2.1 Chapter Questions

1) Consider the following linear programming model:

Max

$$
\mathrm{X}_{1}^{2}+\mathrm{X}_{2}+3 \mathrm{X}_{3}
$$

Subject to:

$$
\begin{aligned}
& \mathrm{X}_{1}+\mathrm{X}_{2} \leq 3 \\
& \mathrm{X}_{1}+\mathrm{X}_{2} \leq 1 \\
& \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0
\end{aligned}
$$

This problem violates which of the following assumptions?
A) certainty
B) proportionality
C) divisibility
D) linearity
E) integrality

Answer: D
Page Ref: 22
Topic: Developing a Linear Programming Model
Difficulty: Easy
2) Consider the following linear programming model:

Min $\quad 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 1 \\
& \mathrm{X}_{2} \leq 1 \\
& \mathrm{X}_{1} \geq 0, \mathrm{X}_{2} \leq 0
\end{aligned}
$$

This problem violates which of the following assumptions?
A) additivity
B) divisibility
C) non-negativity
D) proportionality
E) linearity

Answer: C
Page Ref: 21
Topic: Developing a Linear Programming Model
Difficulty: Easy
3) A redundant constraint is eliminated from a linear programming model. What effect will this have on the optimal solution?
A) feasible region will decrease in size
B) feasible region will increase in size
C) a decrease in objective function value
D) an increase in objective function value
E) no change

Answer: E
Page Ref: 36
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Moderate
4) Consider the following linear programming model:

Max $\quad 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& \mathrm{X}_{1} \leq 2 \\
& \mathrm{X}_{2} \leq 3 \\
& \mathrm{X}_{1} \leq 1 \\
& \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0
\end{aligned}
$$

This linear programming model has:
A) alternate optimal solutions
B) unbounded solution
C) redundant constraint
D) infeasible solution
E) non-negative solution

Answer: C
Page Ref: 36
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Moderate
5) A linear programming model generates an optimal solution with fractional values. This solution satisfies which basic linear programming assumption?
A) certainty
B) divisibility
C) proportionality
D) linearity
E) non-negativity

Answer: B
Page Ref: 22
Topic: Developing a Linear Programming Model
Difficulty: Moderate
6) Consider the following linear programming model:

Max $\quad \mathrm{X}_{1}+\mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& \mathrm{X}_{1}+\mathrm{X}_{2} \leq 2 \\
& \mathrm{X}_{1} \geq 1 \\
& \mathrm{X}_{2} \geq 3 \\
& \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0
\end{aligned}
$$

This linear programming model has:
A) alternate optimal solution
B) unbounded solution
C) redundant constraint
D) infeasible solution
E) unique solution

Answer: D
Page Ref: 37
Topic: Special Situations in Solving Linear Programming Problems Difficulty: Easy
7) Consider the following linear programming model

Max $\quad 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& X_{1}+X_{2} \geq 4 \\
& X_{1} \geq 2 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

This linear programming model has:
A) redundant constraints
B) infeasible solution
C) alternate optimal solution
D) unique solution
E) unbounded solution

Answer: E
Page Ref: 39
Topic: Special Situations in Solving Linear Programming Problems Difficulty: Easy
8) Consider the following linear programming model

Min $\quad 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& X_{1}+X_{2} \geq 4 \\
& X_{1} \geq 2 \\
& X_{1}, X_{2} \geq_{0}
\end{aligned}
$$

This linear programming model has:
A) unique optimal solution
B) unbounded solution
C) infeasible solution
D) alternate optimal solution
E) redundant constraints

Answer: A
Page Ref: 38
Topic: Special Situations in Solving Linear Programming Problems Difficulty: Easy

Figure 1:

	A	B	C	D	E
1					
2		X_{1}	X_{2}		
3	Number to Make:				OBJ. FN. VALUE:
4					
5	Unit profit:	$\$ 4$	$\$ 3$		
6					
7	Constraints:			Used	Available
8	1	3	5		40
9	2	12	10		120
10	3	1	0		15

Figure 1 demonstrates an Excel spreadsheet that is used to model the following linear programming problem:

Max: $\quad 4 X_{1}+3 X_{2}$
Subject to:
$3 X_{1}+5 X_{2} \leq 40$
$12 \mathrm{X}_{1}+10 \mathrm{X}_{2} \leq 120$
$\mathrm{X}_{1} \geq 15$
$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$

Note: Cells B3 and C3 are the designated cells for the optimal values of X_{1} and X_{2}, respectively, while cell E4 is the designated cell for the objective function value. Cells D8:D10 designate the left-hand side of the constraints.
9) Refer to Figure 1. What formula should be entered in cell E4 to compute total profitability?
A) $=$ SUMPRODUCT(B5:C5,B2:C2)
B) $=\operatorname{SUM}(\mathrm{B} 3: \mathrm{C} 3)$
C) $=\mathrm{B} 2 * \mathrm{~B} 5+\mathrm{C} 2 * \mathrm{C} 5$
D) $=$ SUMPRODUCT (B5:C5,E8:E10)
E) $=\mathrm{B} 3 * \mathrm{~B} 5+\mathrm{C} 3 * \mathrm{C} 5$

Answer: E
Page Ref: 42
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
10) Refer to Figure 1. What formula should be entered in cell D9 to compute the amount of resource 2 that is consumed?
A) $=\mathrm{B} 9 * \mathrm{D} 9+\mathrm{C} 9 * \mathrm{D} 9$
$\mathrm{B})=\mathrm{SUMPRODUCT}(\mathrm{B} 2: \mathrm{C} 2, \mathrm{~B} 9: \mathrm{C} 9)$
C) $=\operatorname{SUM}(B 9: C 9)$
D) $=$ SUMPRODUCT (B3:C3,B9:C9)
E) $=$ SUMPRODUCT (B9:C9,B5:C5)

Answer: D
Page Ref: 42
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
11) Refer to Figure 1. Which cell(s) are the Changing Cells as designated by "Solver"?
A) E4
B) B2:C2
C) $\mathrm{B} 3: \mathrm{C} 3$
D) D8:D10
E) B5:C5

Answer: C
Page Ref: 42
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
12) Refer to Figure 1. What cell reference designates the Target Cell in "Solver"?
A) E4
B) B3
C) C 3
D) D8:D10
E) $\mathrm{E} 8: \mathrm{E} 10$

Answer: A
Page Ref: 42
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
13) The constraint for a given resource is given by the following equation:
$2 \mathrm{X}_{1}+3 \mathrm{X}_{2} \leq 20$
If $X_{1}=5$ and $X_{2}=3$, how many units of this resource are unused?
A) 20
B) 19
C) 1
D) 0
E) 17

Answer: C
Page Ref: 49
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
14) The constraint for a given resource is given by the following equation:
$2 X_{1}+3 X_{2} \geq 20$
If $X_{1}=5$ and $X_{2}=4$ how many units of this resource are unused?
A) 20
B) 2
C) 22
D) 0
E) 9

Answer: B
Page Ref: 49
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
15) "Solver" typically generates which of the following report(s)?
A) answer report
B) sensitivity analysis report
C) limits report
D) A and B only
E) A, B, and C

Answer: E
Page Ref: 48
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
16) \qquad systematically examines corner points, using algebraic steps, until an optimal solution is found.
A) The graphical approach
B) The simplex method
C) Karmarkar's method
D) Trial-and-error
E) none of the above

Answer: B
Page Ref: 52
Topic: Algebraic Solution Procedures for Linear Programming Problems
Difficulty: Moderate
17) \qquad follows a path of points inside the feasible region to find an optimal solution.
A) The graphical approach
B) The simplex method
C) Karmarkar's method
D) Trial-and-error
E) none of the above

Answer: C
Page Ref: 52
Topic: Algebraic Solution Procedures for Linear Programming Problems
Difficulty: Moderate
18) If a linear programming problem has alternate optimal solutions, then the objective function value will vary according to each alternate optimal point.
Answer: FALSE
Page Ref: 38
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Moderate
19) Unbounded linear programming problems typically arise as a result of misformulation.

Answer: TRUE
Page Ref: 39
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Moderate
20) If an isoprofit line can be moved outward such that the objective function value can be made to reach infinity, then this problem has an unbounded solution.
Answer: TRUE
Page Ref: 39
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Easy
21) If a redundant constraint is eliminated from a linear programming model, this will have an impact on the optimal solution.
Answer: FALSE
Page Ref: 36
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Moderate
22) A linear programming model has the following two constraints: $X_{1} \geq 3$ and $X_{1} \geq 4$. This model has a redundant constraint.
Answer: TRUE
Page Ref: 36
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Easy
23) A linear programming problem has the following two constraints: $\mathrm{X}_{1} \leq 20$ and $\mathrm{X}_{1} \geq 25$. This problem is infeasible.
Answer: TRUE
Page Ref: 37
Topic: Special Situations in Solving Linear Programming Problems
Difficulty: Easy
24) It is possible to solve graphically a linear programming model with 4 decision variables.

Answer: FALSE
Page Ref: 26
Topic: Graphical Solution to a Linear Programming Model
Difficulty: Moderate
25) An isoprofit line represents a line whereby all profits are the same along the line.

Answer: TRUE
Page Ref: 29
Topic: Graphical Solution to a Linear Programming Model
Difficulty: Easy
26) Linear programming models typically do not have coefficients (i.e., objective function or constraint coefficients) that assume random values.
Answer: TRUE
Page Ref: 22
Topic: Developing a Linear Programming Model
Difficulty: Moderate
27) It is possible for a linear programming model to yield an optimal solution that has fractional values. Answer: TRUE
Page Ref: 22
Topic: Developing a Linear Programming Model
Difficulty: Easy
28) A linear programming model has the following objective function:

Max: $X_{1}^{2}+3 X_{2}+4 X_{3}$. This model violates a key linear programming model assumption.
Answer: TRUE
Page Ref: 22
Topic: Developing a Linear Programming Model
Difficulty: Easy
29) In a product mix problem, a decision maker has limited availability of weekly labor hours. Labor hours would most likely constitute a decision variable rather than a constraint.
Answer: FALSE
Page Ref: 24
Topic: Formulating a Linear Programming Model
Difficulty: Easy
30) When using Solver, the parameter Changing Cells is typically associated with the objective function. Answer: FALSE
Page Ref: 45
Topic: Setting Up and Solving Linear Programming Problems Using Excel's Solver Difficulty: Easy
31) The simplex method is an algebraic solution procedure for a linear programming problem.

Answer: TRUE
Page Ref: 52
Topic: Algebraic Solution Procedures for Linear Programming Problems Difficulty: Easy
32) Karmarkar's method is synonymous with the corner point method.

Answer: FALSE
Page Ref: 52
Topic: Algebraic Solution Procedures for Linear Programming Problems
Difficulty: Moderate

2.2 Excel Problems

1) Consider the following linear programming problem.

Maximize $\quad 6 \mathrm{X}_{1}+4 \mathrm{X}_{2}$
Subject to:

$$
\begin{aligned}
& X_{1}+2 X_{2} \leq 16 \\
& 3 X_{1}+2 X_{2} \leq 24 \\
& X_{1} \geq 2 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

Use Solver to find the optimal values of X_{1} and X_{2}.
Answer:

	A	B	C	D	E	F
1						
2		X1	$\times 2$		\qquad Decision variables	
3	Profit Coefficients:	6	4		Decision variables	
4	Optimal Values:	10	0			
5						
6	Constraint Coefficients:			LHS.		R.H.S
7	Constraint 1	1	2	10	5	16
8	Constraint 2	3	2	30	\leq	30
9	Constraint 3	1	0	10	2	2
10						
11	Objective function value	60				
12				optima		
13				functio		
14						

2) Consider the following linear programming problem.

Maximize $\quad 5 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Subject to: $\quad \mathrm{X}_{1}+\mathrm{X}_{2} \leq 20$
$\mathrm{X}_{1} \geq 5$
$\mathrm{X}_{2} \leq 10$
$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$
Use Solver to find the optimal values of X_{1} and X_{2}.

Answer:

	A	B	C	D	E	F
1						
2		X1	$\times 2$		——\{ $\begin{aligned} & \text { Decision } \\ & \text { variables }\end{aligned}$	
3	Profit Coefficients:	5	3		Decision variables	
4	Optimal Values:	20	0			
5						
6	Constraint Coefficients:			L.H.S		RHS
7	Constraint 1	1	1	20	5	20
8	Constraint 2	1	0	20	2	5
9	Constraint 3	0	1	0	5	10
10						
11	Objective function value:	100				
12				optima		
13				functio		
14						

3) Consider the following linear programming problem.

Minimize $\quad 3 X_{1}+2 X_{2}$
Subject to: $\quad X_{1}+X_{2} \geq 10$
$\mathrm{X}_{1}+\mathrm{X}_{2} \leq 20$
$\mathrm{X}_{2} \leq 10$
$\mathrm{X}_{1} \leq 18$
$\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$

Use Solver to find the optimal values of X_{1} and X_{2}.
Answer:

	A	B	C	D	E	F
1						
2		$\times 1$	$\times 2$		Decision variables	
3	Cost Coefficients:	3	2			
4	Optimal Values:	0	10			
5						
6	Constraint Coefficients			LHS		RHS
7	Constraint 1	1	1	10	2	10
8	Constraint 2	1	1	10	\leq	20
9	Constraint 3	0	1	10	\leq	10
10	Constraint 4	1	0	0	5	18
11						
12						
13	Objective function value	20				
14				optima		
15				functio		
16						

4) Consider the following linear programming problem.

Minimize $\quad 6^{X_{1}}+3^{X_{2}}$
Subject to:

$$
\begin{aligned}
& 2^{X_{1}}+4^{X_{2}} \geq 16 \quad 4^{X_{1}}+3^{X_{2}} \geq 24 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

Use Solver to find the optimal values of X_{1} and X_{2}.

Answer:

	A	B	C	D	E	F
1						
2		$\times 1$	$\times 2$			
3	Cost Coefficients	6	3		Decision variables	
4	Optimal Values	0	8			
5						
6	Constraint Coefficients:			LHS		RHS
7	Constraint 1	2	4	32	2	16
8	Constraint 2	4	3	24	2	24
9						
10	Objective function value:	24				
11				optimal objective function value		
12						
13						

5) A computer retail store sells two types of flat screen monitors: 17 inches and 19 inches, with a profit contribution of $\$ 300$ and $\$ 250$, respectively. The monitors are ordered each week from an outside supplier. As an added feature, the retail store installs on each monitor a privacy filter that narrows the viewing angle so that only persons sitting directly in front of the monitor are able to see on-screen data. Each 19" monitor consumes about 30 minutes of installation time, while each 17" monitor requires about 10 minutes of installation time. The retail store has approximately 40 hours of labor time available each week. The total combined demand for both monitors is at least 40 monitors each week. How many units of each monitor should the retail store order each week to maximize its weekly profits and meet its weekly demand?

Answer:

6) Creatine and protein are common supplements in most bodybuilding products. Bodyworks, a nutrition health store, makes a powder supplement that combines creatine and protein from two ingredients (X_{1} and X_{2}). Ingredient X_{1} provides 20 grams of protein and 5 grams of creatine per pound. Ingredient X_{2} provides 15 grams of protein and 3 grams of creatine per pound. Ingredients X_{1} and X_{2} cost Bodyworks $\$ 5$ and $\$ 7$ per pound, respectively. Bodyworks wants its supplement to contain at least 30 grams of protein and 10 grams of creatine per pound and be produced at the least cost.

Determine what combination will maximize profits.
Answer:

	A	B	C	D	E	F
1						
2		$\times 1$	$\times 2$		Decision variables	
3	Cost Coefficients	$\frac{5}{5}$	7			
4	Optimal Values:	2	0			
5						
6	Constraint Coefficients.			L.HS		R.H.S
7	Constraint 1	20	15	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	2	30
8	Constraint 2	5	3		2	10
9						
10	Objective function value:	10				
11				optimal objective function value		
12						
13	Formulation					
14	$\begin{aligned} & \text { Min } 5 \times 1+7 \times 2 \\ & \text { Subject to: } \\ & 20 \times 1+15 \times 2 \geq 30 \\ & 5 \times 1+3 \times 2 \geq 10 \\ & X 1, X 2 \geq 0 \end{aligned}$					
15						
16						
17						
18						
19						
20						

7) A furniture store produces beds and desks for college students. The production process requires assembly and painting. Each bed requires 6 hours of assembly and 4 hours of painting. Each desk requires 4 hours of assembly and 8 hours of painting. There are 40 hours of assembly time and 45 hours of painting time available each week. Each bed generates $\$ 35$ of profit and each desk generates $\$ 45$ of profit. As a result of a labor strike, the furniture store is limited to producing at most 8 beds each week. Determine how many beds and desks should be produced each week to maximize weekly profits.

Answer:

8) An ice cream shop sells single scoop ice cream cones that come in three flavors: chocolate only, vanilla only, and chocolate-vanilla twist. The cones are prepackaged and sold to a supermarket daily. The ingredients used along with the minimum demand of each flavor are shown as follows:

				Ice Cream Flavor	
	Chocolate		$\underline{\text { Vanilla }}$	$\underline{\text { Chocolate-Vanilla }}$	
Ingredient:	4 oz.		0 oz.	3 oz.	
Chocolate	0 oz.		4 oz.	2 oz.	
Vanilla					
Min daily demand:	20 scoops		15 scoops	10 scoops	

Each day, 40 pounds of chocolate and 38 pounds of vanilla are supplied to the ice cream shop from an outside vendor. The chocolate, vanilla, and chocolate-vanilla twist each yield a profit of $\$ 2.00, \$ 2.50$, and $\$ 3.00$ per cone, respectively. How many chocolate, vanilla, and chocolate-vanilla twist cones must prepackage daily to maximize daily profits?

Answer:

9) A company manufactures four products A, B, C, and D that must go through assembly, polishing, and packing before being shipped to a wholesaler. For each product, the time required for these operations is shown below (in minutes) as is the profit per unit sold.

Product	Assembly	Polish	Pack	Profit (\$)
A	2	3	2	1.50
B	4	2	3	2.50
C	3	3	2	3.00
D	7	4	5	4.50

The company estimates that each year they have 1667 hours of assembly time, 833 hours of polishing time and 1000 hours of packing time available. How many of each product should the company make per year to maximize its yearly profit?

Answer:

10) Suppose that a farmer has 5 acres of land that can be planted with either wheat, corn, or a combination of the two. To ensure a healthy crop, a fertilizer and an insecticide must be applied at the beginning of the season before harvesting. The farmer currently has 100 pounds of the fertilizer and 150 pounds of the insecticide at the beginning of the season. Each acre of wheat planted requires 10 pounds of the fertilizer and 12 pounds of the insecticide. Each acre of corn planted requires 13 pounds of the fertilizer and 11 pounds of the insecticide. Each acre of wheat harvested yields a profit of $\$ 600$, while each acre of corn harvested yields $\$ 750$ in profit. What is the optimal allocation for the crops that maximizes the farmer's profit?

Answer:

11) A carpenter makes tables and chairs. Each table can be sold for a profit of $\$ 50$ and each chair for a profit of $\$ 30$. The carpenter works a maximum of 40 hours per week and spends 5 hours to make a table and 2 hours to make a chair. Customer demand requires that he makes at least twice as many chairs as tables. The carpenter stores the finished products in his garage, and there is room for a maximum of 6 furniture pieces each week. Determine the carpenter's optimal production mix.

Answer:

	A	B	c	D	E	F
1						
2		Tables (1) ${ }^{\text {1 }}$	Chairs (C)			
3	Proft Coefficients	§ 50.00	§ 30.00			
4	Optimal Values:	6	0		varia	
5						
6	Constraint Coefficients:			LHS		BHS
7	Constraint 1	5	2	30	s	40
8	Constraint 2	2	-1	12	2	0
9	Constraint 3	1	1	,	5	6
10						
11	Objective function value	\$ 300.00				
12			\longrightarrow	optima	ective	
13				functio		
14	Formulation					
15	Max 50T + 30C	0				
16	Subject to:					
17	$5 \mathrm{~T}+2 \mathrm{C} \leq 40$					
18	$=2 T-C \geq 0 \text { (2) }$	-				
19	$\begin{aligned} & 2 T-C 20(2) \\ & T+C \leq 6(3) \end{aligned}$					
20	$T, C \geq 0$					
21	T.C20					
22	吅					

12) A bank is attempting to determine where its assets should be allocated in order to maximize its annual return. At present, $\$ 750,000$ is available for investment in three types of mutual funds: A, B, and C. The annual rate of return on each type of fund is as follows: fund $\mathrm{A}, 15 \%$; fund $\mathrm{B}, 12 \%$; fund $\mathrm{C} ; 13 \%$. The bank's manager has placed the following restrictions on the bank's portfolio:

- No more than 20% of the total amount invested may be in fund A .
- The amount invested in fund B cannot exceed the amount invested in fund C.

Determine the optimal allocation that maximizes the bank's annual return.
Answer:

4	A	B	c	D	E	F	G	H
1								
2		Fund A	Fund 8	Fund C				
3	Profit Coefficients	1.15	1.12	1.13			Decision	
4	Optimal values:	150000	300000	300000	\longleftarrow		Variables	
5								
6	Constraint Coefficients				L.H.S.		R.H.S	
7	Constraint 1	1	0	0	150000	5	150000	
8	Constraint 2	0	1	-1		\geq	0	
9	Constraint 3	1	1	1	750000	\leq	750000	
10								
11	Objective function value	847500						
12	Rate of return	0.13						
13			\leqslant					
14					jective			
15	$\begin{aligned} & \text { Max 1.15A }+1.128+1.13 \mathrm{C} \\ & \text { Subject to: } \\ & \mathrm{A} \leq 150,000 \\ & \mathrm{~B}-\mathrm{C} \geq 0 \end{aligned}$				ction valu			
16								
17								
18								
19	$A+B+C \leq 750,000$							
20	$A, B, C \geq 0$							
21								
22								
23								
24								

13) A warehouse stocks five different products, A, B, C, and D. The warehouse has a total of 100,000 square feet of floor space available to accommodate all the products that it inventories. The monthly profit per square foot for each product is as follows:

Product		Profit per square foot	
A		$\$ 4.50$	
B		$\$ 3.00$	
C		$\$ 2.75$	
D		$\$ 3.75$	

Each product must have at least $10,000 \mathrm{ft}^{2}$, and no single product can have more than 25% of the total warehouse space. The warehouse manager wants to know the floor space that should be allocated to each product to maximize profit.

Answer:

14) A company that is introducing a new product would like to generate maximum market exposure. The marketing department currently has $\$ 100,000$ of advertising budget for the year and is considering placing ads in three media: radio, television, and newspapers. The cost per ad and the exposure rating are as follows:

	$\underline{\text { Cost/ad }}$	
Radio Exposure/ad		
Television	$\$ 10,000$	
Newspaper	$\$ 25,000$	50,000 individuals
	$\$ 5000$	20,000 individuals

The marketing department would like to place twice as many radio ads as television ads. They also would like to place at least 4 ads in each advertising media. What is the optimal allocation to each advertising medium to maximize audience exposure?

Answer:

	A	B	Formula Bar	D	E	F	G
1							
2							
3		Radio (R)	Ielevision (T)	Hewspaper (f)			Decision
4	Exposure/ad	30.000 .00	50.000 .00	20.000 .00			variables
5	Optimal Values	4	2	2			
6							
7	Constraint Coefficients:				LHS		RHS
8	Constraint 1	10000	25000	5000	100000	5	100.000
9	Constraint 2	1	0	0	4	2	2
10	Constraint 3	0	1	0	2	2	2
11	Constraint 4	0	0	1	2	2	2
12	Constraint 5	1	-2	0	0	2	0
13							
14	Objective function value	260000					
15				optimal objective			
16				function value			
17	Formulation						
18	$\begin{aligned} & \text { Max } 30,000 \mathrm{R}+50,000 \mathrm{~T}+20,000 \mathrm{~N} \\ & \text { Subject to } \\ & 10,000 \mathrm{R}+25,000 \mathrm{~T}+5000 \mathrm{~N} \leq 750,000 \\ & \mathrm{R} \geq 2 \\ & \mathrm{~T} \geq 2 \\ & \mathrm{~N}=2 \\ & \mathrm{R}-2 \mathrm{~T} \geq 0 \\ & \mathrm{~A}, \mathrm{~B}, \mathrm{C} \geq 0 \end{aligned}$						
2							
2							
2							
2							
26							

15) A meat packing store produces a dog food mixture that is sold to pet retail outlets in bags of 10 pounds each. The food mixture contains the ingredients turkey and beef. The cost per pound of each of these ingredients is as follows:

Ingredient		Cost/pound
Turkey	$\$ 2.00$	
Beef		$\$ 5.50$

Each bag must contain at least 5 pounds of turkey. Moreover, the ratio of turkey to beef must be at least 2 to 1 . What is the optimal mixture of the ingredients that will minimize total cost?

Answer:

16) A company can decide how many additional labor hours to acquire for a given week. Subcontractors will only work a maximum of 20 hours a week. The company must produce at least 200 units of product A, 300 units of product B , and 400 units of product C . In 1 hour of work, worker 1 can produce 15 units of product $\mathrm{A}, 10$ units of product B , and 30 units of product C . Worker 2 can produce 5 units of product $\mathrm{B}, 20$ units of product B , and 35 units of product C . Worker 3 can produce 20 units of product A, 15 units of product B , and 25 units of product C . Worker 1 demands a salary of $\$ 50 / \mathrm{hr}$, worker 2 demands a salary of $\$ 40 / \mathrm{hr}$, and worker 3 demands a salary of $\$ 45 / \mathrm{hr}$. The company must choose how many hours they should hire from each worker to meet their production requirements and minimize labor cost.

Answer:

