Liang Python Revel Assigned Quiz and Programming Project Solution

Chapter 1

Chapter 1: Programming Project 1:

(Display three different messages)
Write a program that displays

```
Welcome to Python
Welcome to Computer Science
Programming is fun.
```

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise01 01
print("Welcome to Python")
print("Welcome to Computer Science")
print("Programming is fun")
```


Chapter 1: Programming Project 2:

(Compute expressions)
Write a program that displays the result of $(9.5 * 4.5-2.5 * 3) /(45.5-3.5)$.
If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise01 05
print((9.5 * 4.5 - 2.5 * 3) / (45.5 - 3.5))
```


Chapter 1: Programming Project 3:

(Population projection)

The US Census Bureau projects population based on the following assumptions:
One birth every 7 seconds
One death every 13 seconds
One new immigrant every 45 seconds
Write a program to display the population for each of the next five years. Assume the current population is 312032486 and one year has 365 days.

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise01_11
print(312032486 + 365 * 24 * 60 * 60 / 7 - 365 * 24 * 60 * 60 / 13 + 365 *
24 * 60 * 60 / 45)
print(312032486 + 2 * 365 * 24 * 60 * 60 / 7 - 2 * 365 * 24 * 60 * 60 / 13
+ 2 * 365 * 24 * 60 * 60 / 45)
print(312032486 + 3 * 365 * 24 * 60 * 60 / 7 - 3 * 365 * 24 * 60 * 60 / 13
+ 3 * 365 * 24 * 60 * 60 / 45)
print(312032486 + 4 * 365 * 24 * 60 * 60 / 7 - 4 * 365 * 24 * 60 * 60 / 13
+ 4 * 365 * 24 * 60 * 60 / 45)
print(312032486 + 5 * 365 * 24 * 60 * 60 / 7 - 5 * 365 * 24 * 60 * 60 / 13
+ 5 * 365 * 24 * 60 * 60 / 45)
```


Chapter 1: Programming Project 4:

(Simple computation)

The formula for computing the discriminant of a quadratic equation $a x^{\wedge} 2+b x+c=0$ is $b^{\wedge} 2-4 a c$.

Write a program that computes the discriminant for the equation $3 x^{\wedge} 2+4 x+5=0$.
If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise01_01Extra
print(4 * 4 - 4 * 3 * 5)
```


Chapter 1: Programming Project 5:

(Physics: acceleration)
Average acceleration is defined as the change of velocity divided by the time taken to make the change, as shown in the following formula:
$a=(v 1-v 0) / t$
Here, $v 0$ is the starting velocity in meters/second, $v 1$ is the ending velocity in meters/second, and t is the time span in seconds.

Assume $v 0$ is $5.6, v 1$ is 10.5 , and t is 0.5 , and write the code to display the average acceleration.

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise01_02Extra
print((10.5 - 5.6) / 0.5)
```


Chapter 2

Quiz 2.5 \#1:

Assign 7 to a variable named seven.

```
seven = 7
```

Quiz 2.5 \#2:

Define a variable precise and make it refer to 1.09388641.

```
precise = 1.09388641
```


Quiz 2.5 \#3:

Define two variables, one named length making it refer to 3.5 and the other named width making it refer to 1.55 .

```
length = 3.5
width = 1.55
```


Quiz 2.6 \#1:

Variables i and j each have associated values. Swap them, so that i becomes associated with j's original value, and j becomes associated with is original value. You can use two more variables itemp and jtemp.

Note: This question does not follow our naming convention for variables. itemp and jtemp should have been named iTemp and jTemp.

```
itemp = i
jtemp = j
i = jtemp
j = itemp
```


Quiz 2.6 \#2:

Given two already defined variables, i and j, write a statement that swaps their associated values.

```
i, j = j, i
```


Quiz 2.6 \#3:

Given two variables matric_age and grad_age, write a statement that makes the associated value of grad_age 4 more than that of matric_age.

Note: This question does not follow our naming convention for variables. matric_age and grad_age should have been named matricAge and gradAge.

```
grad_age = matric_age + 4
```


Quiz 2.8 \#1:

Given the variables taxable_purchases and tax_free_purchases (which already have been defined), write an expression corresponding to the total amount purchased.

```
Note: This question does not follow our naming convention for variables. taxable_purchage and tax_free_purchase should have been named taxablePurchage and taxFreePurchase.
```

```
taxable_purchases + tax_free_purchases
```

Quiz 2.8 \#2:

Given the variables full_admission_price and discount_amount (already defined), write an expression corresponding to the price of a discount admission.

```
full_admission_price - discount_amount
```


Quiz 2.8 \#3:

Given the variable price_per_case, write an expression corresponding to the price of a dozen cases.

Note: This question does not follow our naming convention for variables. price_per_case should have been named pricePerCase.

```
price_per_case * 12
```


Quiz 2.8 \#4:

Given the variables cost_of_bus_rental and max_bus_riders, write an expression


```
cost_of_bus_rental / max_bus_riders
```


Quiz 2.8 \#5:

Write an expression that computes the remainder of the variable principal when divided by the variable divisor. (Assume that each is associated with an int.)

```
principal % divisor
```


Quiz 2.8 \#6:

Write an expression that computes the average of the values 12 and 40 , and assign it to the variable avg, which has already been defined.

```
avg = (12 + 40) / 2
```


Quiz 2.8 \#7:

You are given two variables, both already defined. One is named price and is associated with a float and is the price of an order. The other is total_number and is associated with an int and is the number of orders. Write an expression that calculates the total price for all orders.

```
price * total_number
```


Quiz 2.8 \#8:

You are given two variables, both already defined, one associated with a float and named total_weight, containing the weight of a shipment, the other associated with an int and named quantity, containing the number of items in the shipment. Write an expression that calculates the weight of one item.

```
total_weight / quantity
```


Quiz 2.8 \#9:

Assume there is a variable, h already assigned a positive integer value. Write the code necessary to assign its square to the variable g . For example, if h had the value 8 then g would get the value 64 .

$$
g=h * h
$$

Quiz 2.8 \#10:

Assume that price is an integer variable whose value is the price (in US currency) in cents of an item. Assuming the item is paid for with a minimum amount of change and just single dollars, write an expression for the amount of change (in cents) that would have to be paid.
price \% 100

Quiz 2.8 \#11:

Assume that a variable x has been assigned a integer value.
Write an expression whose value is the last (rightmost) digit of x .

x \% 10

Quiz 2.10 \#1:

Write an expression that computes the average of the variables exam1 and exam2 (both already assigned values).
(exam1 + exam2) / 2

Quiz 2.10 \#2:

The dimensions (width and length) of room1 have been read into two variables: width1 and length1. The dimensions of room2 have been read into two other variables: width2 and length2. Write a single expression whose value is the total area of the two rooms.
length1 * width1 + length2 * width2

Quiz 2.10 \#3:

In mathematics, the Nth harmonic number is defined to be $1+1 / 2+1 / 3+1 / 4+\ldots+1 / \mathrm{N}$. So, the first harmonic number is 1 , the second is 1.5 , the third is $1.83333 \ldots$ and so on. Write an expression whose value is the 8th harmonic number.
$1.0+1.0 / 2.0+1.0 / 3.0+1.0 / 4.0+1.0 / 5.0+1.0 / 6.0+1.0 / 7.0+1.0 / 8.0$

Quiz 2.10 \#4:

In mathematics, the Nth harmonic number is defined to be $1+1 / 2+1 / 3+1 / 4+\ldots+1 / \mathrm{N}$. So, the first harmonic number is 1 , the second is 1.5 , the third is $1.83333 \ldots$ and so on. Assume that n is an integer variable whose value is some positive integer N . Assume also that hn is a variable whose value is the Nth harmonic number. Write an expression whose value is the ($\mathrm{N}+1$) th harmonic number.

```
hn + 1.0 / (n + 1)
```


Quiz 2.11 \#1:

Given a variable bridge_players, write a statement that increases its value by 4.

```
bridge_players += 4
```


Quiz 2.11 \#2:

Given a variable profits, write a statement that increases its value by a factor of 10 .

```
profits *= 10
```


Quiz 2.11 \#3:

Write a statement that increments total by the value associated with amount. That is, add the value associated with amount to that associated with total and assign the result to total.

```
total += amount
```


Chapter 2: Programming Project 1

(Financial application: calculate tips)

Write a program that reads the subtotal and the gratuity rate and computes the gratuity and total. For example, if the user enters 10 for the subtotal and 15% for the gratuity rate, the program displays 1.5 as the gratuity and 11.5 as the total. Here is another sample run:

```
Enter the subtotal: 15.69
Enter the gratuity rate: 15
The gratuity is 2.35 and the total is 18.04
```

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise02 05
subtotal = float(input("Enter the subtotal: "))
rate = float(input("Enter the gratuity rate: "))
gratuity = subtotal * rate / 100
total = subtotal + gratuity
print("The gratuity is", int(gratuity * 100) / 100,
    "and total is", int(total * 100) / 100)
```


Chapter 2: Programming Project 2

(Find the number of years and days)

Write a program that prompts the user to enter the minutes (e.g., 1 billion), and displays the number of years and days for the minutes. For simplicity, assume a year has 365 days. Here is a sample run:

```
Enter the number of minutes: 1000000000
1000000000 minutes is approximately 1902 years and 214 days
```

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise02_07
# Obtain inpūt
minutes = int(input("Enter the number of minutes: "))
totalNumberOfDays = minutes // (24 * 60)
numberOfYears = totalNumberOfDays // 365
remainingNumberOfDays = totalNumberOfDays % 365;
# Display results
print(minutes, "minutes is approximately",
    numberOfYears, "years and", remainingNumberOfDays, "days")
```


Chapter 2: Programming Project 3

(Split digits)

Write a program that prompts the user to enter a four-digit integer and displays the number in reverse order. Here is a sample run:

```
Enter an integer: 5213
```

3

1

2

5

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise02_13
number = int(input("Enter an integer: "))
d1 = number % 10
number = number // 10
d2 = number % 10
number = number // 10
d3 = number % 10
number = number // 10
d4 = number % 10
number = number // 10
print(d1)
print(d2)
print(d3)
print(d4)
```


Chapter 2: Programming Project 4

(Slope of a line)

Write a program that prompts the user to enter the coordinates of two points ($x 1, y 1$) and ($x 2$, $y 2$), and displays the slope of the line that connects the two points. The formula of the slope is $(y 2-y 1) /(x 2-$ $x 1$). Here is a sample run:

```
Enter the x-coordinate for point1: 4.5
Enter the y-coordinate for point1: -5.5
Enter the x-coordinate for point2: 6.6
Enter the y-coordinate for point2: -6.5
```

```
The slope for the line that connects two points (4.5, -5.5) and (6.6, -6.5)
is -0.47619
```

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise02 04Extra
x1 = float(input("Enter the x-coordinate for point1: "))
y1 = float(input("Enter the y-coordinate for point1: "))
x2 = float(input("Enter the x-coordinate for point2: "))
y2 = float(input("Enter the y-coordinate for point2: "))
slope = (y1 - y2) / (x1 - x2)
print("The slope for the line that connects two points (",
    x1, ",", y1, ") and (", x2, ",", y2, ") is", slope)
```


Chapter 2: Programming Project 5

(Financial application: calculate future investment value)
Write a program that reads in an investment amount, the annual interest rate, and the number of years, and then displays the future investment value using the following formula:

```
futurelnvestmentAmount = investmentAmount * (1 + monthlyInterestRate) ^ numberOfMonths
```

For example, if you enter the amount 1000.56, an annual interest rate of 4.25%, and the number of years as 1, the future investment value is 1043.33 . Here is a sample run:

```
Enter investment amount: 1000.56
Enter annual interest rate: 4.25
Enter number of years: 1
Accumulated value is 1043.92
```

If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.

```
# Exercise02 19
# Enter the investment amount
investmentAmount = float(input("Enter the investment amount, for example
120000.95: "))
# Enter yearly interest rate
annualInterestRate = float(input("Enter annual interest rate, for example
8.25: "))
# Obtain monthly interest rate
monthlyInterestRate = annualInterestRate / 1200
# Enter number of years
numOfYears = int(input("Enter number of years as an integer, for example 5:
") )
futureValue = investmentAmount * ((1 + monthlyInterestRate) ** (numOfYears
* 12))
```

```
print("Future value is", int(futureValue * 100) / 100.0)
```

