

SOLUTIONS MANUAL

OPERATING SYSTEMS

E IGHTH EDITION

GLOBAL EDITION

CHAPTERS 1–9

W ILLIAM S TALLINGS

© Pearson Education Limited 2015

-2-

Copyright © Pearson Education Limited 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise

without the prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed in initial caps or all caps.

ISBN-10: 1-292-06135-9

ISBN-13: 978-1-292-06135-1

-3-

NOTICE

This manual contains solutions to the review
questions and homework problems in Operating
Systems, Eighth Edition, Global Edition. If you
spot an error in a solution or in the wording of a
problem, I would greatly appreciate it if you
would forward the information via email to
wllmst@me.net.

W.S.

mailto:wllmst@me.net

-4-

TABLE OF CONTENTS

Chapter 1 Computer System Overview .. 5
Chapter 2 Operating System Overview 11

Chapter 3 Process Description and Control 15

Chapter 4 Threads ... 23
Chapter 5 Mutual Exclusion and Synchronization 29
Chapter 6 Deadlock and Starvation .. 49

Chapter 7 Memory Management .. 65

Chapter 8 Virtual Memory ... 73

Chapter 9 Uniprocessor Scheduling .. 84

-5-

CHAPTER 1 COMPUTER SYSTEM OVERVIEW

ANSWERS TO QUESTIONS

1.1 A processor, which controls the operation of the computer and performs

its data processing functions ; a main memory, which stores both data

and instructions; I/O modules, which move data between the
computer and its external environment; and the system bus, which

provides for communication among processors, main memory, and I/O
modules.

1.2 User-visible registers: Enable the machine- or assembly-language

programmer to minimize main memory references by optimizing
register use. For high-level languages, an optimizing compiler will

attempt to make intelligent choices of which variables to assign to
registers and which to main memory locations. Some high-level

languages, such as C, allow the programmer to suggest to the compiler
which variables should be held in registers. Control and status

registers: Used by the processor to control the operation of the
processor and by privileged, operating system routines to control the

execution of programs.

1.3 These actions fall into four categories: Processor-memory: Data may

be transferred from processor to memory or from memory to processor.
Processor-I/O: Data may be transferred to or from a peripheral device

by transferring between the processor and an I/O module. Data
processing: The processor may perform some arithmetic or logic

operation on data. Control: An instruction may specify that the
sequence of execution be altered.

1.4 Multiple interrupts may be serviced by assigning different priorities

to interrupts arising from different sources. This enables a higher-
priority interrupt to be serviced first when multiple requests arrive

simultaneously; it also allows a higher-priority interrupt to preempt
a lower-priority interrupt. For example, suppose a system has

assigned a higher priority to a communication line and a lower
priority to a magnetic disk. When two simultaneous requests arrive,

the computer services the communication line. Similarly, if some
disk operations are ongoing when a request for the communication

line arrives, the state of the disk is put in a stack and the
communication line operations are catered to.

-6-

1.5 In interrupt-driven I/O, when data is available in the peripheral, an

interrupt facility and special commands inform the interface to issue an

interrupt request signal. In the meantime, the CPU can continue its
other activities. When the CPU detects an external signal-interrupt, it

momentarily stops the task it is processing, services the I/O transfer
process, and then resumes the original task.

1.6 The characteristics observed while going up the memory hierarchy are

a. increasing cost per bit, b. decreasing capacity, c. decreasing access

time, and d. increasing frequency of access to the memory by the
processor.

1.7 The main trade-offs for determining the cache size are the speed and

the cost of the cache.

1.8 A multicore computer is a special case of a multiprocessor, in which all

of the processors are on a single chip.

1.9 The cache write policies are as follows:

a. Write through: Whenever a block in the cache is altered, it is

immediately written to the main memory.

b. Write back: The contents of a cache block are written to the main
memory only when that block is replaced from the cache.

1.10 Spatial locality is generally exploited by using larger cache blocks

and by incorporating prefetching mechanisms (fetching items of

anticipated use) into the cache control logic. Temporal locality is

exploited by keeping recently used instruction and data values in
cache memory and by exploiting a cache hierarchy.

ANSWERS TO PROBLEMS

1.1 Memory (contents in hex): 300: 3005; 301: 5940; 302: 7006

Step 1: 3005 → IR; Step 2: 3 → AC

Step 3:

Step 5:
5940 → IR;

7006 → IR;

Step 4: 3 + 2 = 5 → AC

Step 6: AC → Device 6

1.2 1. a. The PC contains 300, the address of the first instruction. This
value is loaded in to the MAR.

b. The value in location 300 (which is the instruction with the value
1940 in hexadecimal) is loaded into the MBR, and the PC is
incremented. These two steps can be done in parallel.

c. The value in the MBR is loaded into the IR.

-7-

2. a. The address portion of the IR (940) is loaded into the MAR.

b. The value in location 940 is loaded into the MBR.

c. The value in the MBR is loaded into the AC.

3. a. The value in the PC (301) is loaded in to the MAR.
b. The value in location 301 (which is the instruction with the value

5941) is loaded into the MBR, and the PC is incremented.
c. The value in the MBR is loaded into the IR.

4. a. The address portion of the IR (941) is loaded into the MAR.
b. The value in location 941 is loaded into the MBR.

c. The old value of the AC and the value of location MBR are added

and the result is stored in the AC.

5. a. The value in the PC (302) is loaded in to the MAR.

b. The value in location 302 (which is the instruction with the value

2941) is loaded into the MBR, and the PC is incremented.
c. The value in the MBR is loaded into the IR.

6. a. The address portion of the IR (941) is loaded into the MAR.

b. The value in the AC is loaded into the MBR.

c. The value in the MBR is stored in location 941.

1.3 a. 224 = 16 MBytes

b. (1) If the local address bus is 32 bits, the whole address can be
transferred at once and decoded in memory. However, since the data
bus is only 16 bits, it will require 2 cycles to fetch a 32-bit instruction
or operand.
(2) The 16 bits of the address placed on the address bus can't

access the whole memory. Thus a more complex memory interface

control is needed to latch the first part of the address and then the
second part (since the microprocessor will end in two steps). For a

32-bit address, one may assume the first half will decode to access a
"row" in memory, while the second half is sent later to access a

"column" in memory. In addition to the two-step address operation,

the microprocessor will need 2 cycles to fetch the 32 bit
instruction/operand.

c. The program counter must be at least 24 bits. Typically, a 32-bit

microprocessor will have a 32-bit external address bus and a 32-bit
program counter, unless on-chip segment registers are used that may

work with a smaller program counter. If the instruction register is to
contain the whole instruction, it will have to be 32-bits long; if it will

contain only the op code (called the op code register) then it will have
to be 8 bits long.

1.4 In cases (a) and (b), the microprocessor will be able to access 216 =

64K bytes; the only difference is that with an 8-bit memory each

access will transfer a byte, while with a 16-bit memory an access may

-8-

transfer a byte or a 16-byte word. For case (c), separate input and
output instructions are needed, whose execution will generate separate
"I/O signals" (different from the "memory signals" generated with the
execution of memory-type instructions); at a minimum, one additional
output pin will be required to carry this new signal. For case (d), it can
support 28 = 256 input and 28 = 256 output byte ports and the same
number of input and output 16-bit ports; in either case, the distinction
between an input and an output port is defined by the different signal
that the executed input or output instruction generated.

1.5 Clock cycle =
1

8	MHZ
 = 125 ns

Bus cycle = 4 × 125 ns = 500 ns
2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec

Doubling the frequency may mean adopting a new chip manufacturing
technology (assuming each instructions will have the same number of
clock cycles); doubling the external data bus means wider (maybe
newer) on-chip data bus drivers/latches and modifications to the bus
control logic. In the first case, the speed of the memory chips will also
need to double (roughly) not to slow down the microprocessor; in the
second case, the “word length” of the memory will have to double to
be able to send/receive 32-bit quantities.

1.6 a. Input from the Teletype is stored in INPR. The INPR will only accept

data from the Teletype when FGI=0. When data arrives, it is stored in
INPR, and FGI is set to 1. The CPU periodically checks FGI. If FGI =1,
the CPU transfers the contents of INPR to the AC and sets FGI to 0.

When the CPU has data to send to the Teletype, it checks FGO. If
FGO = 0, the CPU must wait. If FGO = 1, the CPU transfers the
contents of the AC to OUTR and sets FGO to 0. The Teletype sets FGI
to 1 after the word is printed.

b. The process described in (a) is very wasteful. The CPU, which is
much faster than the Teletype, must repeatedly check FGI and FGO.
If interrupts are used, the Teletype can issue an interrupt to the CPU
whenever it is ready to accept or send data. The IEN register can be
set by the CPU (under programmer control)

1.7 If a processor is held up in attempting to read or write memory, usually

no damage occurs except a slight loss of time. However, a DMA transfer
may be to or from a device that is receiving or sending data in a stream
(e.g., disk or tape), and cannot be stopped. Thus, if the DMA module is
held up (denied continuing access to main memory), data will be lost.

1.8 Let us ignore data read/write operations and assume the processor only

fetches instructions. Then the processor needs access to main memory

-9-

once every microsecond. The DMA module is transferring characters at a
rate of 1200 characters per second, or one every 833 µs. The DMA
therefore "steals" every 833rd cycle. This slows down the processor
approximately 1

833
100% 0.12%

1.9 a. The processor can only devote 5% of its time to I/O. Thus the
maximum I/O instruction execution rate is 106 × 0.05 = 50,000
instructions per second. The I/O transfer rate is therefore 25,000
words/second.

b. The number of machine cycles available for DMA control is

106(0.05 × 5 + 0.95 × 2) = 2.15 × 106

If we assume that the DMA module can use all of these cycles, and
ignore any setup or status-checking time, then this value is the
maximum I/O transfer rate.

1.10 a. A reference to the first instruction is immediately followed by a
reference to the second.

b. The ten accesses to a[i] within the inner for loop which occur
within a short interval of time.

1.11 Let the three memory hierarchies be M1, M2, and M3.
Let us define the following parameters:
Ts = average system access time
T1, T2, and T3 = access time of M1, M2, and M3 respectively.
h1, h2 = hit ratios of memories M1 and M2.
Cs = average cost per bit of combined memory.
C1, C2, and C3 = cost per bit of M1, M2, and M3 respectively.

Extension of Equation (1.1) to 3-level memory hierarchy:
We can say that a word is found in M1 with a probability h1.
So the word is not found in M1 with a probability (1 – h1).
Or in other words, memory M2 is accessed with a probability (1 – h1).
As the hit ratio of M2 is h2, the word is found in M2 with a probability (1
– h1)h2.
So, memory M3 is accessed with a probability (1 – h1)(1 – h2).
If we multiply the probabilities of access with the access times and sum
up, we will get the average system access time.

 Hence, 	. 1	–	 	. 	 1	–	 1	– .

Extension of Equation (1.2) to 3-level memory hierarchy:
Average cost = Total cost/Total size of memory

 = 1	 1	 		 2 2	 	 3 3	

1 	 2 	 3	

1.12 a. Cost of system without cache memory, C1 = 256 × 220 × 0.0001
 = 26843.5456 cents
 = 268.435 dollars

b. Cost of cache memory, C2 = 32 × 210 × 0.1 = 3276.8 cents
 = 32.768 dollars

Cost of system having cache memory, C1 + C2 = 301.203 dollars

c. Effective access time without using cache, T1 = 100 ns
Effective access time using cache, T2 = 0.85 × 10 + (1 – 0.85) ×100

 = 23.5 ns
Percentage decrease in time = (decrease in time/original time) ×100

 = 76.5 %

1.13 Cache access time, tc = 60 ns
Main memory access time, tm = 300 ns
Hit ratio, h = 0.9
Percentage of read operations, pr = 80% = 0.8
Percentage of write operations, pw = 100 – 80 = 20% = 0.2
Average access time of read operations = htc + (1 – h)tm

 = 0.9 × 60 + (1 – 0.9) × 300
 = 84 ns
Average access time of write operations = 300 ns
Effective time, teff for read operations = 0.8 × 84
 = 67.2 ns
Effective time, teff for write operations = 0.2 × 300

 = 60 ns
Total time = teff for read + teff for write = 67.2 + 60

 = 127.2 ns

1.14 Yes, if the stack is only used to hold the return address. If the stack is
also used to pass parameters, then the scheme will work only if it is
the control unit that removes parameters, rather than machine
instructions. In the latter case, the processor would need both a
parameter and the PC on top of the stack at the same time.

-10-

-11-

CHAPTER 2 OPERATING SYSTEM

OVERVIEW

ANSWERS TO QUESTIONS

2.1 Convenience: An operating system makes a computer more convenient

to use. Efficiency: An operating system allows the computer system
resources to be used in an efficient manner. Ability to evolve: An
operating system should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions
without interfering with service.

2.2 The two modes of operation in an operating system are user mode and

kernel mode. In user mode, the computer system executes on behalf of
the user application so that certain areas of memory are protected from
user‘s use and certain instructions are not executed. In kernel mode, the
computer system renders certain operating system services whereby
privileged instructions may be executed and protected areas of memory
may be accessed.

2.3 The advantages of multiprogramming over single processing are:

a. CPU utilization is high, as CPU is seldom idle.

b. CPU throughput is more.

c. Multiple simultaneous users are supported, who may work interactively

on separate terminals.

d. Memory utilization is found to increase.

e. Disk usage and peripheral usage also increases.

2.4 A process is a program in execution. A process is controlled and

scheduled by the operating system.

2.5 The execution context, or process state, is the internal data by which

the operating system is able to supervise and control the process. This
internal information is separated from the process, because the operating

system has information not permitted to the process. The context includes

all of the information that the operating system needs to manage the
process and that the processor needs to execute the process properly. The

context includes the contents of the various processor registers, such as
the program counter and data registers. It also includes information of use

to the operating system, such as the priority of the process and whether

-12-

the process is waiting for the completion of a particular I/O event.

2.6 Process isolation: The operating system must prevent independent

processes from interfering with each other's memory, both data and

instructions. Automatic allocation and management: Programs

should be dynamically allocated across the memory hierarchy as
required. Allocation should be transparent to the programmer. Thus,

the programmer is relieved of concerns relating to memory limitations,
and the operating system can achieve efficiency by assigning memory

to jobs only as needed. Support of modular programming:
Programmers should be able to define program modules, and to create,

destroy, and alter the size of modules dynamically. Protection and
access control: Sharing of memory, at any level of the memory

hierarchy, creates the potential for one program to address the
memory space of another. This is desirable when sharing is needed by

particular applications. At other times, it threatens the integrity of
programs and even of the operating system itself. The operating

system must allow portions of memory to be accessible in various ways
by various users. Long-term storage: Many application programs

require means for storing information for extended periods of time,

after the computer has been powered down.

2.7 Time slicing is a technique adopted in time-sharing systems to distribute
CPU time to multiple users. In this technique, a system clock generates

interrupts at a particular rate. At each clock interrupt, the OS regains
control and can assign the processor to another user. Thus, at regular

time intervals, the current user is preempted and another user is loaded
in. To preserve the old user program status for later resumption, the old

user programs and data are written out to disk before the new user
programs and data are read in. Subsequently, the old user program code

and data are restored in main memory when that program is given a turn
in a subsequent time-slice.

2.8 Round robin is a scheduling algorithm in which processes are activated in

a fixed cyclic order; that is, all processes are in a circular queue. A
process that cannot proceed because it is waiting for some event (e.g.

termination of a child process or an input/output operation) returns
control to the scheduler.

2.9 A monolithic kernel is a large kernel containing virtually the complete

operating system, including scheduling, file system, device drivers, and
memory management. All the functional components of the kernel have

access to all of its internal data structures and routines. Typically, a
monolithic kernel is implemented as a single process, with all elements

sharing the same address space. A microkernel is a small privileged
operating system core that provides process scheduling, memory

