
 

 

The problems in this chapter are primarily mathematical.They are intended to give students some 

practice with the concepts introduced in Chapter 2, but the problems in themselves offer few 

economic insights.Consequently, no commentary is provided. Results from some of the 

analytical problems are used in later chapters, however, and in those cases the student will be 

directed back to this chapter. 

 

 

 

Solutions 
 

2.1 2 2( , ) 4 3 .f x y x y   

 

 a. 8 ,xf x 6 .yf y  

 

 b. Constraining ( , ) 16f x y   creates an implicit function between the variables.The 

slope of this function is given by 
8

6

x

y

fdy x

dx f y


    for combinations of x and y 

that satisfy the constraint. 

 

c. Since (1,2) 16f  , we know that at this point 
8 1 2

6 2 3

dy

dx


   


. 

 

d. The ( , ) 16f x y  contour line is an ellipse centered at the origin.The slope of the 

line at any point is given by 8 6 .dy dx x y  Notice that this slope becomes more 

negative as x increases and y decreases. 

 

 

2.2 a. Profits are given by 22 40 100.R C q q       The maximum value is  found 

by setting the derivative equal to 0: 

    4 40 0
d

 = q + 
dq


  , 

   implies * 10q   and * 100.    

 

  b. Since
2 4 0,

2
d  = dq   this is a global maximum. 

 

  c. 70 2 .MR = dR dq = q 2 30.MC = dC dq = q  So, * 10q  obeys 50.MR MC   
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2.3 First, use the substitution method.Substituting 1y x  yields 

2( )  ( ,1 ) (1 ) .f x f x x x x x x      Taking the first-order condition, ( ) 1 2 0,f  x = x    

and solving yields * 0.5,x  = * 0.5y  = , and * * *( ) ( , ) 0.25.f x f x y  = Since *( ) 2 0,f x   

this is a local and global maximum. 

  Next, use the Lagrangemethod.The Lagrangian is (1 ).xy x y   L The first-

order conditions are  

  

0,

0,

1 0.

x

y

 = y   = 

 = x  = 

 = x y = 









 

L

L

L

 

Solving simultaneously, .x y Using the constraint gives * * 0.5,x y  0.5, =   and 
* * 0.25.x y   

 

 

2.4 Setting up the Lagrangian, (0.25 ).x y xy   L The first-order conditions are 

  

1 ,

1 ,

0.25 0.

x

y

 y

 x

 xy





 

 

  

L

L

L

 

So .x y Using the constraint 2( 0.25)xy x   gives * * 0.5x y   and 2. =  Note that 

the solution is the same here as in Problem 2.3, but here the value for the Lagrangian 

multiplier is the reciprocal of the value in Problem 2.3.  

 

 

2.5 a. The height of the ball is given by 2( ) 0.5 40 .f t gt t   The value of t  for which 

height is maximized is found by using the first-order condition: 40 0,df dt = gt     implying 
* 40 .t g  

 

 b. Substituting for *,t  

   

2

* 40 40 800
( ) 0.5 40 .f t g

g g g

   
      

   
 

  Hence, 

   
*

2

( ) 800
.

df t

dg g
   

 

c. Differentiation of the original function at its optimal value yields 

  
*

* 2( )
0.5( ) .

df t
t

dg
   

 Because the optimal value of t  depends on ,g  
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2*
* 2( ) 40 800

0.5( ) 0.5 ,
2

df t
 = t

dg g g

  
    

 
 

as was also shown in part (c). 

  

d. If 32,g  * 5 4.t  Maximum height is800 32 25. If 32.1,g  maximum height 

is 800 32.1 24.92, a reduction of 0.08.This could have been predicted from the 

envelope theorem, since 

  
*

2

800 25
( ) (0.01) 0.08.

32 32
df t dg

    
      
   

 

 

 

2.6 a. This is the volume of a rectangular solid made from a piece of metal, which is x

by3x with the defined corner squares removed. 

 

 b. The first-order condition for maximum volume is given by 

   
2 23 16 12 0.

V
x xt t

t


   


 

  Applying the quadratic formula to this expression yields  

   
2 216 256 144 16 10.6

0.225 .
24 24

x x x x x
t x

  
    

  The second value given by the quadratic (1.11 )x  is obviously extraneous. 

 

 c. If 0.225 ,t x 3 3 3 30.67 0.04 0.05 0.68 .V x x x x     

  Sovolume increases without limit. 

 

 d. This would require a solution using the Lagrangian method.The optimal solution 

requires solving three nonlinear simultaneous equations, a task not undertaken 

here.Butit seems clear that the solution would involve adifferent relationship 

between t  and x  than in parts (a–c). 

 

2.7 a. Set up the Lagrangian: 1 2 1 25ln ( ).x x k x x    L The first-

order conditions are 

    
2

1

2

1 2

5

1 0

0,

0.

,

x

x  =    

x

= 

k x x





  





  

L

L

L

 

   Hence, 21 5 .x   With 10,k  the optimal solution is 
* *

1 2 5.x x   

 

 b. With 4,k   solving the first-order conditions yields 
*

1 1x    and 
*

2 5.x   

 

 c. If all variables must be nonnegative, it is clear that any positive value   for 1x reduces .y Hence, the optimal solution is
*

1 0,x  *

2 4,x  and * 5ln 4.y   
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d. If 20,k  optimal solution is 
*

1 15,x  *

2 5,x  and * 15 5ln5.y   Because 

2x provides a diminishing marginal increment to y as its value increases,whereas 

1x does not, all optimal solutions require that once
2x  reaches 5, any extra amounts 

be devoted entirely to 
1.x In consumer theory, this function can be used to 

illustrate how diminishing marginal usefulness can be modeled in a very simple 

setting. 

 

 

2.8 a. Because MC  is the derivative of ,TC TC  is an antiderivative of 

.MC Bythe fundamental theorem of calculus,  

0

( ) ( ) (0),

q

MC x dx TC q TC   

where (0)TC  is the fixed cost, which we will denote (0)TC K  for 

short.Rearranging, 

0

0

2

0

2

( ) ( )

( 1)

2

.
2

q

q

x q

x

TC q MC x dx K

x dx K

x
x K

q
q K





 

  

 
   
 

  




 

 

b. For profit maximization, ( ) 1,p MC q q   implying 1.q p  But 15p   

implies 14.q  Profit are 

 

   
2

( )

14
15 14 14

2

98 .

TR TC pq TC q

K

K

  

 
     

 

 

 

If the firm is just breaking even, profit equals 0, implying fixed cost is 98.K   

 

 c. When 20p  and 19,q   follow the same steps as in part (b), substituting fixed 

cost 98.K  Profit are 



Chapter 2: Mathematics for Microeconomics 5 

   

2

( )

19
20 19 19

2

180.5 98

82.5.

TR TC pq TC q

K

  

 
     

 

 



 

 

 d. Assuming profit maximization, we have 

2

2

( ) ( )

( 1)
( 1) ( 1) 98

2

( 1)
98.

2

p pq TC q

p
p p p

p

  

 
      

 


 

 

 

e. 

i. Using the above equation, ( 20) ( 15) 82.5 0 82.5.p p        

 

ii. The envelope theorem states that *( ).d dp q p  That is, thederivative of 

the profit function yields this firm’s supply function.Integrating over p shows the 

change in profits by the fundamentaltheorem of calculus: 

    

20

15

20

15

20
2

15

(20) (15)

( 1)

2

180 97.5

82.5.

p

p

d
dp

dp

p dp

p
p


 





 

 

 
  
 

 







 

 

 

Analytical Problems 

 

2.9 Concave and quasi-concave functions 
 

The proof is most easily accomplished through the use of the matrix algebra of quadratic 

forms.See, for example, Mas Colell et al.,1995, pp. 937–939.Intuitively, because concave 

functions lie below any tangent plane, their level curves must also be convex.But the converse is 

not true.Quasi-concave functions may exhibit “increasing returns to scale”;even though their 

level curves are convex, they may rise above the tangent plane when all variables are increased 

together. 
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A counter example would be the Cobb–Douglas function, which is always quasi-

concave, but convex when 1.    

 

 

2.10 The Cobb–Douglas function  
 

 a. 

1

2 1 2

2

11 1 1

2

22 1 2

1 1

12 21

1

1 1 2

1 2

0,

( 1) 0,

( 1) 0,

0.

0,

f x x

f x x

f x

x

x

f

f x

x

f x

 

 

 

 

 



 

 













 

 

 

  

  

  

 

Clearly, all the terms in Equation 2.114 are negative. 

 

b. A contour line is found by setting the function equal to a constant: 1 2 ,y c x x  

implying
1

2 1 .x c x   Hence, 

2

1

0.
dx

dx
  

Further, 
2

2

2

1

0,
d x

dx
  

implying the countour line is convex. 

 

c. Using Equation 2.98,
2 2 2 2 2

11 22 12 1 2(1 ) ,f f f x x         which is negative for

1.    

 

 

2.11 The power function 

 

  a. Since 0y   and 0,y   the function is concave. 

 

  b. Because 11 22, 0f f   and 12 21 0,f f   Equation 2.98 is satisfied, and the function 

is concave.Because 1 2, 0,f f  Equation 2.114 is also satisfied, so the function is 

quasi-concave. 

 

  c. y is quasi-concave as is .y However, y  is not concave for 1.  This can be 

shown most easily by 1 2 1 2(2 ,2 ) 2 ( , ).f x x f x x  

 

 

2.12 Proof of envelope theorem 
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  a. The Lagrangian for this problem is 

    
1 2 1 2 1 2( , , ) ( , , ) ( , , ).x x a f x x a g x x a L  

   The first-order conditions are 

    

1 1 1

2 2 2

0,

0,

0.

f g

f g

g





  

  

 

L

L

L

 

 

  b.,c. Multiplication of each first-order condition by the appropriate deriviative yields 

     
2 21 1

1 2 1 2 0.
dx dx dx dx

f f g g
da da da da


 

    
 

 

 

  d. The optimal value of f is given by  1 2( ), ( ), .f x a x a a Differentiation of this with 

respect to a shows how this optimal value changes with a : 

     
*

1 2
1 2 .a

da

dx dx

d

df
f f f

da a
    

 

e. Differentiation of the constraint  1 2( ), ( ), 0g x a x a a   yields 

    1
1 2

20 .a
da

dx dxdg
g g g

da da
     

 

  f. Multiplying the results from part (e) by  and using parts (b) and (c) yields 

    
*

.a a a

df
f g

da
   L  

   This proves the envelope theorem. 

 

g. In Example 2.8, we showed that 8.P  This shows how much an extra unit of 

perimeter would raise the enclosed area.Direct differentiation of the original 

Lagrangian shows also that 

    
*

.P

dA

dP
 L  

This shows that the Lagrange multiplier does indeed show thisincremental gain in 

this problem. 

 

 

2.13 Taylor approximations 

 

a. A function in one variable is concave if ( ) 0.f x  Using the quadratic Taylor 

formula to approximate this function at point a : 
2( ) ( ) ( )( ) 0.5 ( )( )

( ) ( )( ).

f x f a f a x a f a x a

f a f a x a

     

  
 

The inequality holds because ( ) 0.f a  But the right-hand side of this equation is 
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the equation for the tangent to the function at point .a So we have shown that any 

concave function must lie on or below the tangent to the function at that point. 

 

 b. A function in two variables is concave if 2

11 22 12 0.f f f   

  Hence, the quadratic form 
2 2

11 12 22 )( 2f dx f dxdy f dy   will also be 

negative.But this says that the final portion of the Taylor expansion will be 

negative (by setting dx x a  and dy y b  ), and hence the function will be 

below its tangent plane. 

 

 

2.14 More on expected value 

 

a. The tangent to ( )g x at the point ( )E x  will have the form ( )c dx g x   for all 

values of x and ( ) ( ( )).c dE x g E x  But, because the line c dx  is above the 

function ( )g x ,we know 

   ( ( )) ( ) ( ) ( ( )).E g x E c dx c dE x g E x      

  This proves Jensen’s inequality. 

 

 b. Use the same procedure as in part (a), but reverse the inequalities. 

 

c. Let 1 ( ),u F x  ( ),du f x  ,x v  and .dx dv  

   

     
0

0 0

1 ( ) (1 ( )) ( )

0 ( )

( ).

x

x
F x dx F x x f x xdx

E x

E x

 



    

 



 

 

 

d. Use the hint to break up the integral defining expected value: 

1

0

1

1

( )
( ) ( )

( )

( )

( )

( ).

t

t

t

t

t

E x
t xf x dx xf x dx

t

t xf x dx

t tf x dx

f x dx

P x t















 
 
 

 







 

 







 

 

 e. 1. Show that this function integrates to 1: 
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  3 2

1
1

( ) 2 1.
x

x
f x dx x dx x

 


 




      

  2. Calculate the cumulative distribution function: 

    3 2 2

1
1

( ) 2 1 .
x

t

x
t

F x t dt t x


  


      

  3. Using the result from part (c): 

      2 1

1
1 1

( ) 1 ( ) 1.
x

x
E x F x dx x dx x

 


 


        

4. To show Markov’s inequality use  

  2 1 ( )
( ) 1 ( ) .

E x
P x t F t t t

t

        

 

f. 1. Show that the PDF integrates to 1: 
22 2 3

1 1

8 1
1.

3 9 9 9

x

x

x x
dx



 

 
     

 
  

 

 2. Calculate the expected value: 
22 3 4

1 1

15 5
( ) .

3 12 12 4

x

x

x x
E x dx



 

     

 

 3. Calculate ( 1 0P x   ): 
00 2 3

1 1

1
.

3 9 9

x

x

x x
dx



 

   

 

 4. All we must do is adjust the PDF so that it now sums to 1 over the new, 

smaller interval.Since ( ) 8 9,P A   
2( ) 3

( | )   defined on  0 2.
8 9 8

f x x
f x A x     

 

  5. The expected value is again found through integration: 

    

22 3 4

0 0

3 3 3
( | ) .

8 32 2

x

x

x x
E x A dx





    

6. Eliminating the lowest values ofx increases the expected value of the 

remaining values. 

 

 

2.15 More on variances 
 

 a. This is just an application of the definition of variance: 
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2

2 2

2 2 2

2 2

Var( ) ( )

2 ( ) [ ( )]

( )

.

2[ ( )] [ ( )]

( ) [ ( )]

x E x E x

E x xE x E x

E x E x E x

E x E x

 

    

  

 

 

 

b. Here, we let xy x    and apply Markov’s inequality to y  and remember that x  

can only take on positive values. 
22

2 2

2 2

( )
( ) ( ) .xE y

P y k P y k
k k


      

 

c. Let ,ix 1, ,i n  be n independent random variables each with expected value 

and variance 
2.  

1

.
n

i

i

E x n  


 
    

 
   

2 2 2

1

Var .
n

i

i

x n  


 
    

 
   

Now, let  
1

.
n

ii
x x n


  

( ) .
n

E x
n


   

2 2

2
Var( ) .

n
x

n n

 
   

 

d. Let 1 2(1 )X kx k x    and ( ) (1 ) .E X k k       

 2 2 2 2 2 2Var( ) (1 ) (2 2 1) .X k k k k         

2Var( )
(4 2) 0.

d X
k

dk
    

Hence, variance is minimized for 0.5.k  In this case, 2Var( ) 0 ..5X  If 0.7,k 
2Var( ) 0.58X  (not much of an increase). 

 

e. Suppose that 
2

1Var( )x   and 
2

2Var( ) .x r Now 

2 2 2 2 2 2Var( ) (1 ) (1 ) 2 .X k k r r k kr r            

  2Var( )
2(1 ) 2 0.

d X
r k r

dk
     

.
1

r
k

r



 

For example, if 2,r   then 2 3k  ,and optimal diversification requires that the 

lower risk asset constitute two-thirds of the portfolio.Note, however, that it is still 
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optimal to have some of the higher risk asset because asset returns are 

independent. 

 

 

2.16 More on covariances 
 

 a. This is a direct result of the definition of covariance: 

   

 Cov( , ) ( ( ))( ( ))

[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

x y E x E x y E y

E xy xE y yE x E x E y

E xy E x E y E y E x E x E y

E xy E x E y

  

   

   

 

 

 

b. 2 2

2 2 2 2 2 2

2 2

2 2

Var( ) [( ) ] [ ( )]

( ) 2 ( ) ( ) [ ( )]

2 E( )E( ) [E( )]

Var( ) Var( ) 2 Cov( , ).

ax by E ax by E ax by

a x abE xy b y a E x

ab x y b y

a x b y a

E

x

E

b y

    

   

 

  

 

The final line is a result of Problems 2.15a and 2.16a. 

 

c. The presence of the covariance term in the result of Problem 2.16b suggests that 

the results would differ.In the two-variable case, however, this is not necessarily 

the situation.For example, suppose that x and y are identically distributed and that 
2Cov( , ) .x y r Using the prior notation, 

2 2 2 2 2Var( ) (1 ) 2 .(1 )X k k k k r        

The first-order condition for a minimum is 
2(4 2 2 4 ) 0,k r rk      

implying 

* 2 2
0.5.

4 4

r
k

r


 


 

Regardless of the value of .r With more than two random variables, however, 

covariances may indeed affect optimal weightings. 

 

d. If 1 2 ,x kx  the correlation coefficient will be either 1  (if k is positive) or 1  (if 

k  is negative), since k  will factor out of the definition leaving only the ratio of 

the common variance of the two variables. With less than a perfect linear 

relationship  
0.5

| Cov( , ) | Var( )Var( .)x y x y  

 

e. If ,y x    

 Cov( , ) ( ( ))( ( ))

[( ( ))( ( ))]

Var( ).

x y E x E x y E y

E x E x x E x

x

   



  

    



 



Chapter 2: Mathematics for Microeconomics 12 

Hence, 

Cov( , )
.

Var( )

x y

x
   


