Principles of Instrumental Analysis, 7th ed.

CHAPTER 2

2-1. (a) Applying the voltage divider equation (2-10)

$$
\begin{aligned}
& \frac{1.0}{10}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \\
& \frac{4.0}{10}=\frac{R_{2}}{R_{1}+R_{2}+R_{3}} \\
& V_{3}=10.0 \mathrm{~V}-1.0 \mathrm{~V}-4.0 \mathrm{~V}=5.0 \mathrm{~V} \\
& \frac{5.0}{10}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}}
\end{aligned}
$$

Dividing the first equation by the second, gives

$$
R_{1} / R_{2}=1.0 / 4.0
$$

Similarly,

$$
R_{2} / R_{3}=4.0 / 5.0
$$

Letting $R_{1}=250 \Omega, R_{2}=250 \times 4.0=1.0 \mathrm{k} \Omega$, and $R_{3}=1.0 \mathrm{k} \Omega \times 5.0 / 4.0=1.25 \mathrm{k} \Omega$. Use a $1.0 \mathrm{k} \Omega$ resistor and a $250 \mathrm{k} \Omega$ resistor in series. The $500 \mathrm{k} \Omega$ resistor is not used.
(b) $V_{3}=I R_{3}=10.0 \mathrm{~V}-1.0 \mathrm{~V}-4.0 \mathrm{~V}=5.0 \mathrm{~V}$
(c) $I=V /\left(R_{1}+R_{2}+R_{3}\right)=10.0 \mathrm{~V} /(250 \Omega+1000 \Omega+1250 \Omega)=0.004 \mathrm{~A}(4.0 \mathrm{~mA})$
(d) $P=I V=0.004 \mathrm{~A} \times 10.0 \mathrm{~V}=0.04 \mathrm{~W} \quad$ (Equation 2-2)

2-2. (a) From Equation $2-10, V_{2}=15 \times 400 /(200+400+2000)=2.31 \mathrm{~V}$
(b) $P=V_{2}^{2} / R_{2}=(2.31)^{2} / 400=0.013 \mathrm{~W}$
(c) Total $P=V^{2} / R_{s}=(15)^{2} / 2600=0.087 \mathrm{~W}$

Principles of Instrumental Analysis, $7^{\text {th }}$ ed.
Percentage loss in $R_{2}=(0.013 / 0.087) \times 100=15 \%$
$2-3 . \quad V_{2,4}=24.0 \times\left[(2.0+4.0) \times 10^{3}\right] /\left[(1.0+2.0+4.0) \times 10^{3}\right]=20.6 \mathrm{~V}$
With the meter in parallel across contacts 2 and 4,

$$
\begin{aligned}
& \frac{1}{R_{2,4}}=\frac{1}{(2.0+4.0) \mathrm{k} \Omega}+\frac{1}{R_{M}}=\frac{R_{M}+6.0 \mathrm{k} \Omega}{R_{M} \times 6.0 \mathrm{k} \Omega} \\
& R_{2,4}=\left(R_{M} \times 6.0 \mathrm{k} \Omega\right) /\left(R_{M}+6.0 \mathrm{k} \Omega\right)
\end{aligned}
$$

(a) $R_{2,4}=(4.0 \mathrm{k} \Omega \times 6.0 \mathrm{k} \Omega) /(4.0 \mathrm{k} \Omega+6.0 \mathrm{k} \Omega)=2.40 \mathrm{k} \Omega$

$$
V_{M}=(24.0 \mathrm{~V} \times 2.40 \mathrm{k} \Omega) /(1.00 \mathrm{k} \Omega+2.40 \mathrm{k} \Omega)=16.9 \mathrm{~V}
$$

$$
\text { rel error }=\frac{16.9 \mathrm{~V}-20.6 \mathrm{~V}}{20.6 \mathrm{~V}} \times 100 \%=-18 \%
$$

Proceeding in the same way, we obtain (b) -1.2% and (c) -0.2%
2-4. Applying Equation 2-19, we can write
(a) $-1.0 \%=-\frac{1000 \Omega}{\left(R_{M}-1000 \Omega\right)} \times 100 \%$

$$
R_{M}=(1000 \times 100-1000) \Omega=99000 \Omega \text { or } 99 \mathrm{k} \Omega
$$

(b) $-0.1 \%=-\frac{1000 \Omega}{\left(R_{M}-1000 \Omega\right)} \times 100 \%$

$$
R_{M}=999 \mathrm{k} \Omega
$$

2-5. \quad Resistors R_{2} and R_{3} are in parallel, the parallel combination R_{p} is given by Equation 2-17
$R_{p}=(500 \times 250) /(500+250)=166.67 \Omega$
(a) This $166.67 \Omega R_{p}$ is in series with R_{1} and R_{4}. Thus, the voltage across R_{1} is

$$
V_{1}=(15.0 \times 250) /(250+166.67+1000)=2.65 \mathrm{~V}
$$

$$
\begin{aligned}
& V_{2}=V_{3}=15.0 \mathrm{~V} \times 166.67 / 1416.67=1.76 \mathrm{~V} \\
& V_{4}=15.0 \mathrm{~V} \times 1000 / 1416.67=10.59 \mathrm{~V}
\end{aligned}
$$

(b) $\quad I_{1} R_{1}=V_{1}=2.647 \mathrm{~V} \quad I_{1}=2.647 / 250=0.01059 \mathrm{~A}\left(1.06 \times 10^{-2} \mathrm{~A}\right)$

$$
I_{2}=1.76 \mathrm{~V} / 500 \Omega=3.5 \times 10^{-3} \mathrm{~A}
$$

$$
I_{3}=1.76 \mathrm{~V} / 250 \Omega=7.0 \times 10^{-3} \mathrm{~A}
$$

$$
I_{4}=10.59 \mathrm{~V} / 1000 \Omega=0.01059 \mathrm{~A}\left(1.06 \times 10^{-2} \mathrm{~A}\right)
$$

(c) $\quad P=I V=1.76 \mathrm{~V} \times 7.0 \times 10^{-3} \mathrm{~A}=1.2 \times 10^{-2} \mathrm{~W}$
(d) Since point 3 is at the same potential as point 2, the voltage between points 3 and $4\left(V^{\prime}\right)$ is the sum of the drops across the 166.67Ω and the 1000Ω resistors. Or, $V^{\prime}=1.76 \mathrm{~V}+10.59 \mathrm{~V}=12.35 \mathrm{~V}$. It is also the source voltage minus the V_{1}

$$
V^{\prime}=15.0-2.65=12.35 \mathrm{~V}
$$

2-6. The resistance between points 1 and 2 is the parallel combination or R_{B} and R_{C}

$$
R_{1,2}=3.0 \mathrm{k} \Omega \times 4.0 \mathrm{k} \Omega /(3.0 \mathrm{k} \Omega+4.0 \mathrm{k} \Omega)=1.71 \mathrm{k} \Omega
$$

Similarly the resistance between points 2 and 3 is

$$
R_{2,3}=2.0 \mathrm{k} \Omega \times 1.0 \mathrm{k} \Omega /(2.0 \mathrm{k} \Omega+1.0 \mathrm{k} \Omega)=0.667 \mathrm{k} \Omega
$$

These two resistors are in series with R_{A} for a total series resistance R_{T} of

$$
\begin{aligned}
& R_{T}=1.71 \mathrm{k} \Omega+0.667 \mathrm{k} \Omega+2.0 \mathrm{k} \Omega=4.38 \mathrm{k} \Omega \\
& I=24 /(4380 \Omega)=5.5 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

(a) $P_{1,2}=I^{2} R_{1,2}=\left(5.5 \times 10^{-3}\right)^{2} \times 1.71 \times 10^{3}=0.052 \mathrm{~W}$
(b) As above $I=5.5 \times 10^{-3} \mathrm{~A}(5.5 \mathrm{~mA})$
(c) $V_{A}=I R_{A}=5.5 \times 10^{-3} \mathrm{~A} \times 2.0 \times 10^{3} \Omega=11.0 \mathrm{~V}$
(d) $V_{D}=24 \times R_{2,3} / R_{T}=24 \times 0.667 / 4.38=3.65 \mathrm{~V}$
(e) $V_{5,4}=24-V_{A}=24-11.0=13 \mathrm{~V}$

2-7. With the standard cell in the circuit,

$$
\begin{aligned}
& V_{\text {std }}=V_{b} \times A C / A B \quad \text { where } V_{b} \text { is the battery voltage } \\
& 1.018=V_{b} \times 84.3 / A B
\end{aligned}
$$

With the unknown voltage V_{x} in the circuit,

$$
V_{x}=V_{b} \times 44.2 / A B
$$

Dividing the third equation by the second gives,

$$
\begin{aligned}
& \frac{1.018 \mathrm{~V}}{V_{x}}=\frac{84.3 \mathrm{~cm}}{44.3 \mathrm{~cm}} \\
& V_{x}=1.018 \times 44.3 \mathrm{~cm} / 84.3 \mathrm{~cm}=0.535 \mathrm{~V}
\end{aligned}
$$

2-8. $\quad E_{r}=-\frac{R_{S}}{R_{M}+R_{S}} \times 100 \%$

$$
\text { For } R_{S}=20 \Omega \text { and } R_{M}=10 \Omega, E_{r}=-\frac{20}{10+20} \times 100 \%=-67 \%
$$

$$
\text { Similarly, for } R_{M}=50 \Omega, E_{r}=-\frac{20}{50+20} \times 100 \%=-29 \%
$$

The other values are shown in a similar manner.
2-9. Equation 2-20 is $E_{r}=-\frac{R_{\mathrm{std}}}{R_{L}+R_{\mathrm{std}}} \times 100 \%$
For $R_{\mathrm{std}}=1 \Omega$ and $R_{L}=1 \Omega, E_{r}=-\frac{1 \Omega}{1 \Omega+1 \Omega} \times 100 \%=-50 \%$

$$
\text { Similarly for } R_{L}=10 \Omega, E_{r}=-\frac{1 \Omega}{10 \Omega+1 \Omega} \times 100 \%=-9.1 \%
$$

The other values are shown in a similar manner.
2-10. (a) $R_{s}=V / I=1.00 \mathrm{~V} / 20 \times 10^{-6} \mathrm{~A}=50000 \Omega$ or $50 \mathrm{k} \Omega$
(b) Using Equation 2-19

$$
\begin{aligned}
& -1 \%=-\frac{50 \mathrm{k} \Omega}{R_{M}+50 \mathrm{k} \Omega} \times 100 \% \\
& R_{M}=50 \mathrm{k} \Omega \times 100-50 \mathrm{k} \Omega=4950 \mathrm{k} \Omega \text { or } \approx 5 \mathrm{M} \Omega
\end{aligned}
$$

$2-11 . \quad I_{1}=90 /(25+5000)=1.791 \times 10^{-2} \mathrm{~A}$

$$
I_{2}=90 /(45+5000)=1.784 \times 10^{-2} \mathrm{~A}
$$

$$
\% \text { change }=\left[\left(1.784 \times 10^{-2} \mathrm{~A}-1.791 \times 10^{-2} \mathrm{~A}\right) / 1.791 \times 10^{-2} \mathrm{~A}\right] \times 100 \%=-0.4 \%
$$

2-12. $\quad I_{1}=12.5 / 420=2.976 \times 10^{-2} \mathrm{~A}$

$$
I_{2}=12.5 / 440=2.841 \times 10^{-2} \mathrm{~A}
$$

$$
\% \text { change }=\left[\left(2.841 \times 10^{-2}-2.976 \times 10^{-2}\right) / 2.976 \times 10^{-2}\right] \times 100 \%=-4.5 \%
$$

2-13. $\quad i=I_{\mathrm{init}} e^{-t / R C} \quad$ (Equation 2-35)

$$
R C=25 \times 10^{6} \Omega \times 0.2 \times 10^{-6} \mathrm{~F}=5.00 \mathrm{~s} \quad I_{\text {init }}=24 \mathrm{~V} /\left(25 \times 10^{6} \Omega\right)=9.6 \times 10^{-7} \mathrm{~A}
$$

$$
i=9.6 \times 10^{-7} e^{-t / 5.00} \mathrm{~A} \text { or } 0.96 \times e^{-t / 5.0} \mu \mathrm{~A}
$$

$\boldsymbol{t}, \mathbf{s}$	$\boldsymbol{i}, \boldsymbol{\mu} \mathbf{A}$
0.00	0.96
0.010	0.958
0.10	0.941

$\boldsymbol{t}, \mathbf{s}$	$\boldsymbol{i}, \boldsymbol{\mu} \mathbf{A}$
1.0	0.786
10	0.130

2-14. $\quad v_{C}=V_{C} e^{-t / R C}$
(Equation 2-40)
$v_{C} / V_{C}=1.00 / 100$ for discharge to 1%
$0.0100=e^{-t / R C}=e^{-t /\left(R \times 0.025 \times 10^{-6}\right)}$
$\ln 0.0100=-4.61=-t /\left(2.5 \times 10^{-8} R\right)$
$t=4.61 \times 2.5 \times 10^{-8} R=1.15 \times 10^{-7} R$
(a) When $R=10 \mathrm{M} \Omega$ or $10 \times 10^{6} \Omega, t=1.15 \mathrm{~s}$
(b) Similarly, when $R=1 \mathrm{M} \Omega, t=0.115 \mathrm{~s}$
(c) When $R=1 \mathrm{k} \Omega, t=1.15 \times 10^{-4} \mathrm{~s}$

2-15. (a) When $R=10 \mathrm{M} \Omega, R C=10 \times 10^{6} \Omega \times 0.025 \times 10^{-6} \mathrm{~F}=0.25 \mathrm{~s}$
(b) $R C=1 \times 10^{6} \times 0.025 \times 10^{-6}=0.025 \mathrm{~s}$
(c) $R C=1 \times 10^{3} \times 0.025 \times 10^{-6}=2.5 \times 10^{-5} \mathrm{~s}$

2-16. Parts (a) and (b) are given in the spreadsheet below. For part (c), we calculate the quantities from

$$
i=I_{\text {init }} e^{-t / R C}, v_{R}=i R, \text { and } v_{C}=25-v_{R}
$$

For part (d) we calculate the quantities from
$i=\frac{-v_{C}}{R} e^{-t / R C}, v_{R}=i R$, and $v_{C}=-v_{R}$
The results are given in the spreadsheet.

Principles of Instrumental Analysis, $7^{\text {th }}$ ed.

4	A	B	C	D	E	F	G	H	1	
1	Problem 2-16									
2	R	$5.00 \mathrm{E}+04$	ohms							
3	C	$3.50 \mathrm{E}-08$	farads							
4	V	25	Volts							
6	(a)									
7	$R C$	$1.75 \mathrm{E}-03$	s							
8	(b)									
9	$I_{\text {init }}$	$5.00 \mathrm{E}-04$	A							
10			t, s	$i, \mu \mathrm{~A}$	$v_{R}, \mathrm{~V}$	$v_{C}, \mathrm{~V}$				
11			0	500	25	0.0				
12			1	282	14	11				
13			2	159	8.0	17				
14			3	90	4.5	20				
15			4	51	2.5	22				
16			5	29	1.4	24				
17			10	2	0.08	24.9				
18										
19	(c)		t, s	$i, \mu \mathrm{~A}$	$v_{R}, \mathrm{~V}$	$v_{\mathrm{C}}, \mathrm{V}$				
20			0	-498	-24.9	24.9				
21			1	-281	-14.1	14.1				
22			2	-159	-7.9	7.9				
23			3	-90	-4.5	4.5				
24			4	-51	-2.5	2.5				
25			5	-29	-1.4	1.4				
26			10	-1.6	-0.08	0.08				
27										
28	Spreadsheet Documentation									
29	Cell B7	*B3			Cell D20 $=-(\$ F \$ 17 / \$ B \$ 2)^{*} 1000000^{*} \mathrm{EXP}\left(-\mathrm{C} 20 / \$ \mathrm{~B} \$ 7^{*} 0.001\right)$					
30	Cell B	4/B2			Cell E20 $=$ D $20 * 0.000001 * \$$ B $\$ 2$					
31	Cell D11=\$B\$9*1000000*EXP(-C11/\$B\$7*0.001)				Cell F20					
32	Cell E11=\$B\$2*0.000001*D11									
33	Cell F11=\$B\$4-E11									

2-17. Proceeding as in Problem 2-16, the results are in the spreadsheet

4		A	B	C	D	E	F	G	H	I
1	Problem 2-17									
2	R		$2.00 \mathrm{E}+07$	Ω						
3	C		$5.00 \mathrm{E}-08$	F						
4	V		15	V						
6	(a)									
7	RC		1.00	s						
8	(b)									
9	1 init		7.50E-07							
10				t, s	i, $\mu \mathrm{A}$	$v_{R}, \mathrm{~V}$	$v_{c}, \mathrm{~V}$			
11				0	0.75	15.0	0.0			
12				1	0.28	5.5	9.5			
13				2	0.10	2.0	13.0			
14				3	3.7E-02	0.75	14.3			
15				4	1.4E-02	0.27	14.7			
16				5	5.1E-03	0.10	14.9			
17				10	$3.4 \mathrm{E}-05$	0.00	15.0			
18										
19	(c)			t, s	$i, \mu \mathrm{~A}$	$v_{R}, \mathrm{~V}$	$v_{c}, \mathrm{~V}$			
20				0	-0.75	-15.0	15.0			
21				1	-0.28	-5.5	5.5			
22				2	-0.10	-2.0	2.0			
23				3	-3.7E-02	-0.75	0.75			
24				4	-1.4E-02	-0.27	0.27			
25				5	-5.1E-03	-0.10	0.10			
26				10	-3.4E-05	0.00	0.00			
27										
28	Spreadsheet Documentation									
29	Cell B7=B2*B3					Cell D20 $=-(\$ \text { F } \$ 17 / \$ \mathrm{~B} \$ 2)^{*} 1000000^{*} \mathrm{EXP}(-\mathrm{C} 20 / \$ B 87)$				
30		ell B9	4/B2			Cell E20 $=$ D20* 0.000001^{*} \$B\$ 2				
31	Cell D11=\$B\$9*1000000*EXP(-C11/\$B\$7)					Cell F20=-E20				
32	Cell E11=\$B\$2*0.000001*D11									
33		ell F1	B\$4-E11							

2-18. In the spreadsheet we calculate X_{C}, Z, and ϕ from

$$
X_{C}=2 / 2 \pi f C, Z=\sqrt{R^{2}+X_{C}^{2}}, \text { and } \phi=\arctan \left(X_{C} / R\right)
$$

	A	B	C	D	E	F	G
1	Problem 2-18						
2		$f, \mathrm{~Hz}$	R, Ω	C, F	$X_{\text {c }}, \Omega$	Z, Ω	¢, degrees
3	(a)	1	30000	3.30E-08	$4.82 \mathrm{E}+06$	$4.8 \mathrm{E}+06$	-90
4	(b)	$1.00 \mathrm{E}+03$	30000	$3.30 \mathrm{E}-08$	$4.82 \mathrm{E}+03$	$3.0 \mathrm{E}+04$	-9.1
5	(c)	$1.00 \mathrm{E}+06$	30000	$3.30 \mathrm{E}-09$	48.2	$3.0 \mathrm{E}+04$	-0.1
6	(d)	1	300	3.30E-09	$4.82 \mathrm{E}+07$	4.8E+07	-90.0
7	(e)	$1.00 \mathrm{E}+03$	300	3.30E-09	$4.82 \mathrm{E}+04$	4.8E+04	-89.6
8	(f)	$1.00 \mathrm{E}+06$	300	$3.30 \mathrm{E}-09$	48.2	$3.0 \mathrm{E}+02$	-9.1
9	(g)	1	3000	$3.30 \mathrm{E}-07$	$4.82 \mathrm{E}+05$	$4.8 \mathrm{E}+05$	-89.6
10	(h)	$1.00 \mathrm{E}+03$	3000	$3.30 \mathrm{E}-07$	$4.82 \mathrm{E}+02$	$3.0 \mathrm{E}+03$	-9.1
11	(i)	$1.00 \mathrm{E}+06$	3000	3.30E-07	0.48	$3.0 \mathrm{E}+03$	0.0
12							
13	Spreadsheet Documentation						
14	Cell E3=1/(2*Pl()*B3*D3)						
15	Cell F3=SQRT(C3^2+E3^2)						
16	Cell G3=DEGREES(-ATAN(E3/C3))						

2-19. Let us rewrite Equation 2-54 in the form

$$
\begin{aligned}
& y=\frac{\left(V_{p}\right)_{o}}{\left(V_{p}\right)_{i}}=\frac{1}{\sqrt{(2 \pi f R C)^{2}+1}} \\
& y^{2}(2 \pi f R C)^{2}+y^{2}=1 \\
& f=\frac{1}{2 \pi R C} \sqrt{\frac{1}{y^{2}}-1}=\frac{1}{2 \pi R C} \sqrt{\frac{1-y^{2}}{y^{2}}}
\end{aligned}
$$

The spreadsheet follows

Principles of Instrumental Analysis, $7^{\text {th }}$ ed.

2-20. By dividing the numerator and denominator of the right side of Equation 2-53 by R, we obtain

$$
y=\frac{\left(V_{p}\right)_{\mathrm{o}}}{\left(V_{p}\right)_{i}}=\frac{1}{\sqrt{1+(1 / 2 \pi f R C)^{2}}}
$$

Squaring this equation yields

$$
\begin{aligned}
& y^{2}+y^{2} /(2 \pi f R C)^{2}=1 \\
& 2 \pi f R C=\sqrt{\frac{y^{2}}{1-y^{2}}} \\
& f=\frac{1}{2 \pi R C} \sqrt{\frac{y^{2}}{1-y^{2}}}
\end{aligned}
$$

The results are shown in the spreadsheet that follows.

Principles of Instrumental Analysis, $7^{\text {th }}$ ed.

