad$ Find the limit.
a. $\frac{\sqrt{3}}{2}$
b. $-\frac{\sqrt{2}}{2}$
c. $-\frac{1}{2}$
d. $\frac{\sqrt{2}}{2}$
e. does not exist.
\qquad 5. Find the limit.
$\lim _{x \rightarrow 2} \cos \frac{\pi x}{3}$
a. $\frac{1}{2}$
b. $-\frac{1}{2}$
c. $-\frac{\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{2}$
e. 0
\qquad 6. Find the limit.
$\lim _{x \rightarrow 5} \cos \left(\frac{\pi x}{6}\right)$
a. $-\frac{1}{2}$
b. [
c. $\frac{1}{2}$
d. $-\frac{\sqrt{3}}{2}$
e. $\frac{\sqrt{3}}{2}$
\qquad 7. Find the lmit.
$\lim _{x \rightarrow \pi} \tan \left(\frac{x}{3}\right)$
a. $\frac{-1}{\sqrt{3}}$
b. $\sqrt{3}$
c. $-\sqrt{3}$
d. $\frac{1}{\sqrt{3}}$
e. does not exist

- 8. Let $f(x)=-x^{2}-5$ and $g(x)=2 x$. Find the limit.
$\lim _{x \rightarrow-2} g(f(x))$
a. -18
b. 25
c. 21
d. 8
e. 9
- 9. Let $f(x)=4 x-2$ and $g(x)=x^{3}$. Find the limit.
$\lim _{x \rightarrow 1} g(f(x))$
a. 2
b. 1
c. 8
d. -8
e. -4
- 10. Let $f(x)=3+2 x^{2}$ and $g(x)=\sqrt{x+3}$. Find the limit.
$\lim _{x \rightarrow 2} g(f(x))$
a. $\sqrt{6}$
b. $\sqrt{14}$
c. $\sqrt{11}$
d. $\sqrt{10}$
e. $\sqrt{2}$
_11. Let $f(x)=x^{2}-x-5$ and $g(x)=\sqrt[3]{x+14}$. Find the limits.
$\lim _{x \rightarrow 3} g(f(x))$
a. $-\sqrt[3]{1}$
b. $\sqrt[3]{29}$
c. $-\sqrt[3]{15}$
d. $\sqrt[3]{15}$
e. $\sqrt[3]{1}$
\qquad 12. Suppose that $\lim _{x \rightarrow c} f(x)=-13$ and $\lim _{x \rightarrow c} g(x)=-10$. Find the following limit.
$\lim _{x \rightarrow c}[f(x)+g(x)]$
a. $\quad 0$
b. -10
c. -3
d. -23
e. 130
\qquad 13. Suppose that $\lim _{x \rightarrow c} f(x)=-15$ and $\lim _{x \rightarrow c} g(x)=-10$. Find the following limit. $\lim _{x \rightarrow c}[f(x) g(x)]$
a. 10
b. -5
c. -25
d. -15
e. 150
\qquad 14. Suppose that $\lim _{x \rightarrow c} f(x)=7$ and $\lim _{x \rightarrow c} g(x)=3$. Find the following limit.
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
a. 21
b. $\frac{3}{7}$
c. -21
d. $\frac{7}{3}$
e. does not exist
\qquad 15. Suppose that $\lim _{x \rightarrow c} f(x)=-11$ and $\lim _{x \rightarrow c} g(x)=-3$. Find the following limit.
$\lim _{x \rightarrow e}[f(x)-g(x)]$
a. -11
b. -8
c. 33
d. -14
e. $\quad 0$
_16. Suppose that $\lim _{x \rightarrow c} f(x)=5$. Find the following limit.
$\lim _{x \rightarrow c}\left[f(x)^{3}\right]$
a. 2
b. 125
c. 8
d. 0
e. 15
- 17. Suppose that $\lim f(x)=-5$. Find the following limit. $x \rightarrow c$
$\lim 3 f(x)$
$x \rightarrow 0$
a. -5
b. 15
c. -15
d. $3 c$
e. 3

18. Find the following limit (if it exists). Write a simpler function that agrees with the given function at all but one point.
$\lim _{x \rightarrow-4} \frac{8 x^{2}+40 x+32}{x+4}$
a. 40
b. -24
c. 24
d. -40
e. does not exist
\qquad 19. Find the limit (if it exists).
$\lim _{x \rightarrow-8} \frac{x+8}{x^{2}-64}$
a. $-\frac{1}{16}$
b. $-\frac{1}{32}$
c. -32
d. -8
e. $\frac{1}{16}$
_ 20. Find the limit (if it exists).
$\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}$
a. 6
b. 1
c. 0
d. $\frac{1}{6}$
e. Limit does not exist.
_ 21. Find the limit (if it exists).
$\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-9(x+\Delta x)+2-\left(x^{2}-9 x+2\right)}{\Delta x}$
a. $\frac{1}{3} x^{3}-\frac{9}{2} x^{2}+2 x$
b. $2 x-9$
c. $x^{3}-9 x^{2}+2 x$
d. $x^{2}-9 x+2$
e. does not exist
\qquad 22. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{12(1-\cos x)}{x^{2}}$
a. 6
b. 48
c. 10
d. 24
e. does not exist
19. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{2 x^{8}}$
a. 8
b. 1
c. 1
d. 2
e. does not exist.
20. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{\sin ^{4} x}{x^{3}}$
a. 1
b. 0
c. 2
d. ∞
e. does not exist
-25. Find $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ where $f(x)=4 x-3$.
a. 1
b. 4
c. -3
d. 0
e. Limit does not exist

2.3 Evaluating Limits Analytically Answer Section

1. ANS: E PTS: 1 DIF: Easy

OBJ: Evaluate a limit using properties of limits
2. ANS: C PTS: 1 DIF: Easy

OBJ: Evaluate a limit using properties of limits
3. ANS: D PTS: 1 DIF: Med OBJ: Evaluate a limit using properties of limits
4. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate a limit using properties of limits
5. ANS: B PTS: 1 DIF: Easy

OBJ: Evaluate a limit using properties of limits
6. ANS: D PTS: 1 DIF: Med OBJ: Evaluate a limit using properties of limits
7. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of the function
8. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate the limit of composite functions
9. ANS: C PTS: 1 DIF: Med

OBJ: Evaluate the limit of composite functions
10. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of composite functions
11. ANS: D PTS: 1 DIF: Med OBJ: Evaluate the limit of composite functions
12. ANS:

D PTS:
1 DIF:
Med
OBJ: Evaluate the limit of a function using properties of limits
13. ANS: E PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
14. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
15. ANS: B PTS: 1 DIF: Med OBJ: Evaluate the limit of a function using properties of limits 16. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
17. ANS: C PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
18. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of the function and simplify it to an identical function except at the discontinuity point
19. ANS:
A PTS:
1 DIF:
Med OBJ: Evaluate the limit of a function analytically
20. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function analytically
21. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function analytically
22. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function analytically

MSC: Skill
REF: Section 2.3
MSC: Skill
23. ANS: E PTS: 1 DIF: Med OBJ: Evaluate the limit of a function analytically
24. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function analytically
25. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of a difference quotient

REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill

2.4 Continuity and One-Sided Limits

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=3$.
(i) $\lim _{x \rightarrow 3^{+}} f(x)$
(ii) $\lim _{x \rightarrow 3^{-}} f(x)$ (iii) $\lim _{x \rightarrow 3} f(x)$

a. $1,1,1$, not continuous
b. 2,2,2, continuous
c. $4,4,4$, not continuous
d. $2,2,2$, not continuous
e. $1,1,1$, continuous
2. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=-4$.
(i) $\lim _{x \rightarrow-4^{+}} f(x)$ (ii) $\lim _{x \rightarrow-^{-}} f(x)$ (iii) $\lim _{x \rightarrow-4} f(x)$

a. 3,3,3, continuous
b. $2,2,2$, not continuous
c. $3,3,3$, not continuous
d. $-4,-4,-4$, continuous
e. $2,2,2$, continuous
_ 3. Use the graph to determine the following limits, and discuss the continuity of the function at $x=-3$.
(i) $\lim _{x \rightarrow-3^{+}} f(x)$
(ii) $\lim _{x \rightarrow-3^{-}} f(x)$ (iii) $\lim _{x \rightarrow-3} f(x)$

a. $1,-1$, does not exist, not continuous
b. 1, 0, does not exist, not continuous
c. 0,1 , does not exist, not continuuas
d. $-3,0$, does not exist, not continuous
e. $0,1,0$, continuous
3. Find the limit (if it exists).
$\lim _{x \rightarrow 11^{+}} \frac{11-x}{x^{2}-121}$
a. $\frac{1}{22}$
b. 0
c. Limit does not exist
d. $-\frac{1}{22}$
e. $\frac{1}{242}$
\qquad 5. Find the limit (if it exists).
$\lim _{x \rightarrow 36^{-}} \frac{\sqrt{x}-6}{x-36}$
a. $\quad 0$
b. $-\frac{1}{12}$
c. $\frac{1}{72}$
d. $\frac{1}{12}$
e. Limit does not exist

- 6. Find the limit (if it exists).
$\lim _{x \rightarrow 1^{-}} f(x)$, where $f(x)=\left\{\begin{array}{cc}x^{3}+10, & x<1 \\ x+10, & x \geq 1\end{array}\right.$
a. Limit does not exist
b. 0
c. 10
d. 11
e. 30
- 7. Find the limit (if it exists). Note that $f(x)=[|x|]$ represents the greatest integer function.

$$
\lim _{x \rightarrow-6^{+}}(-3[|x|]-8)
$$

a. 13
b. -10
c. 10
d. -13
e. does not exist
8. Find the limit (if it exists). Note that $f(x)=[|x|]$ represents the greatest integer function.

$$
\lim _{x \rightarrow 5^{+}}(2 x-[|x|])
$$

a. 6
b. Limit does not exist.
c. 5
d. \square
e. 4

- 9. Discuss the continuity of the function $f(x)=\frac{x^{2}-4}{x-2}$.

a. $f(x)$ is discontiniuous at $x=-2$.
b. $f(x)$ is discontinuous at $x=-2,2$.
c. $f(x)$ is discontimuous at $x=2$.
d. $f(x)$ is continuous for all real x.
e. $f(x)$ is continuous at $x=4$.

10. Find the x-values (if any) at which the function $f(x)=13 x^{2}-15 x-15$ is not continuous. Which of the discontinuities are removable?
a. $x=4$, remowable
b. $x=0$, removable
c. $x=\frac{15}{26}$, not removable.
d. continuous everywhere
e. $x=\frac{15}{26}$, removable.
11. Find the x-values (if any) at which $f(x)=\frac{x}{x^{2}-2 x}$ is not continuous.
a. $f(x)$ is not continuous at $x=0$ and $f(x)$ has a removable discontinuity at $x=0$.
b. $f(x)$ is not continuous at $x=0,2$ and both the discontinuities are nonremovable.
c. $f(x)$ is not continuous at $x=2$ and $f(x)$ has a remowable discontinuity at $x=2$.
d. $f(x)$ is not continuous at $x=0,2$ and $f(x)$ has a removable discontinuity at $x=0$.
e. $f(x)$ is continuous for all real x.

- 12. Find the x-values (if any) at which the function $f(x)=\frac{x}{x^{2}-100}$ is not continuous. Which of the discontinuities are removable?
a. 10 and -10 , removable
b. discontinuous everywhere
c. continuous everywhere
d. 10 and -10 , not removable
e. 0, removable
- 13. Find the x-values (if any) at which the function $f(x)=\frac{x+2}{x^{2}+6 x+8}$ is not continuous. Which of the discontinuities are removable?
a. no points of discontimuity
b. $x=-2$ (not removable), $x=-4$ (removable)
c. $x=-2$ (removable), $x=-4$ (not removable)
d. no points of cortinuity
e. $x=-2$ (not removable), $x=-4$ (not removable)

_ 14. Find the x-values (if any) at which $f(x)=\frac{|x-3|}{x-3}$ is not continuous.

a. $f(x)$ is not continuous at $x=3$ and the discontinuity is nonremovable.
b. $f(x)$ is not contiriuous at $x=0$ and the discontinuity is removable.
c. $f(x)$ is continuous for all real x.
d. $f(x)$ is not continuous at $x=3$ and the discontimuity is removable.
e. $f(x)$ is not continuous at $x=0,-3$ and $x=0$ is a removable ciscontinuity.

- 15. Find the constant a such that the function
$f(x)= \begin{cases}-4 \cdot \frac{\sin x}{x}, & x<0 \\ a+7 x, & x \geq 0\end{cases}$
is continuous on the entire real line.
a. 1
b. -7
c. 7
d. 4
e. -4
\qquad 16. Find the constant a such that the function
$f(x)= \begin{cases}6, & x \leq-5 \\ a x+b, & -5<x<1 \\ -6, & x \geq 1\end{cases}$
is continuous on the entire real line.
a. $\quad a=2, b=0$
b. $a=2, b=-4$
c. $a=-2, b=-4$
d. $a=-2, b=4$
e. $a=2, b=4$
_ 17. Find the value of c guaranteed by the Intermediate Value Theorem.
$f(x)=x^{2}-2 x+8,[2,6], f(c)=11$
a. $[0$
b. 3
c. 5
d. 1
e. 4
_ 18. Find the value of c guaranteed by the Intermediate Value Theorem.
$f(x)=\frac{x^{2}-5 x}{x-3},\left[\frac{9}{2}, 18\right], f(c)=6$
a. 11
b. 2
c. 1
d. 9
e. 10

19. A long distance phone service charges $\$ 0.35$ for the first 10 minutes and $\$ 0.1$ for each additional minute or fraction thereof. Use the greatest integer function to write the cost C of a call in terms of time t (in minutes).
a.
$C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1[|t-10|] & t>10, t \text { is not an integer } \\ 0.35+0.1(t-9) & t>10, t \text { is an integer }\end{array}\right.$
b.

$$
C=\left\{\begin{array}{cc}
0.35 & 0<t \leq 10 \\
0.35+0.1(t-10) & t>10
\end{array}\right.
$$

c. $C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1[|t-9|] & t>10\end{array}\right.$
d. $C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1[|t-10|] & t>10\end{array}\right.$
e.

$$
C=\left\{\begin{array}{cc}
0.35 & 0<t \leq 10 \\
0.35+0.1[|t-9|] & t>10, t \text { is not an integer } \\
0.35+0.1(t-10) & t>10, t \text { is an integer }
\end{array}\right.
$$

- 20. Find all values of c such that f is continuous on ($-\infty, \infty$).

$$
f(x)= \begin{cases}4-x^{2}, & x \leq c \\ x, & x>c\end{cases}
$$

a. $c=3$
b. $c=0$
c. $\frac{-1+\sqrt{17}}{2}$
d. $\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}$
e. $\frac{-1+\sqrt{17}}{2}, \frac{-1-\sqrt{17}}{2}$

2.4 Continuity and One-Sided Limits Answer Section

1. ANS: A PTS: 1 DIF: Med REF: Section 2.4

OBJ: Estimate a limit and points of discontinuity from a graph MSC: Skill
2. ANS: B PTS: 1 DIF: Med REF: Section 2.4

OBJ: Estimate a limit and points of discontinuity from a graph
3. ANS: C PTS: 1 DIF: Med OBJ: Estimate a limit and points of discontinuity from a graph
4. ANS: D PTS: 1 DIF: Easy

OBJ: Evaluate one-sided limits
5. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
6. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
7. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
8. ANS: C PTS: 1 DIF: Med OBJ: Evaluate one-sided limits
9. ANS: C PTS: 1 DIF: Easy OBJ: Identify the discontinuities of a function if any exist
10. ANS: D PTS: 1 DIF: Med

OBJ: Identify the removable discontinuities of a function
11. ANS: D PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
12. ANS: D PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
13. ANS: C PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
14. ANS: A PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
15. ANS: E PTS: 1 DIF: Med OBJ: Identify the value of a parameter to ensure a function is continuous
16. ANS: C PTS: 1 DIF: Med

OBJ: Identify the value of a parameter to ensure a function is continuous
MSC: Skill
REF: Section 2.4
MSC: Skill
Med REF: Section 2.4
MSC: Skill
Easy REF: Section 2.4
MSC: Skill
REF: Section 2.4
MSC: Skill
Med REF: Section 2.4
MSC: Skill
Med REF: Section 2.4
MSC: Skill
REF: Section 2.4
MSC: Skill
REF: Section 2.4
17. ANS: B PTS: 1 DIF: Easy REF: Section 2.4 OBJ: Identify the value of c guaranteed by the Intermediate Value Theorem MSC: Skill
18. ANS: D PTS: 1 DIF: Med REF: Section 2.4 OBJ: Identify the value of c guaranteed by the Intermediate Value Theorem MSC: Skill
19. ANS: E PTS: 1 DIF: Med REF: Section 2.4

OBJ: Create functions in applications
20. ANS: E PTS: 1 DIF: Med

MSC: Application

OBJ: Identify the value of a parameter to ensure a function is continuous MSC: Skill

2.5 Infinite Limits

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Determine whether $f(x)=\frac{x^{10}}{x^{2}-9}$ approaches ∞ or $-\infty$ as x approaches -3 from the left and from the right by completing the tables below.

x	-3.5	-3.1	-3.01	-3.001
$f(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				

a. $\quad \lim f(x)=-\infty, \lim f(x)=\infty$

$$
x \rightarrow-3^{-} \quad x \rightarrow-3^{+}
$$

b. $\quad \lim f(x)=\infty, \lim f(x)=-\infty$

$$
x \rightarrow-3^{-} \quad x \rightarrow-3^{+}
$$

c. $\quad \lim f(x)=\infty, \lim f(x)=\infty$

$$
x \rightarrow-3^{-} \quad x \rightarrow-3^{+}
$$

d. $\lim f(x)=-\infty, \lim f(x)=-\infty$ $x \rightarrow-3^{-} \quad x \rightarrow-3^{+}$
_ 2. Find all the vertical asymptotes (if any) of the graph of the function $f(x)=\frac{5}{(x-3)^{2}}$.
a. $x=-3$
b. $x=5$
c. $x=3,-3$
d. $x=3$
e. no vertical asymptotes

- 3. Find the vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}-4}{x^{2}+3 x+2}$.
a. $x=2$
b. $x=-1$
c. $x=1$
d. $x=-2$
e. $x=-2$
_ 4. Find all the vertical asymptotes (if any) of the graph of the function $\overline{f(x)}=\frac{1+x}{x^{2}(1-x)}$.
a. $x=-1$
b. $x=1$
c. $x=0$
d. $x=1, x=0$
e. no wertical asymptotes
- 5. Find all the vertical asymptotes (if any) of the graph of the function $f(x)=\frac{x^{3}+8}{x+2}$.
a. $x=-2$
b. $x=8$
c. $x=2$
d. $x=2,-2$
e. no vertical asymptotes
- 6. Find all vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}+4 x+3}{x^{3}-4 x^{2}-x+4}$.
a. $\quad \pi=4,1$
b. $x=4,1,-1$
c. $x=-4,-1$
d. $x=1$
e. $x=-1$
- 7. Find the vertical asymptotes (if any) of the function $f(x)=\tan (15 x)$.
a. $x=\frac{k}{15} \pi(k=0, \pm 1, \pm 2, \ldots)$
b. $x=\frac{2 k+1}{30} \pi(k=0, \pm 1, \pm 2, \ldots)$
c. $x=\frac{2 k}{15} \pi(k=0, \pm 1, \pm 2, \ldots)$
d. $x=\frac{2 k+1}{15} \pi \quad(k=0, \pm 1, \pm 2, \ldots)$
e. no vertical asymptotes
_ 8. Find the limit.
$\lim _{x \rightarrow 14^{+}} \frac{x-3}{x-14}$
a. 1
b. $-\infty$
c. 0
d. ∞
e. -1
_ 9. Find the limit.

$$
\lim _{x \rightarrow-10} \frac{x^{2}+10 x}{\left(x^{2}+100\right)(x+10)}
$$

a. $\frac{1}{20}$
b. $-\frac{1}{20}$
c. 20
d. -10
e. -20
_ 10. Find the limit.
$\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{1}{x}\right)$
a. 1
b. \quad
c. -1
d. $-\infty$
e. ∞
\qquad 11. Find the following limit if it exists: $\lim \ln (x-3)$. Use $\pm \infty$ when appropriate.

$$
x \rightarrow 3^{+}
$$

a. ∞
b. 3
c. 1
d. $-\infty$
e. does not exist
\qquad 12. Find the limit (if it exists).
$\lim x \tan \pi x$
$x \rightarrow \frac{1}{2}$
a. $-\infty$
b. $\frac{1}{2}$
c. 0
d. ∞
e. Limit does not exist

- 13. Use a graphing utility to graph the function $f(x)=\frac{x^{2}-2 x+4}{x^{3}+8}$ and determine the one-sided limit $\lim f(x)$.
$x \rightarrow-2^{+}$
a. $-\infty$
b. ∞
c. 0
d. 12
e. 8
\qquad 14. Use a graphing utility to graph the function $f(x)=\csc \frac{\pi x}{2}$ and determine the following one-sided limit.

$$
\lim _{x \rightarrow 2^{-}} f(x)
$$

a. $-\infty$
b. 2
c. -2
d. ∞
e. [0]
_ 15. A petrol car is parked 35 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r=35 \pi \sec ^{2} \theta \mathrm{ft} / \mathrm{sec}$. Find the rate r when θ is $\frac{\pi}{6}$.

a. $r=\frac{140}{3} \mathrm{ft} / \mathrm{sec}$
b. $r=\frac{70 \sqrt{3} \pi}{3} \mathrm{ft} / \mathrm{sec}$
c. $r=\frac{70 \sqrt{3}}{3} \mathrm{ft} / \mathrm{sec}$
d. $r=\frac{140 \pi}{3} \mathrm{ft} / \mathrm{sec}$
e. $r=\frac{70 \pi}{3} \mathrm{ft} / \mathrm{sec}$
\qquad 16. A petrol car is parked 65 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r=65 \pi \sec ^{2} \theta \mathrm{ft} / \sec$. Find the limit of r as $\theta \rightarrow(\pi / 2)^{-}$.

a. ∞
b. 65π
c. []
d. 65
e. $-\infty$
\qquad 17. A 30 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r=\frac{2 x}{\sqrt{900-x^{2}}} \mathrm{ft} /$ sec, where x is the distance between the base of the ladder and the house. Find the rate r when x is 18 feet.

a. $r=\frac{3}{2} \mathrm{ft} / \mathrm{sec}$
b. $r=\frac{4}{3} \mathrm{ft} / \mathrm{sec}$
c. $r=\frac{48}{5} \mathrm{ft} / \mathrm{sec}$
d. $r=\frac{2}{3} \mathrm{ft} / \mathrm{sec}$
e. $r=\frac{3}{4} \mathrm{ft} / \mathrm{sec}$
_ 18. A 25 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} /$ sec where x is the distance between the base of the ladder and the house. Find the limit of r as $x \rightarrow 25^{-}$.

a. $-\infty$
b. 50
c. $\quad 0$
d. ∞
e. 25

2.5 Infinite Limits Answer Section

1. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate an infinite limit from a table of values
2. ANS: D PTS: 1 DIF: Easy

OBJ: Identify the vertical asymptotes (if any) of the graph of a function
3. ANS: B PTS: 1 DIF: Med

OBJ: Identify the vertical asymptotes (if any) of the graph of a function 4. ANS: D PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 5. ANS: E PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 6. ANS: A PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 7. ANS: B PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 8. ANS: D PTS: 1 DIF: Med OBJ: Evaluate one-sided limits
9. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function
10. ANS: E PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
11. ANS: D PTS: 1 DIF: Med OBJ: Evaluate limits involving logarithmic functions
12. ANS: E PTS: 1 DIF: Med OBJ: Identify a limit that does not exist
13. ANS: B PTS: 1 DIF: Med 2.OBJ: Estimate one-sided limits from a graph
14. ANS: D PTS: 1 DIF: Med

OBJ: Estimate one-sided limits from a graph
15. ANS: D PTS: 1 DIF: Easy

OBJ: Evaluate functions in applications
16. ANS:
A PTS:
1 DIF:
Med

OBJ: Evaluate limits in applications
17. ANS: A PTS:

1 DIF:
Easy
OBJ: Evaluate functions in applications
18. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate limits in applications

REF: Section 2.5
MSC: Skill
REF: Section
MSC: Skill
REF: Section 2.5
MSC: Skill
REF: Section 2.5
MSC: Application

