CHAPTER 2

2-1. (a) Applying the voltage divider equation (2-10)

$$\frac{1.0}{10} = \frac{R_1}{R_1 + R_2 + R_3}$$
$$\frac{4.0}{10} = \frac{R_2}{R_1 + R_2 + R_3}$$
$$V_3 = 10.0 \text{V} - 1.0 \text{ V} - 4.0 \text{ V} = 5.0 \text{ V}$$
$$\frac{5.0}{10} = \frac{R_3}{R_1 + R_2 + R_3}$$

Dividing the first equation by the second, gives

Similarly,
$$R_2/R_3 = 4.0/5.0$$

Letting $R_1 = 250 \Omega$, $R_2 = 250 \times 4.0 = 1.0 \text{ k}\Omega$,

and $R_3 = 1.0 \text{ k}\Omega \times 5.0/4.0 = 1.25 \text{ k}\Omega$. Use a 1.0 k Ω resistor and a 250 k Ω resistor in series. The 500 k Ω resistor is not used.

 $R_1/R_2 = 1.0/4.0$

(b)
$$V_3 = IR_3 = 10.0 \text{ V} - 1.0 \text{ V} - 4.0 \text{ V} = 5.0 \text{ V}$$

(c)
$$I = V/(R_1 + R_2 + R_3) = 10.0 \text{ V}/(250 \Omega + 1000 \Omega + 1250 \Omega) = 0.004 \text{ A} (4.0 \text{ mA})$$

(d) $P = IV = 0.004 \text{ A} \times 10.0 \text{ V} = 0.04 \text{ W}$ (Equation 2-2)

2-2. (a) From Equation 2-10,
$$V_2 = 15 \times 400/(200 + 400 + 2000) = 2.31$$
 V

(b)
$$P = V_2^2 / R_2 = (2.31)^2 / 400 = 0.013 \text{ W}$$

(c) Total
$$P = V^2/R_s = (15)^2/2600 = 0.087$$
 W

Percentage loss in $R_2 = (0.013/0.087) \times 100 = 15\%$

2-3.
$$V_{2,4} = 24.0 \times [(2.0 + 4.0) \times 10^3] / [(1.0 + 2.0 + 4.0) \times 10^3] = 20.6 \text{ V}$$

With the meter in parallel across contacts 2 and 4,

$$\frac{1}{R_{2,4}} = \frac{1}{(2.0 + 4.0) \,\mathrm{k\Omega}} + \frac{1}{R_M} = \frac{R_M + 6.0 \,\mathrm{k\Omega}}{R_M \times 6.0 \,\mathrm{k\Omega}}$$
$$R_{2,4} = (R_M \times 6.0 \,\mathrm{k\Omega})/(R_M + 6.0 \,\mathrm{k\Omega})$$
$$R_{2,4} = (4.0 \,\mathrm{k\Omega} \times 6.0 \,\mathrm{k\Omega})/(4.0 \,\mathrm{k\Omega} + 6.0 \,\mathrm{k\Omega}) = 2.40 \,\mathrm{k\Omega}$$
$$V_M = (24.0 \,\mathrm{V} \times 2.40 \,\mathrm{k\Omega})/(1.00 \,\mathrm{k\Omega} + 2.40 \,\mathrm{k\Omega}) = 16.9 \,\mathrm{V}$$

rel error =
$$\frac{16.9 \text{ V} - 20.6 \text{ V}}{20.6 \text{ V}} \times 100\% = -18\%$$

Proceeding in the same way, we obtain (b) -1.2% and (c) -0.2%

2-4. Applying Equation 2-19, we can write

(a)

(a)
$$-1.0\% = -\frac{1000 \ \Omega}{(R_M - 1000 \ \Omega)} \times 100\%$$

 $R_M = (1000 \times 100 - 1000) \ \Omega = 99000 \ \Omega \text{ or } 99 \ k\Omega$
(b) $-0.1\% = -\frac{1000 \ \Omega}{(R_M - 1000 \ \Omega)} \times 100\%$
 $R_M = 999 \ k\Omega$

2-5. Resistors R_2 and R_3 are in parallel, the parallel combination R_p is given by Equation 2-17

$$R_p = (500 \times 250)/(500 + 250) = 166.67 \ \Omega$$

(a) This 166.67 ΩR_p is in series with R_1 and R_4 . Thus, the voltage across R_1 is

$$V_1 = (15.0 \times 250)/(250 + 166.67 + 1000) = 2.65 \text{ V}$$

$$V_{2} = V_{3} = 15.0 \text{ V} \times 166.67/1416.67 = 1.76 \text{ V}$$

$$V_{4} = 15.0 \text{ V} \times 1000/1416.67 = 10.59 \text{ V}$$
(b) $I_{1}R_{1} = V_{1} = 2.647 \text{ V}$ $I_{1} = 2.647/250 = 0.01059 \text{ A} (1.06 \times 10^{-2} \text{ A})$
 $I_{2} = 1.76 \text{ V}/500 \Omega = 3.5 \times 10^{-3} \text{ A}$
 $I_{3} = 1.76 \text{ V}/250 \Omega = 7.0 \times 10^{-3} \text{ A}$
 $I_{4} = 10.59 \text{ V}/1000 \Omega = 0.01059 \text{ A} (1.06 \times 10^{-2} \text{ A})$
(c) $P = IV = 1.76 \text{ V} \times 7.0 \times 10^{-3} \text{ A} = 1.2 \times 10^{-2} \text{ W}$

(d) Since point 3 is at the same potential as point 2, the voltage between points 3 and 4 (V') is the sum of the drops across the 166.67
$$\Omega$$
 and the 1000 Ω resistors. Or,
 $V' = 1.76 \text{ V} + 10.59 \text{ V} = 12.35 \text{ V}$. It is also the source voltage minus the V_1
 $V' = 15.0 - 2.65 = 12.35 \text{ V}$

2-6. The resistance between points 1 and 2 is the parallel combination or R_B and R_C

 $R_{1,2} = 3.0 \text{ k}\Omega \times 4.0 \text{ k}\Omega/(3.0 \text{ k}\Omega + 4.0 \text{ k}\Omega) = 1.71 \text{ k}\Omega$

Similarly the resistance between points 2 and 3 is

$$R_{2,3} = 2.0 \text{ k}\Omega \times 1.0 \text{ k}\Omega/(2.0 \text{ k}\Omega + 1.0 \text{ k}\Omega) = 0.667 \text{ k}\Omega$$

These two resistors are in series with R_A for a total series resistance R_T of

 $R_T = 1.71 \text{ k}\Omega + 0.667 \text{ k}\Omega + 2.0 \text{ k}\Omega = 4.38 \text{ k}\Omega$

 $I = 24/(4380 \ \Omega) = 5.5 \times 10^{-3} \ A$

- (a) $P_{1,2} = I^2 R_{1,2} = (5.5 \times 10^{-3})^2 \times 1.71 \times 10^3 = 0.052 \text{ W}$
- (b) As above $I = 5.5 \times 10^{-3}$ A (5.5 mA)
- (c) $V_A = IR_A = 5.5 \times 10^{-3} \text{ A} \times 2.0 \times 10^3 \Omega = 11.0 \text{ V}$

- (d) $V_D = 24 \times R_{2,3}/R_T = 24 \times 0.667/4.38 = 3.65$ V
- (e) $V_{5,4} = 24 V_A = 24 11.0 = 13$ V
- 2-7. With the standard cell in the circuit,

 $V_{\text{std}} = V_b \times AC/AB$ where V_b is the battery voltage

$$1.018 = V_b \times 84.3/AB$$

With the unknown voltage V_x in the circuit,

$$V_x = V_b \times 44.2/AB$$

Dividing the third equation by the second gives,

$$\frac{1.018 \text{ V}}{V_x} = \frac{84.3 \text{ cm}}{44.3 \text{ cm}}$$

$$V_x = 1.018 \times 44.3 \text{ cm}/84.3 \text{ cm} = 0.535 \text{ V}$$

$$2-8. \qquad E_r = -\frac{R_s}{R_M + R_s} \times 100\%$$

For $R_S = 20 \ \Omega$ and $R_M = 10 \ \Omega$, $E_r = -\frac{20}{10+20} \times 100\% = -67\%$

Similarly, for
$$R_M = 50 \Omega$$
, $E_r = -\frac{20}{50+20} \times 100\% = -29\%$

The other values are shown in a similar manner.

2-9. Equation 2-20 is
$$E_r = -\frac{R_{\text{std}}}{R_L + R_{\text{std}}} \times 100\%$$

For
$$R_{\text{std}} = 1 \Omega$$
 and $R_L = 1 \Omega$, $E_r = -\frac{1 \Omega}{1 \Omega + 1 \Omega} \times 100\% = -50\%$

Similarly for
$$R_L = 10 \Omega$$
, $E_r = -\frac{1 \Omega}{10 \Omega + 1 \Omega} \times 100\% = -9.1\%$

The other values are shown in a similar manner.

2-10. (a)
$$R_s = V/I = 1.00 \text{ V}/20 \times 10^{-6} \text{ A} = 50000 \Omega \text{ or } 50 \text{ k}\Omega$$

(b) Using Equation 2-19

$$-1\% = -\frac{50 \text{ k}\Omega}{R_M + 50 \text{ k}\Omega} \times 100\%$$

$$R_M = 50 \text{ k}\Omega \times 100 - 50 \text{ k}\Omega = 4950 \text{ k}\Omega \text{ or} \approx 5 \text{ M}\Omega$$

2-11.
$$I_1 = 90/(25 + 5000) = 1.791 \times 10^{-2} \text{ A}$$

$$I_2 = 90/(45 + 5000) = 1.784 \times 10^{-2} \text{ A}$$

% change = $[(1.784 \times 10^{-2} \text{ A} - 1.791 \times 10^{-2} \text{ A})/(1.791 \times 10^{-2} \text{ A}] \times 100\% = -0.4\%$

2-12.
$$I_1 = 12.5/420 = 2.976 \times 10^{-2} \text{ A}$$

 $I_2 = 12.5/440 = 2.841 \times 10^{-2} \text{ A}$
% change = [(2.841×10⁻² - 2.976×10⁻²)/ 2.976×10⁻²]×100% = -4.5%
2-13. $i = I_{\text{init}} e^{-t/RC}$ (Equation 2-35)
 $RC = 25 \times 10^6 \Omega \times 0.2 \times 10^{-6} \text{ F} = 5.00 \text{ s}$ $I_{\text{init}} = 24 \text{V}/(25 \times 10^6 \Omega) = 9.6 \times 10^{-7} \text{ A}$
 $i = 9.6 \times 10^{-7} e^{-t/5.00} \text{ A or } 0.96 \times e^{-t/5.0} \mu\text{A}$

<i>t</i> , s	<i>i</i> , µA	<i>t</i> , s	<i>i</i> , µA
0.00	0.96	1.0	0.786
0.010	0.958	10	0.130
0.10	0.941		

5

Chapter 2

2-14.
$$v_C = V_C e^{-t/RC}$$
 (Equation 2-40)

 $v_C/V_C = 1.00/100$ for discharge to 1%

$$0.0100 = e^{-t/RC} = e^{-t/(R \times 0.025 \times 10^{-6})}$$

$$\ln 0.0100 = -4.61 = -t/(2.5 \times 10^{-8}R)$$

$$t = 4.61 \times 2.5 \times 10^{-8} R = 1.15 \times 10^{-7} R$$

- (a) When $R = 10 \text{ M}\Omega$ or $10 \times 10^6 \Omega$, t = 1.15 s
- (b) Similarly, when $R = 1 \text{ M}\Omega$, t = 0.115 s
- (c) When $R = 1 \text{ k}\Omega$, $t = 1.15 \times 10^{-4} \text{ s}$

2-15. (a) When
$$R = 10 \text{ M}\Omega$$
, $RC = 10 \times 10^{6} \Omega \times 0.025 \times 10^{-6} \text{ F} = 0.25 \text{ s}$

- (b) $RC = 1 \times 10^6 \times 0.025 \times 10^{-6} = 0.025$ s
- (c) $RC = 1 \times 10^3 \times 0.025 \times 10^{-6} = 2.5 \times 10^{-5} \text{ s}$

2-16. Parts (a) and (b) are given in the spreadsheet below. For part (c), we calculate the quantities from

$$i = I_{\text{init}} e^{-t/RC}$$
, $v_R = iR$, and $v_C = 25 - v_R$

For part (d) we calculate the quantities from

$$i = \frac{-v_C}{R} e^{-t/RC}$$
, $v_R = iR$, and $v_C = -v_R$

The results are given in the spreadsheet.

Principles of Instrumental Analysis, 7th ed.

- 4	A	B	С	D	E	F	G	H	1		
1	Problem	2-16				1					
2	R	5.00E+04	ohms								
3	C	3.50E-08	farads								
4	V	25	Volts								
6	(a)										
7	RC	1.75E-03	S								
8	(b)										
9	/ init	5.00E-04	A								
10			t, s	<i>i</i> , μA	VR. V	Vc, V					
11		1	0	500	25	0.0					
12			1	282	14	11					
13			2	159	8.0	17					
14			3	90	4.5	20					
15			4	51	2.5	22					
16			5	29	1.4	24					
17			10	2	0.08	24.9					
18											
19	(c)	1	t,s	<i>i</i> , μΑ	VR. V	VC, V					
20			0	-498	-24.9	24.9					
21			1	-281	-14.1	14.1					
22			2	-159	-7.9	7.9					
23			3	-90	-4.5	4.5					
24			4	-51	-2.5	2.5					
25			5	-29	-1.4	1.4					
26			10	-1.6	-0.08	0.08					
27											
28	Spreads	heet Docum	nentation								
29	Cell B7=8	B2*B3			Cell D20=-(\$F\$17/\$B\$2)*1000000*EXP(-C20/\$B\$7*0.001)						
30	Cell B9=E	B4/B2	ř.		Cell E20=D20*0.000001*\$B\$2						
31	Cell D11=	=\$B\$9*10000)00*EXP(-C1	1/\$B\$7*0.00	1) Cell F20=-	E20					
32	Cell E11=	=\$B\$2*0.000	001*D11								
33	Cell F11=	=\$B\$4-E11									

2-17. Proceeding as in Problem 2-16, the results are in the spreadsheet

1	Α	В	С	D	E	F	G	Н	1		
1	Problem 2	2-17			l l						
2	R	2.00E+07	Ω								
3	С	5.00E-08	F								
4	V	15	V								
6	(a)										
7	RC	1.00	S								
8	(b)										
9	/ init	7.50E-07			(
10			t,s	i, μA	VR. V	Vc, V					
11			0	0.75	15.0	0.0					
12			1	0.28	5.5	9.5					
13			2	0.10	2.0	13.0					
14			3	3.7E-02	0.75	14.3					
15			4	1.4E-02	0.27	14.7					
16			5	5.1E-03	0.10	14.9					
17			10	3.4E-05	0.00	15.0					
18											
19	(c)		t, s	<i>i</i> , μA	VR. V	v _c , V					
20			0	-0.75	-15.0	15.0					
21			1	-0.28	-5.5	5.5					
22			2	-0.10	-2.0	2.0					
23			3	-3.7E-02	-0.75	0.75					
24			4	-1.4E-02	-0.27	0.27					
25			5	-5.1E-03	-0.10	0.10					
26			10	-3.4E-05	0.00	0.00					
27											
28	Spreadsh	eet Docum	nentation			1					
29	Cell B7=B2	2*B3			Cell D20=-(\$F\$17/\$B\$2)*1000000*EXP(-C20/\$B\$7)						
30	Cell B9=B4	4/B2			Cell E20=D20*0.000001*\$B\$2						
31	Cell D11=9	SB\$9*10000)00*EXP(-C	11/\$B\$7)	Cell F20=-	E20					
32	Cell E11=9	6B\$2*0.000	001*D11								
33	Cell F11=\$	B\$4-E11									

2-18. In the spreadsheet we calculate X_C , Z, and ϕ from

$$X_C = 2/2\pi fC$$
, $Z = \sqrt{R^2 + X_C^2}$, and $\phi = \arctan(X_C/R)$

1	A B		С	D	E	F	G		
1	Problem 2	2-18							
2		f, Hz	<i>R</i> , Ω	C, F	X_{C}, Ω	Ζ, Ω	¢, degrees		
3	(a)	1	30000	3.30E-08	4.82E+06	4.8E+06	-90		
4	(b)	1.00E+03	30000	3.30E-08	4.82E+03	3.0E+04	-9.1		
5	(c)	1.00E+06	30000	3.30E-09	48.2	3.0E+04	-0.1		
6	(d)	1	300	3.30E-09	4.82E+07	4.8E+07	-90.0		
7	(e)	1.00E+03 300		3.30E-09	4.82E+04	4.8E+04	-89.6		
8	(f)	1.00E+06	300	3.30E-09	48.2	3.0E+02	-9.1		
9	(g)	1	3000	3.30E-07	4.82E+05	4.8E+05	-89.6		
10	(h)	1.00E+03	3000	3.30E-07	4.82E+02	3.0E+03	-9.1		
11	(i)	1.00E+06 3000		3.30E-07	0.48	3.0E+03	0.0		
12									
13	Spreadsh	eet Docum	entation						
14	Cell E3=1/	(2*PI()*B3*D)3)						
15	Cell F3=S0	QRT(C3^2+E	E3^2)						
16	Cell G3=D	EGREES(-A	TAN(E3/C	3))					

2-19. Let us rewrite Equation 2-54 in the form

$$y = \frac{(V_p)_o}{(V_p)_i} = \frac{1}{\sqrt{(2\pi f R C)^2 + 1}}$$
$$y^2 (2\pi f R C)^2 + y^2 = 1$$
$$f = \frac{1}{2\pi R C} \sqrt{\frac{1}{y^2} - 1} = \frac{1}{2\pi R C} \sqrt{\frac{1 - y^2}{y^2}}$$

The spreadsheet follows

2-20. By dividing the numerator and denominator of the right side of Equation 2-53 by R, we

obtain

$$y = \frac{(V_p)_o}{(V_p)_i} = \frac{1}{\sqrt{1 + (1/2\pi f R C)^2}}$$

Squaring this equation yields

$$y^{2} + y^{2}/(2\pi f R C)^{2} = 1$$
$$2\pi f R C = \sqrt{\frac{y^{2}}{1 - y^{2}}}$$
$$f = \frac{1}{2\pi R C} \sqrt{\frac{y^{2}}{1 - y^{2}}}$$

The results are shown in the spreadsheet that follows.

10

- 4	A	В	С	D	E	F	G	H	1	J	K	L	M	
1	Problem 2-20													
2	R	3.00E+05			l l									
3	C	1.00E-10				1.2 -								
4			$y=(V_p)_o/(V_p)_i$	f	In f	5								
5			0.001	5.31E+00	1.668681	1 -							12	
6			0.01	5.31E+01	3.971316						/	-		
7			0.05	2.66E+02	5.581955	10000					1			
8			0.1	5.33E+02	6.278876	0.8 -					1			
9			0.2	1.08E+03	6.987409						4			
10			0.3	1.67E+03	7.419619	> 0.6					1			
11			0.4	2.32E+03	7.747322	- 0.0					Ι			
12			0.5	3.06E+03	8.02713						1			
13			0.6	3.98E+03	8.288754	0.4 -				+				
14			0.7	5.20E+03	8.556433					1				
15			0.8	7.07E+03	8.864118	0.2				1				
16			0.9	1.10E+04	9.301441	0.2								
17			0.99	3.72E+04	10.5249				-	/				
18			0.999	1.19E+05	11.68299	0 -	•	1		:		-		
19			0.9999	3.75E+05	12.83496	C)	2	4	6	8 1	0	12	
20										In f				
21	21 Spreadsheet Documentation													
22	Cell D5=S0	QRT(C5^2/(1-C5^2))/(2*PI()*\$	B\$2*\$B\$3)										
23	Cell E5=LN	V(D5)												

2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.