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Chapter 2 Solutions 

2.1 False. The slope of the line depends on the scale for Y and X as well as the correlation between 
them. If we make all of the X values smaller (say by dividing each by 1000), the slope will get 
bigger (multiplying by 1000 to compensate), even though the correlation doesn’t change at all. 

2.2 True. The total degrees of freedom (n − 1) are split to 1 for the model and n − 2 for the error 
term. 

2.3 True. When finding a confidence interval for the slope, as the sample size increases, the degrees 
of freedom for the t-distribution increases. This in turn causes the   t∗ value  required to achieve  a  
given confidence level to decrease slightly. 

2.4 False. A very weak predictor might explain little or no variability at all, making SSModel 
very small. Since SSTotal = SSModel + SSE, the sum of squares for the error, SSE gets larger 
as SSModel gets smaller. For any model with  r2 < 50%, we will have SSModel < SSE. 

2.5 False. The size of a typical error is measured by the standard deviation of the error term, σ̂E, 
which is also a term in computing the margin of error for a prediction interval. So the interval will                   
get wider as σ̂E increases. Also, if we have larger errors, we have less accuracy in the predictions, 
so we need a wider interval to capture a new observation. 

2.6 True. We need a wider interval to capture an individual value than to capture the mean 
response for a particular value of the predictor. This can be seen in the extra “1+” term  that  
appears under the square root in the formula for computing a prediction interval that is not present 
when computing a confidence interval for the mean response. 

2.7 True. The coefficient of determination is r2, so a larger correlation (in magnitude) will give a 
larger value for r2 . 

2.8 (c) The correlation of r = 0.6 means t hat  r2 = 0.62 = 0.36, or 36% of variability in the response 
Y is explained by the linear model based on the predictor X. 

2.9	 a. A high value of r2 could occur, for example, with a scatterplot that shows a steep but 
obviously curved relationship. So a model based on a transformation might give an even
better fit than the linear model. 

              

b. A low r2 does not necessarily imply that another model would provide a better description 
of the relationship. For example, we could generate data from a linear model with a large 
variance in the error term. This could produce a low r2, but the linear model is still the 
“correct” form of the relationship. 

 
2.10	 The width of a prediction interval depends on  (   )2 

SEŷ = σ̂E 1 +  1 + tx∗
−x . 

n (x−x)2 
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a.	 Increasing the sample size will reduce SEŷ because the 1/n term gets smaller and 
t 

(x − x)2 

increases with more terms in the sum. Also, the t ∗ value for the interval will be slightly 
smaller with more degrees of freedom. 

b.	 Increasing the variability in the predictor values makes 
t 

(x − x)2 larger, so SEŷ is smaller 
and the interval is narrower. 

c.	 Increasing the variability of the response (σE) tends to make the estimate σ̂E larger, which 
increases SEŷ and makes the interval wider. 

d. Choosing a value for x ∗ that is farther from x increases the value of  (x∗ − x)2, thus i ncreasing  
SEŷ and making the interval wider. 

2.11 a.	 We test H0 : β1 = 0 � versus  Ha : β1 = 0. The test statistic is 

β̂1 15.5 
t = = = 4.56 

SE
β̂1

3.4 
 

We use a t-distribution with 40  2 = 38 d.f. to find the P -value = 2P (t38 > 4.56) = 0.00005. −
This very small P -value gives strong evidence to reject H0 and conclude that the slope of the 
regression model is different from zero. The data suggest that the slope is positive. 

b. With 38 d.f., the t ∗ value for 95% confidence is 2.024. Thus the confidence interval for the 
slope is  

β̂1  t ∗SE
1̂

= 15.5  2.024(3.4) = 15.5  6.88 = (8.62, 22.38). 
β  

± ± ±
We can be 95% sure that the slope of the linear model for the entire population is between 
8.62 and 22.38. 

2.12 a. �We test H0 : β1 = 0  versus  Ha : β1 = 0. The test statistic is 

β̂1 5.3 
t = = = 1.89 

SE
β̂1

2.8 
 

We use a t-distribution with 82  2 = 80 d.f. to find the P -value = 2P (t80 > 1.89) = 0.062. −
This moderate P -value does not give enough evidence to reject H0 and conclude that the 
slope of the regression model is different from zero. 

b. With 80 d.f., the t ∗ value for 95% confidence is 1.99. Thus the confidence interval for the 
slope is  

β̂1 ± t ∗SE
1̂
= 5.3 ± 1.99(2.8) = 5.3 ± 5.572 = (−0.272, 10.872). 

β  

We can be 95% sure that the slope of the linear model for the entire population is between 
−0.272 and 10.872. 

2.13 a. The scatterplot shows a very weak negative linear relationship between pH and age. 
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b. We test H0 : β1 = 0  versus  Ha : β1 = 0. Computer output shows 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 6.8881113 0.1321194 52.13 <2e-16 *** 
Age -0.0003905 0.0022944 -0.17 0.866 

The small test statistic (t = 0.17) − and large P -value (0.866) do not provide evidence to 
reject H0. We fail to reject the hypothesis that there is no linear relationship between pH 
and age. 

2.14 a. Yes, the scatterplot given below shows that there is a negative linear relationship. 

b. We test H0 : β1 = 0  versus  Ha : β1 = 0. Computer output shows 

Term Coef SE Coef T-Value P-Value  
Constant 10.849 0.857 12.66 0.000  
Animus -0.06397 0.00827 -7.74 0.000  

The large (in absolute value) test statistic (t = −7.74) and tiny P -value (approx. 0) provides 
strong evidence to reject H0. We reject the hypothesis that there is no linear relationship 
between ObamaKerry and Animus. 
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2.15 a. We test H0 : β1 = 0  versus  Ha : β1 = 0. Computer output shows 

The regression equation is Calories = 87.4 + 2.48 Sugar 

Predictor Coef SE Coef T P 
Constant 87.428 5.163 16.93 0.000 
Sugar 2.4808 0.7074 3.51 0.001 

The large test statistic (t = 3.51) and small P -value (0.001) provide evidence to reject H0 
and the data suggest that there is probably a positive relationship between sugar content and 
calories in cereals. We could also do this test using the ANOVA table that shows F = 12.30 
and P -value = 0.001. 

b. Using SE
β̂

= 0.7074 from the output and t ∗ = 2.032 with 34 d.f., the confidence interval for 
 1

the slope is 
2.4808 ± 2.032(0.7074) = 2.4808 ± 1.437 = (1.044, 3.918) 

We are 95% confident that the average increase in calories for each extra gram of sugar in 
cereals is between 1.044 and 3.918 calories. 

2.16	 a. The hypotheses are H0 : β1 = 0 v ersus H a : β1 = 0,  where β 1 is the slope for the 
regression model to predict textbook price based on number of pages. The information below 
was obtained by running this model with statistical software for the data in TextPrices. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -3.42231 10.46374 -0.327 0.746 
Pages 0.14733 0.01925 7.653 2.45e-08 

The relevant test statistic is t = 7.653 and the P -value is 2.5  10−8, or roughly zero. There 
is strong evidence to reject H0 and conclude that the number of pages is related to the price

×
 

of a textbook. We could also do this test using the ANOVA table that shows F = 58.57 and 
the same P -value. 

b. Using the information from the computer output and t ∗ = 2.048 with n − 2 = 28 d.f., the 
confidence interval for the slope is 

0.14733 ± 2.048(0.01925) = 0.14733 ± 0.03942 = (0.1079, 0.1868) 

We are 95% confident that, as the number of pages goes up by 1, the average price of a 
textbook goes up by between 0.1078 and 0.1868, or between 11 cents and 19 cents, roughly. 

2.17 a. Yes. According to the computer output below, t = 3.18 and the P -value = 0.005. 
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Term Coef SE Coef T-Value P-Value  
Constant -2.436 0.686 -3.55 0.002  
APC 1.344 0.422 3.18 0.005  

b.	 Here is a plot of residuals against fitted values. There is no pattern in the plot, which is good. 

c.	 The estimated slope is 1.344 and the standard error is 0.422. 

d.	 The 90% CI is (0.61,2.08). The interval does not contain zero, because the P -value for the 
test, from part (a), is less than 0.10. 

2.18 Here is some output for fitting a linear model to predict W eight using W ingLength. 

Predictor Coef SE Coef T P 
Constant 1.3655 0.9573 1.43 0.156 
WingLength 0.46740 0.03472 13.46 0.000 

a.	 To test H0 : β1 = 0  versus  Ha : β1 = 0,  we  use  the  t-statistic, t = 13.46, from the output with
a P -value that is essentially zero. This small P -value gives strong evidence that the slope is 
different from zero and that there is some relationship between W eight and W ingLength. 

 

b. To find a 95% confidence interval for the slope, we use β̂1 = 0.4674 and SEˆ = 0.03472 
β1 

from 
the output together with  t ∗ = 1.981 for a t-distribution with 114 degrees of freedom. 

β̂1 ± t ∗SE
1̂
= 0.4674 ± 1.981(0.03472) = 0.4674 

β  
± 0.0688 = (0.399, 0.536) 

We are 95% sure that the slope of the model to predict sparrow weight based on wing length 
is between 0.399 and 0.536. 

c.	 No, the 95% confidence interval does not include zero. This makes sense because of the duality 
between confidence intervals and hypothesis tests: The P -value for the test is small, which is 
consistent with the confidence interval excluding zero as a plausible value for the slope. 



Estimate Std. Error t value Pr(>|t|) 
(Intercept) 388.204 14.052 27.626 < 2e-16 *** 
distance -54.427 9.659 -5.635 1.56e-07 *** 
---

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 72.973 15.541 4.695 8.32e-06 *** 
squarefeet 162.526 9.351 17.381 < 2e-16 *** 
---
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2.19	 a. Computer output below shows the equation to be adj2007 = 388 − 54.4distancej . So
each mile closer to the bike trail is associated with a mean price increase of about $54,000. 

 

Coefficients: 

Residual standard error: 92.13 on 102 degrees of freedom  
Multiple R-squared: 0.2374,Adjusted R-squared: 0.2299  
F-statistic: 31.75 on 1 and 102 DF, p-value: 1.562e-07  

b. The 90% confidence interval:	 We are 90% confident that the mean price increase for each 
mile closer to a bike trail is between $38,390 and $70,460. 

c.	 The residual versus fitted values plot (RailsTrailsCh2Q1c.eps) shows a lack of constant vari
ance, which could call the validity of (b) into question. 
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2.20	 a. The fitted slope of 162.526 answers this question. Each additional thousand square feet 
of floor space is associated with an average selling price increase of about $162,000. 

Coefficients: 

Residual standard error: 53 on 102 degrees of freedom  
Multiple R-squared: 0.7476,Adjusted R-squared: 0.7451  
F-statistic: 302.1 on 1 and 102 DF, p-value: < 2.2e-16  
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b. We are 90% confident that each additional thousand square feet of floor space is associated 
with an average price increase of between $147,000 and $178,050. 

c.	 The residuals-versus-fitted values plot suggests increasing variance for larger fitted values (i.e., 
bigger homes). This calls (b) into some question. 

2.21 r2 SSModel = = 110
SSTotal

= 0.733. 150  This means that 73.3% of the variability in this response 
variable Y is explained by the linear model based on the predictor X. 

2.22 r2 SSModel = = 38
SSTotal

= 0.373. 102  This means that 37.3% of the variability in this response 
variable Y is explained by the linear model based on the predictor X. 

2.23 Here is some output for fitting a linear model to predict P rice using Year after removing the 
first four data points. 

The regression equation is Price = - 1647 + 0.841 Year 

Predictor Coef SE Coef T P 
Constant -1647.17 46.86 -35.15 0.000 
Year 0.84098 0.02357 35.68 0.000 

S	 = 1.73702 R-Sq = 98.5% R-Sq(adj) = 98.5% 

a.	 In the output, we see that R-Sq = 98.5%, which means that 98.5% of the variation in stamp 
prices over these years is explained by the year. 

b.	 We can test H0 : β1 = 0 v ersus H a : β1 = 0 using the t-statistic (35.68) and P -value 
(essentially zero) from the regression output. This large t-statistic and very small P -value 
give very strong evidence of some relationship between the price of stamps and year. 

c.	 Here is the ANOVA table from the computer output. 
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Source DF SS MS F P  
Regression 
Residual Error 

1 
19 

3841.2 
57.3 

3841.2 
3.0  

1273.09 0.000  

Total 20 3898.6  

The large F -statistic (F = 1273.09) and P -value that is essentially zero give strong evidence 
that Year has some value in predicting the price of stamps. 

2.24 Here is some output for fitting a linear model to predict LogMrate using LogBodySize based 
on this sample of caterpillars. 

The regression equation is LogMrate = 1.31 + 0.916 LogBodySize 

Predictor Coef SE Coef T P 
Constant 1.30655 0.01356 96.33 0.000 
LogBodySize 0.91641 0.01235 74.20 0.000 

S = 0.175219 R-Sq = 94.8% R-Sq(adj) = 94.8% 

ja. We see in the output that the fitted linear model is LogMrate = 1.3066+0.9164LogBodySize. 

b. We test H0 : β1 = 0  versus  Ha : β1 = 0 using the t-statistic (74.20) and P -value (essentially
zero) from the regression output. This large t-statistic and very small P -value give very strong
evidence of some relationship between the LogMrate and LogBodySize. 

 
 

c. Here is the ANOVA table from the computer output. 

Source DF SS MS F P  
Regression 
Residual Error 

1 
303 

169.02 
9.30 

169.02 
0.03  

5505.26 0.000  

Total 304 178.32  

The large F -statistic (F = 5505.26) and P -value that is essentially zero give strong evidence 
that LogBodySize has some value in predicting the log of the metabolic rate for this type of 
caterpillar. 

SSModel 169.02 
= = 0.9478.

SST otal 178.32 
d. The ratio is  This is just the computation for r2, which tells 

us that 94.8% of the variability in log metabolic rate for these caterpillars is explained by the
log of their body sizes. 

                 

2.25	 a. The correlation coefficient between W eight and W ingLength is r = 0.7835. To test 
H0 : ρ = 0  versus  Ha : ρ = 0, the test statistic is 

√	 √ 
r n − 2 0.7835 116  2 

t = √ =  −√ = 13.46 
1 − r2 1 − 0.78352 
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Comparing this to a t-distribution with 114 degrees of freedom shows a P -value that is 
essentially zero. This gives strong evidence for some association between weight and wing 
length for sparrows. 

b.	 The percent of variability in these sparrow weights that is explained by their wing lengths is 
 r2 = 0.78352 = 0.614 or 61.4%. You could also find this from the ANOVA table in the next 

part. 

c.	 Here is some computer output with the ANOVA table for this model.            

Analysis of Variance    
Source DF SS MS F P  
Regression 
Residual Error 

1 
114 

355.05 
223.31 

355.05 
1.96  

181.25 0.000  

Total 115 578.36  

The large F -statistic (F = 181.25) and small P -value (essentially zero) provide strong evi
dence that wing length has some value for predicting sparrow weights. 

√ 
181.25 = 13.46d. 	  The square root  of  the  F -statistic from part (c) is  which matches the 

t-statistic from part (a). 

2.26 a. The correlation coefficient between W idth and Y ear  is r = 0.247. To test H0 : ρ = 0
versus Ha : ρ = 0,

−  
 the test statistic is 

√ √ 
r n − 2 0.247 252  2 

t = √ = 
−

	
−

= −4.03 
1  r2 (1  ( 0.247)2) 

-
− − −

Comparing this to a t-distribution with 250 degrees of freedom shows a P -value that is 
essentially zero. This gives strong evidence for some association between width and year for 
these kinds of leaves. 

b.	 The percent of variability in these leaf widths that is explained by the year of measurement 
−  is r2 = ( 0.247)2 = 0.061 or 6.1%. You could also find this from the ANOVA table in the 

next part. 

c.	 Here is some computer output with the ANOVA table for this model. 

Analysis of Variance  
Source DF SS MS F P

Regression 
Error 

1 
250 

32.911 
506.764 

32.9113 
2.0271  

16.24 0.000  

Total 251 539.676  

     

The large F -statistic (F = 16.24) and small P -value (essentially zero) provide strong evidence 
that year has some value for predicting leaf width. 
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√ 
16.24 = −4.03d. 	  The square root  of  the F  -statistic from part (c) is  which matches the t-

statistic from part (a). 

2.27	 a. Some output for predicting Yards based on Attempts for the data in BreesPass is 
shown below along with a scatterplot that includes the least squares line. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|)  

(Intercept) 86.140 90.362 0.953 0.3566

Attempts 5.691 2.122 2.682 0.0179 *  
---

    

Residual standard error: 56.34 on 14 degrees of freedom  
Multiple R-squared: 0.3394,Adjusted R-squared: 0.2922  
F-statistic: 7.191 on 1 and 14 DF, p-value: 0.01789  

jThe prediction equation is Y ards  = 86.1 + 5.69Attempts. 

b.	 Brees passed for a total of 5208 yards on 673 attempts, which gives an average of 5208/673 = 
7.7 yards per attempt. This is a bit off from the slope of the regression line ˆ( β1 = 5.69). 

c.	 Using  r2 = 0.339 from the output, we can conclude that 33.9% of the variability in Brees’s
game yardage can be explained by the number of attempts. 

 
   

2.28 Here is some output for fitting a linear model to predict Spring using Fall  with the data for 
2003 omitted. 

The regression equation is Spring = 548 - 1.05 Fall 

Predictor Coef SE Coef T P 
Constant 548.0 106.7 5.13 0.001 
Fall -1.0483 0.3805 -2.75 0.025 
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S = 24.9411 R-Sq = 48.7% R-Sq(adj) = 42.3% 

Analysis of Variance 
Source DF SS MS F P 
Regression 
Residual Error 

1 
8 

4721.1 
4976.5 

4721.1 
622.1 

7.59 0.025 

Total 9 9697.6 

a.	 Some residual plots for this model to predict spring enrollments based on fall enrollments 
(with the 2003 data omitted) are shown below. The normal probability plot shows some 
slight curvature in the upper tail, and it’s hard to say much definitive about the histogram 
with such a small sample. The plot of the residuals against fitted values looks fairly typical, 
an unstructured pattern. The positive association in the plot of the residuals against order 
(or AYear ) indicates that it might be beneficial to add Ayear to the model. 

b. In the computer output, we see	 R-sq = 48.7%, so we find that 48.7% of the variability in 
spring enrollments over these years can be explained by the fall enrollments. 

c.	 The ANOVA table is shown in the output above. The F -statistic is F = 7.59 and the P -value
is 0.025. 

 

d.	 We can test H0 : β1 = 0 v ersus H a : β1 = 0 using either the ANOVA F -statistic (from 
part (c)) or the t-test for the slope in the output (t = −2.75, P -value = 0.025). The P 
value in each case is small (and are identical to each other), so we have evidence to show a 
relationship between fall and spring enrollments. 

             

e.	 To find a 95% confidence interval for the slope, we use β̂1 = −1.048 and SEˆ = 0.3805
β  

 from 
the output together with  t ∗ = 2.306  

1

for a t-distribution with 8 degrees of freedom. 

β̂1 ± t ∗SE
1̂
= −1.048 ± 2.306(0.3805) = 

β  
−1.048 ± 0.877 = (−1.93, −0.171) 
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We are 95% sure that the slope of the model to predict spring enrollment based on fall 
enrollment is between −1.93 and −0.171. This 95% confidence interval does not include zero, 
which is consistent with the test that shows evidence that the slope differs from zero. 

2.29 Here is some output for fitting a linear model to predict Wall03 using Gdiam03. 

The regression equation is Wall03 = - 1.05 + 0.368 Gdiam03 

Predictor Coef SE Coef T P 
Constant -1.0521 0.4010 -2.62 0.009 
Gdiam03 0.36821 0.02004 18.38 0.000 

S	 = 1.50114 R-Sq = 36.3% R-Sq(adj) = 36.2% 

a.	 To test H0 : β1 = 0  versus  Ha : β1 = 0,  we  use  the  t-statistic, t = 18.38, from the output with 
a P -value that is essentially zero. This small P -value gives strong evidence that the slope is
different from zero and that there is some relationship between the wall thickness and gall 
diameter in 2003. 

                  

b. In the output, we see that β̂1 = 0.368 and its standard error is SEˆ = 0.0200.
β1 

c.	 The size of a typical error is reflected in the regression standard error, σ̂E = 1.50. 

d. No, the value of  r2 = 36.3% in the output shows that only 36.3% of the variability in wall 
thickness is explained by the gall diameter for these data from 2003. 

e.	 Here is some computer output with 95% intervals for the wall thickness for goldenrod galls 
in 2003 when the diameter is 20 mm. 

Gdiam03 Fit SE Fit 95% CI 95% PI 
20 6.3122 0.0617 (6.1910, 6.4334) (3.3615, 9.2629) 

Based on the 95% CI, we are 95% confident that the mean wall thickness (in 2003) is between 
6.19 mm and 6.43 mm when the gall diameter is 20 mm. 

f.	 The correlation coefficient between Wall03 and Gdiam03 is r = 0.602. To test H0 : ρ = 0  
versus Ha : ρ = 0,     the test statistic is 

r
√ √ 
	 n − 2 0.602 595 − 2 

t = √ = √ = 18.4 
1  r2 1  0.6022 − −

Comparing this to a t-distribution with 593 degrees of freedom shows a P -value that is 
essentially zero. This gives strong evidence for some association between wall thickness and 
diameter for goldenrod galls in 2003. 

2.30 Here is some output for fitting a linear model to predict Wall04 using Gdiam04. 
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The regression equation is Wall04 = - 0.845 + 0.363 Gdiam04  

Predictor Coef SE Coef T P 
Constant -0.8450 0.3577 -2.36 0.018 
Gdiam04 0.36317 0.01719 21.12 0.000 

S	 = 1.60835 R-Sq = 32.2% R-Sq(adj) = 32.1% 

a.	 To test H0 : β1 = 0  versus  Ha : β1 = 0,  we  use  the  t-statistic, t = 21.12, from the output with 
a P -value that is essentially zero. This small P -value gives strong evidence that the slope is 
different from zero and that there is some relationship between the wall thickness and gall 
diameter in 2004. 

b. In the output, we see that β̂1 = 0.363 and its standard error is SEˆ = 0.0172.
β1 

c.	 The size of a typical error is reflected in the regression standard error, σ̂E = 1.61. 

d. No, the value of  r2 = 32.2% in the output shows that only 32.2% of the variability in wall
thickness is explained by the gall diameter for these data from 2004. 

 
     

e.	 Here is some computer output with 95% intervals for the wall thickness for goldenrod galls
in 2004 when the diameter is 20 mm. 

               

Gdiam03 Fit SE Fit 95% CI 95% PI 
20 6.4184 0.0533 (6.3137, 6.5231) (3.2603, 9.5765) 

Based on the 95% CI, we are 95% confident that the mean wall thickness (in 2004) is between 
6.31 mm and 6.52 mm when the gall diameter is 20 mm. 

f.	 The correlation coefficient between Wall04 and Gdiam04 is r = 0.567. To test H0 : ρ = 0
versus Ha : ρ = 0, 

 
the test statistic is 

√ √ 
r	 n − 2 0.567 942  2 

t = √ =  −√ = 21.1 
1 − r2 1 − 0.5672 

Comparing this to a t-distribution with 940 degrees of freedom shows a P -value that is 
essentially zero. This gives strong evidence for some association between wall thickness and 
diameter for goldenrod galls in 2004. 

2.31 Here is some output for fitting a linear model to predict Hgt97 using Hgt90. 

The regression equation is Hgt97 = 307 + 2.32 Hgt90 

Predictor Coef SE Coef T P 
Constant 307.439 9.841 31.24 0.000 
Hgt90 2.3224 0.4920 4.72 0.000 
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S	 = 78.7921 R-Sq = 2.7% R-Sq(adj) = 2.6% 

a.	 We can test H0 : β1 = 0 v ersus H a : β1 = 0 using the t-statistic (4.72) and P -value (essentially 
zero) from the regression output. This very small P -value gives strong evidence of some 
relationship between the pine heights in 1990 and 1997. 

b. 	  Based on the R-sq=2.7%  value in the output, we see that only 2.7% of the variability in height
of the trees in 1997 is explained by their heights in 1990. 

 

c.	 Using technology, the ANOVA table for this regression model is 

Source DF SS MS F P  
Regression 
Residual Error 

1 
807 

138344 
5010010 

138344 
6208  

22.28 0.000  

Total 808 5148354  

d.	 Based on information from the ANOVA table, the coefficient of determination is 

r2 SSModel 138, 344 
	 = = = 0.0269 or about 2.7% 

SSTotal 5, 148, 354 

e.	 No. Even though there is a significant linear association (and no problems with the condi
tions), the model only explains a very small fraction of the variation in the heights of the
trees in 1997. 

 

2.32 Here is some output for fitting a linear model to predict Hgt97 using Hgt96. 

The regression equation is 
Hgt97 = 40.6 + 1.10 Hgt96 

Predictor Coef SE Coef T P 
Constant 40.591 2.524 16.08 0.000 
Hgt96 1.09606 0.00873 125.49 0.000 

S	 = 18.4653 R-Sq = 94.9% R-Sq(adj) = 94.9% 

a.	 We can test H0 : β1 = 0 v ersus H a : β1 = 0 using the t-statistic (125.49) and P -value 
(essentially zero) from the regression output. This huge t-statistic and very small P -value 
give very strong evidence of some relationship between the pine heights in 1996 and 1997. 

b. Based on the R-sq = 94.9% value in the output, we see that 94.9% of the variability in height 
of the trees in 1997 is explained by their heights in 1996. 

c.	 Using technology, the ANOVA table for this regression model is 
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Source DF SS MS F P  
Regression 
Residual Error 

1 
852 

5369261 
290504 

5369261 
341  

15747.14 0.000  

Total 853 5659765  

Note: The SSTotal differs from the previous exercise due to cases lost due to missing data. 

d.	 Based on information from the ANOVA table, the coefficient of determination is 

r2 SSModel 5, 369, 261 
 = = = 0.9487 or about 94.9% 

SSTotal 5, 659, 765 

e.	 Yes. The linear model appears to be a very effective way to summarize the relationship 
between the heights of pine tree seedlings over this year of growth. The scatterplot shows 
a strong linear trend with a slope that is clearly different from zero with almost 95% of the 
variability explained. 

2.33 Here is some output for fitting a linear model to predict Hgt97 using Hgt96. 

The regression equation is Hgt97 = 40.6 + 1.10 Hgt96          

Predictor Coef SE Coef T P 
Constant 40.591 2.524 16.08 0.000 
Hgt96 1.09606 0.00873 125.49 0.000 

S = 18.4653 R-Sq	 = 94.9% R-Sq(adj) = 94.9% 

a.	 To find a 95% confidence interval for the slope, we use β̂1 = 1.096 and SEˆ = 0.00873 from 
the output together with

β  
  t ∗ = 1.963  

1

for a t-distribution with 852 degrees of freedom. 

β̂1  t ∗SE
1̂
= 1.096  1.963(0.00873) = 1.096  0.017 = (1.079, 1.113)

β  
± ± ±

We are 95% sure that the slope of the model to predict 1997 height based on 1996 height is 
between 1.079 and 1.113. 
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b. The value of 1 is not in our confidence interval.	 Thus we would reject the null hypothesis 
that the slope is equal to 1. Since both confidence limits are above 1, we are fairly sure the 
slope is bigger than one that indicates that the pine trees are growing. 

c.	 No, the intercept has no practical meaning in this situation. We are never going to predict 
the heights of trees planted before 1990 that had no height in 1996. 

2.34 a. Larger moths will produce more eggs, so the association is expected to be positive. 

b.	 The correlation coefficient between Eggs and BodyMass for this dataset is r = 0.441. 

c.	 To test H0 : ρ = 0  versus  Ha : ρ = 0, the test statistic is 
√ √ 
r	 n  2 0.441 39  2 

t = √ −
= 

−√ = 2.99 
1  r2 1  0.4412 − −

Comparing this to a t-distribution with 37 degrees of freedom shows a P -value of 0.005. This 
gives strong evidence for some association between the body mass and number of eggs. 

d.	 Here is some output for fitting a linear model to predict Eggs using BodyMass. 

The regression equation is Eggs = 24.4 + 79.9 BodyMass 

Predictor Coef SE Coef T P 
Constant 24.38 45.38 0.54 0.594 
BodyMass 79.86 26.69 2.99 0.005 

S	 = 44.7537 R-Sq = 19.5% R-Sq(adj) = 17.3% 

jThe fitted model is Eggs = 24.38 + 79.86BodyMass. 

e.	 The last moth in the dataset (case #39) has a body mass of 1.668 but no eggs. All of the 
rest of the moths have many more eggs. 

2.35 Here is some output for fitting a linear model to predict Eggs using BodyMass after removing 
the case with zero eggs. 

The regression equation is Eggs = 29.6 + 79.2 BodyMass 

Predictor Coef SE Coef T P 
Constant 29.56 37.28 0.79 0.433 
BodyMass 79.24 21.92 3.62 0.001 

S	 = 36.7496 R-Sq = 26.6% R-Sq(adj) = 24.6% 

a.	 From the output we see that, without the zero egg case, the fitted model is E
79

jggs = 29.56 + 
.24BodyMass. 
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b. Some residual plots for this model (with the zero egg case removed) are shown as follows. The 
normal probability plot is linear, with the exception of one small observation. The histogram 
is centered at zero, with the unusually small residual clearly visible in the lower tail. The 
plot of the residuals against the fitted values shows only a few small fitted values, and the 
unusual residual (less than 100) is obvious again. −

c.	 The estimated slope changes only slightly from 79.86 to 79.24. 

d.	 Using the output from this model and the previous exercises, we see that eliminating the case 
with zero eggs increases the coefficient of determination from r2 = 19.5% to r2 = 26.6%. 

2.36	 a. We might expect children who start talking early to have relatively high Gesell scores, 
which would imply a negative relationship between these variables. 

b.	 The scatterplot shows a somewhat negative relationship between Gesell score and Age of first 
speaking, with a possible outlier at Age = 42. 
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c.	 Software produces the output below for fitting this regression model. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 109.8738 5.0678 21.681 7.31e-15 *** 
Age -1.1270 0.3102 -3.633 0.00177 ** 

Residual standard error: 11.02 on 19 degrees of freedom  
Multiple R-squared: 0.41, Adjusted R-squared: 0.3789  
F-statistic: 13.2 on 1 and 19 DF, p-value: 0.001769  

jThe prediction equation is Gesell = 109.87 − 1.127Age. The v alue o f  r 2 = 0.41 indicates that 
41% of the variability in Gesell scores for these 21 children can be explained by the linear 
model based on Age. The s mall P  -value = 0.00177 for the test of slope indicates that we 
have strong evidence that this is a statistically significant relationship and Age is a useful 
predictor of Gesell score. 

d. The largest residual is 30.3, which applies to child #19.	 This child had the highest Gesell 
score (121) but took slightly longer than average (17 months compared to x = 14.4 months)  
to first speak. 

2.37 With child #18 (Age = 42) removed, the scatterplot with least squares line is shown below. 
The equation of the least squares line is now j Gesell = 105.63 − 0.779Age. This is less steep than 
the original fitted line and the slope is no longer significant (P -value = 0.149). The value of  r2

with the child at Age = 42 removed drops to only 11.2%.            
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j2.38 If we also remove child #2 (Age = 26), the regression line becomes almost flat, Gesell = 
97.86 − 0.087Age. The P  -value for testing for a significant slope is very large (0.89) and  r2 (0.0012) 
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is very small. There is little evidence of a linear relationship after the two largest Age values are 
removed. 
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2.39 Removing the child with Gesell = 121 (child #19 in the original dataset or child #17 in 
the dataset with the first two removed) produces a line with a steeper negative slope, jGesell = 
102.1 − 0.554Age, but still not significant (P -value = 0.311).        The r2 value increases slightly to
0.064. 
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2.40 a. From software, the 90% confidence interval is ($281,833, $283,716). 

b. From software, the 90% prediction interval is ($269,537, $296,012). 
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c.	 We are 90% confident that the mean sale price for a home listed at $300,000 is between 
$281,833 and $283,716 (part (a) with interpretive statement). For a single home listed at 
$300,000, we are 90% confident that its sale price would be between $269,537 and $296,012 
(part (b) with interpretive statement). 

2.41 a. From software, the 95% confidence interval is (1.767, 2.735). 

b.	 From software, the 95% prediction interval is (−0.594, 5.097). 

c.	 We are 95% confident that the mean leaf width in 2020 will be between 1.767 mm and 2.735 
mm (part (a) with interpretive statement. For a single plant in 2020 we are 95% confident 
that its leaf width would be between −0.594 mm and 5.097 mm (part (b) with interpretive 
statement). 

2.42 a. The following output gives a predicted value of −3.78. 

Variable Setting  
APC -1  

Fit SE Fit 95% CI 95% PI  
-3.78029 0.491819 (-4.81356, -2.74702) (-8.48262, 0.922041)  

b.	 The output in the solution to part (a) gives the interval as (−4.81,−2.75). 

c.	 The output in the solution to part (a) gives the interval as (−8.48,0.92). 

d.	 The prediction interval is intended to cover 95% of all people with APC measurements of 
−1, whereas the confidence interval is a statement about the average of all people with APC
measurements of 

               
−1. There is a lot more uncertainty about where a single observation will 

land than there is about an average.       

2.43 Here is some computer output with 95% intervals for the weight for sparrows with wing length
of 20 mm. 

 

WingLength Fit SE Fit 95% CI 95% PI 
20.0 10.714 0.285 (10.148, 11.279) (7.884, 13.543) 

a.	 Based on the output, the fitted value is 10.714 grams. 

b.	 Based on the output, we are 95% sure that the mean weight of all sparrows with a 20-mm 
wing length is between 10.15 and 11.28 grams. 

c.	 A 95% prediction interval for the weight of a sparrow with a wing length of 20 mm goes from 
7.88 to 13.54 grams. 

d.	 A wing length of 25 mm is closer to the average wing length of all sparrows (27.319) than a 
length of 20 mm, so the standard error of the prediction would be smaller. 
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2.44	 a. Using software we request intervals for a predictor value of x∗ = 450. Some output is 
shown as follows. 

NewObs Fit SE Fit 95% CI 95% PI 
1	 62.88 5.44 (51.73, 74.02) (0.90, 124.85) 

Values of Predictors for New Observations  
NewObs Pages  

1 450  

For a confidence interval for the mean price, we use the part of the output labeled “95% CI,” 
(51.73, 74.02). We are 95% sure that the mean price of all 450-page textbooks at the Cal 
Poly bookstore is between $51.73 and $74.02. 

b.	 Using the same output above, we find that the 95% PI is (0.90, 124.85). We are 95% sure that 
a particular 450-page textbook will cost between $0.90 and $124.85 at the Cal Poly bookstore. 

c.	 The midpoints of both intervals are the same, $62.88, which is the predicted price for a 
450-page textbook. Both intervals have the general form of ŷ ± some margin of error. 

d. The confidence interval for the mean price is much narrower than the prediction interval for 
the price of an individual textbook. We need a much wider interval to capture most of the 
textbook prices than we do to just capture the mean of those prices. 

e.	 The narrowest possible interval is when the number of pages is x∗  = x = 464.5 so that the 
term involving   (x ∗ − x)2 contributes nothing to the standard error, SEŷ. 

f.	 Using software, we request intervals for a predictor value of x ∗ = 1500. 

NewObs Fit SE Fit 95% CI 95% PI  
1 217.57 20.66 (175.25, 259.89) (143.36, 291.78)XX  

XX denotes a point that is an extreme outlier in the predictors.  

Values of Predictors for New Observations  
NewObs Pages  

1 1500  

The 95% prediction interval for textbook price when the number of pages is 1500 goes from 
$143.36 to $291.78. However, 1500 pages is much larger than any of the textbooks in the 
sample (as seen in the note in the output) and much of the prediction interval covers prices 
that are much larger than any of the prices in the sample. We should avoid this sort of 
extrapolation and thus would have less than 95% confidence that the interval would capture 
the price for a particular 1500-page textbook. 
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2.45	 a. Using software we request intervals for a predictor value of x∗ = 150. Some output is 
shown below. 

Variable Setting  
Animus 150  

Fit SE Fit 95% CI 95% PI  
1.25341 0.490816 (0.285387, 2.22143) (-5.78015, 8.28697)  

For a confidence interval for the mean value of ObamaKerry, we use the part of the output  
labeled “95% CI,” (0.285, 2.221). We are 95% sure that the mean value of ObamaKerry for  
all markets with and animus value of 150 is between 0.285 and 2.221.  

b. Using the same output above, we find that the 95% PI is (−5.780, 8.287). We are 95% sure  
that in a particular market with an animus value of 150, the value of ObamaKerry will be  
between −5.780 and 8.827.  

c.	 The midpoints of both intervals are the same, 1.253, which is the predicted value of ObamaKerry  
for a market with animus value of 150. Both intervals have the general form of ŷ ± some  
margin of error.  

d. The confidence interval for the mean value of ObamaKerry is much narrower than the pre
diction interval for the value of ObamaKerry of an individual market. We need a much wider  
interval to capture most of the ObamaKerry values than we do to just capture the mean of  
those markets.  

e.	 The narrowest possible interval is when the animus value is x ∗ = x = 99.07 so that the term 
involving  (x ∗ − x)2 contributes nothing to the standard error, SEŷ. 

f.	 Using software, we request intervals for a predictor value of x ∗ = 0.  

Variable Setting  
Animus 0  

Fit SE Fit 95% CI 95% PI  
10.8485 0.856986 (9.15834, 12.5388) (3.67982, 18.0173) XX  

XX denotes an extremely unusual point relative to predictor levels used to fit the model. 

The 95% prediction interval for ObamaKerry when the animus value is 0 goes from 3.680 to 
18.017. However, an animus value of 0 is much smaller than any of the markets in the sample  
(as seen in the note in the output), and much of the prediction interval covers values that  
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are larger than most of the values in the sample. We should avoid this sort of extrapolation 
and thus would have less than 95% confidence that the interval would capture the price for a 
particular market with animus value of 0. 

2.46	 a. The summary of the fitted model is given below in the computer ouput. Plugging 1.5 in 
for squarefeet (recall that units are in thousands), we get 316.7619 or (converting to dollars) 
$316,762 as the predicted selling price. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 72.973 15.541 4.695 8.32e-06 *** 
squarefeet 162.526 9.351 17.381 < 2e-16 *** 

Residual standard error: 53 on 102 degrees of freedom  
Multiple R-squared: 0.7476,Adjusted R-squared: 0.7451  

b.	 The prediction interval is (211,123, 422,401). Translating to dollars, we would predict with 
95% confidence that the particular 1500 square-foot home would sell for between $211,123 
and $422,401. 

c.	 The residuals-versus-fitted values plot shows a slight lack of constant variance. 
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d.	 Using (natural) logs, we regress log(adj2007) on log(squarefeet) obtaining results given in 
the summary table below. The  R2 value is 0.7388 compared to 0.7476 for the un-logged 
model. 
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Coefficients: 
Estimate Std. Error t value 

(Intercept) 5.47958 0.02137 256.41 
logsquarefeet 0.69334 0.04082 

Pr(>|t|) 
<2e-16 

16.98 <2e-16 
*** 
*** 

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

Residual standard error: 0.1461 on 102 degrees of freedom 
Multiple R-squared: 0.7388,Adjusted R-squared: 0.7362 
F-statistic: 288.5 on 1 and 102 DF, p-value: < 2.2e-16 

The model conditions look good here; the residual plot adheres well to constant variance 
condition. 
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e.	 The 95% prediction interval is (5.469552, 6.051882). We first get the interval for the model 
with two logged variables. This interval is not in the thousands of dollar units of the original 
home prices. So we must exponentiate (anti-log) the interval. We can then claim to be 
95% confident that a 1500 square foot home will sell for between 237, 347 and 424,912. This 
interval is tighter than that obtained with the original variables. Since the logged variables 
give a model that adheres better to regression conditions, with similar  R2 value, we would 
put more trust in the prediction interval from part (d) over that of part (b). 

2.47	 a. The model summary is given below. The fit is fairly weak, with only 23.74% of price 
variation explained by the regression onto distance. Each mile closer to a bike trail corresponds 



---

Chapter 2	 2-25  

to a price increase of about $54,427. (Remember the units are miles for distance; thousands 
for selling price.) If we plug 0.5 mile in for distance we get a predicted selling price of 
388.204 − 54.427(0.5) = 360, 990. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 388.204 14.052 27.626 < 2e-16  *** 
distance -54.427 9.659 -5.635 1.56e-07 *** 

Residual standard error: 92.13 on 102 degrees of freedom  
Multiple R-squared: 0.2374,Adjusted R-squared: 0.2299  
F-statistic: 31.75 on 1 and 102 DF, p-value: 1.562e-07  

b. We are 90% confident that the home that resides half a mile from a trail will sell for between 
$207,017 and $514,964; the point estimate of price is $360,990. 

c.	 The residual plot shows a clear lack of the constant variance model condition, raising questions 
about (a) and (b). 
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d.	 The 90% prediction interval is (5.355955, 6.212704). This interval is in the log scale; we then 
exponentiate to get the interval back into dollars, so we can compare with the previous result 
and also, of course, just to interpret the interval in natural terms. We are 90% confident 
that this particular home, located half a mile from a trail, will sell for between $211,866 and 
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$499,049. The estimated selling price is $325,164. This interval is a bit narrower than that 
obtained in (b). 

e.	 The residual plot shows very good adherence now to the constant variance condition. Logging 
the data has been helpful. 
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2.48	 a. The largest (absolute) residual for fitting a line to the data in BreesPass occurs in 
the 5th game against CAR when Brees passed for 465 yards on 49 attempts. The predicted 
value is jY ards  = 86.1 + 5.69(49) = 364.9 yards, so the residual is 465 − 364.9 = 100.1 yards.  
This was a particulary good game for Brees since he gained many more yards than would be 
expected for the number of attempts. 

b.	 Using statistical software with a value for Attempts of x ∗ = 40, we get output for the predic
tion interval. 

fit lwr upr  
314 189 439  

Thus we are 90% sure that Brees will pass for between 189 and 439 yards when he makes 40 
throws in a game. 

c.	 Another player could be better (more yards per attempt) or worse (fewer yards per attempt) 
than Brees, so we would not expect the same model to apply to all quarterbacks. Also, a 
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different player may get many fewer or many more attempts in a game, which would produce 
a problem with extrapolation from Brees’s model. 

2.49	 a. From the output in the previous exercise, the fitted model is Spjring = 548.0−1.048Fall. 
When the fall enrollment is 290 students, we have 

Spjring = 548.0 − 1.048(290) = 244 students 

b.	 Here is some output with regression intervals for this model when Fall  = 290. 

Fall Fit SE Fit 95% CI 95% PI  
290 244.00 8.81 (223.69, 264.31) (183.01, 305.00)  

Based on the 95% CI in the output, we are 95% sure that the average spring enrollment for 
all years with a fall enrollment of 290 is between 223.7 and 264.3 students. 

c.	 Using the 95% PI from the output in part (b), when the fall enrollment in a particular year is 
290, we are 95% sure that between 183 and 305 students will enroll in math classes the next 
spring. 

d. Since the administrator wants an interval for the spring enrollment in a particular year, she 
should use the prediction interval in part (c). 

2.50	 a. The linear model from the previous exercise is LogjMrate = 1.3066+0.9164LogBodySize. 
When LogBodySize = 0, the predicted LogMrate is 

LogjMrate = 1.3066 + 0.9164(0) = 1.3066 

Since the log in this example uses base 10, we convert to a prediction of the metabolic rate
with 

   

j j
M LogMrate = 101.3066 rate = 10  = 20.26

This is the predicted metabolic rate for a caterpillar with LogBodysize = 0,  which  means  its  
body size is  100 = 1 gram. 

b. The following output shows regression intervals for LogMrate when LogBodySize = 0.  

LogBodySize Fit SE Fit 95% CI 95% PI  
0 1.3066 0.0136 (1.2799, 1.3332) (0.9607, 1.6524)  

The width of the prediction interval is 1.6524 − 0.9607 = 0.6917 and the width for the 
confidence interval for the mean is 1.3332 − 1.2799 = 0.0533. The PI is 0.6917 − 0.0533 = 
0.6384, or about 12 times wider than the CI for the mean when LogBodySize = 0.  

c.	 The output below shows regression intervals for LogMrate when LogBodySize = −2. 
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LogBodySize Fit SE Fit 95% CI 95% PI 
-2 -0.5263 0.0185 (-0.5627, -0.4898) (-0.8730, -0.1796) 

The width of the prediction interval is −0.1796 − (−0.8730) = 0.6934 and the width for the 
confidence interval for the mean is −0.4898−(−0.5627) = 0.0729. The PI is 0.6934−0.0729 = 
0.6205 or about 8.5 times wider than the CI for the mean when LogBodySize = −2. 

2.51	 a. The scatterplot shows a clear positive linear trend, but the relationship is not strong. 
The correlation is only 0.38. 
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b. The fitted regression model summary is given below. The predicted equation is Sujrvey2 =  
40.417 + 0.395Survey1. The slope is clearly greater than zero. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 40.41661 4.43100 9.121 < 2e-16 *** 
Survey1 0.39478 0.07004 5.637 6.07e-08 *** 

Residual standard error: 9.338 on 193 degrees of freedom 
(8 observations deleted due to missingness) 

Multiple R-squared: 0.1414,Adjusted R-squared: 0.1369 
F-statistic: 31.77 on 1 and 193 DF, p-value: 6.074e-08 

c.	 The residual versus fitted values plot shows a good adherence to the linear trend with constant 
variance conditions, but the normal plot of residuals suggests a lack of normality in the error 
term. 
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Normal Q−Q Plot 

d. To see if the	 y = x model works, we look at both the intercept and the slope coefficients. 
Clearly we can infer that the intercept is statistically bigger than 0 (the 40.4166 and the P 
value less than 2e-16). The slope is also clearly not 1, since with an estimated slope of 0.394 
and a standard error of 0.07, 1 would be far outside even a very high confidence interval. 

2.52 a. 95% confidence interval for slope: 

0.9431 ± 1.962526(0.003201) 

0.9431 ± 0.006282046 

0.9431 ± 0.0063 

So we are 95% confidence that the true slope is between 0.9368 and 0.9494. 
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Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.448e+02 5.236e+02 -0.277 0.782 
ListPrice 9.431e-01 3.201e-03 294.578 <2e-16 *** 

Residual standard error: 8019 on 927 degrees of freedom  
Multiple R-squared: 0.9894,Adjusted R-squared: 0.9894  

b.	 We can test the null hypothesis that the true intercept is 0 by reading and interpreting the 
(Intercept) line of the summary output. The P -value in that line tests this very null and with 
a large P -value of 0.782, we have no evidence to reject the null; it is tenable that the true 
intercept is 0. 

c.	 We define a variable as fraction = SaleP rice/ListP rice. We then perform a one-sample 
t-test on fraction and the software gives output that includes the desired confidence interval; 
the output is given as follows. From this we are 95% confident that the mean ratio of sale price 
to list price is between 0.9311 and 0.9401. This interval is shifted to the left of the interval 
found in (a), probably because the non-significant-from-zero intercept is still estimated to a 
negative intercept which creates a line steeper (slightly) than the average fraction. 

One Sample t-test 

data: fraction  
t = 410.1117, df = 928, p-value < 2.2e-16  
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval:     
0.9311611 0.9401158 

sample estimates: 
mean	 of x 
0.9356384 

2.53	 a. Software gives an interval of (64.13893, 67.68782). Cubing the endpoints of the interval 
gives ($263,854, $310,121). 

b. This interval is wider than the one from the untransformed model. 

2.54	 a. Using software, we compute the correlations between all pairs of quantitative variables 
in the BaseballTimes2017 dataset. 

Runs Margin Pitchers Attendance Time  
Runs 1.000 -0.1776 0.7272 0.1252 0.745  
Margin -0.178 1.0000 0.0653 -0.2825 -0.165  
Pitchers 0.727 0.0653 1.0000 -0.0222 0.648  
Attendance 0.125 -0.2825 -0.0222 1.0000 0.319  
Time 0.745 -0.1647 0.6478 0.3187 1.000  



---
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Looking across the last row, we see that the strongest correlation with T ime  is number of  
Runs, r = 0.745.  

b. Some output for predicting game T ime  based on number of Runs is shown below. 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 148.04 12.00 12.34 3.5e-08 *** 
Runs 4.18 1.08 3.87 0.0022 ** 

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 15.3 on
Multiple R-squared: 0.555,Adjusted R-squared: 0.518 
F-statistic: 15 on 1 and 12 DF, p-value: 0.00224 

 

The prediction equation is T ijme  = 148.04 + 4.18Runs. The slope of 4.18 means that for  
every extra run scored in a game the expected game time increases by about 4.2 minutes.  

c.	 We use the hypotheses H0 : ρ = 0  versus  Ha : ρ = 0,  where  ρ is the correlation between T ime  
and Runs for all (major league) baseball games. The correlation of r = 0.745 and sample
size of 14 games mean that the t-statistic is 

               

 
r	
√
n

√− 2 0.745 14  2 
t = √ = 

−√ = 3.87 
1 − r2 1 − 0.7452 

The P -value = 2P (t12 > 3.87) = 0.002, so we reject H0 and conclude that there is a significant  
(positive) correlation between game T ime and number of Runs.          

d.	 Two plots of the residuals are shown below. There is no pattern in the plot of residuals 
versus fitted values; however, the normal quantile plot shows a departure from normality. 
The upward curvature suggests a long right-hand tail for the distribution of the residuals. 
This calls into question the trustworthiness of the t-test from part (c). But the t-test is robust 
and the P -value is very small, so we can still be confident that T ime  and Runs are positively 
correlated. 

2.55 a. Here are the correlations (with P -value below) for each of the potential predictors of 
Nfrass. 
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Mass Intake WetFrass DryFrass Cassim Nassim 
Nfrass 0.886 0.931 0.990 0.983 0.892 0.841 

0.000 0.000 0.000 0.000 0.000 0.000 

The strongest correlation is between Nfrass  and WetFrass  with r = 0.990 

b. Here is some output (and a scatterplot) for the model to predict Nfrass  based on WetFrass. 

The regression equation is Nfrass = 0.000297 + 0.00967 WetFrass 

Predictor Coef SE Coef T P 
Constant 0.00029667 0.00008639 3.43 0.001 
WetFrass 0.00967478 0.00008535 113.36 0.000 

S	 = 0.00119672 R-Sq = 98.1% R-Sq(adj) = 98.1% 

The fitted  line is  Nfjrass  = 0.000297 + 0.00967WetFrass. 

c.	 We test H  : β  = 0  versus  H  : β  = 0 0 1 a 1 using the t-statistic (113.36) and P -value (essentially 
zero) from the regression output. This large t-statistic and very small P -value give very strong 
evidence of some relationship between the Nfrass  and WetFrass. 

d. The coefficient of determination is 98.1%.	 Thus we are explaining a considerable amount 
of variation in WetFrass. There are a few concerns with the regression conditions. The 
histogram of the residuals is centered at zero, with some unusually small residuals. These 
unusually small values are also obvious on the normal probability plot, where the clear depar
tures from a linear trend in the lower tail indicates a lack of normality in the residuals. We 
also see small variability in the residuals for small predicted values of Nfrass  that increases 
somewhat for larger predicted values. But this is a fairly large sample size and the scatterplot 
in part (b) shows that the linear model does a good job of summarizing the general trend in 
this relationship. 
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2.56 a. Here are the correlations (with P -value below) for each of the potential predictors of 
Cassim. 

Mass Intake WetFrass DryFrass NFrass Nassim 
Cassim 0.681 0.993 0.872 0.929 0.892 0.992 

0.000 0.000 0.000 0.000 0.000 0.000 

The strongest correlation is between Cassim and Intake  with r = 0.993 

b. Here is some output (and a scatterplot) for the model to predict Cassim based on Intake. 

The regression equation is Cassim = 0.00379 + 0.0639 Intake 

Predictor Coef SE Coef T P 
Constant 0.003787 0.001317 2.88 0.004 
Intake 0.0639029 0.0004908 130.21 0.000 

S = 0.0165365 R-Sq = 98.5% R-Sq(adj) = 98.5% 

The fitted  line is  Cajssim = 0.0038 + 0.0639Intake. 
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c.	 We test H0 : β1 = 0  versus  Ha : β1 = 0 using the t-statistic (130.21) and P -value (essentially 
zero) from the regression output. This large t-statistic and very small P -value give very strong 
evidence of some relationship between the Cassim and Intake. 

�

d. The coefficient of determination is 98.5%.	 Thus we are explaining a considerable amount of 
variation in Cassim. There are a few concerns with the regression conditions. The histogram 
of the residuals is centered at zero, with some unusually small residuals. These unusually 
small values are also obvious on the normal probability plot, where the clear departures from 
a linear trend in the lower tail indicates a lack of normality in the residuals. We also see small 
variability in the residuals for small predicted values of Cassim that increases somewhat for 
larger predicted values. But this is a fairly large sample size and the scatterplot in part 
(b) shows that the linear model does a good job of summarizing the general trend in this 
relationship. 

2.57 We first consider scatterplots (with regression lines) for each of the potential predictors, Age 
and Height, of the response variable P rice of a horse. 
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Age shows a weak (if any) linear relationship (r = −0.127) with P rice, while Height shows a 
stronger association (r = 0.443) with P rice. If we are using a single one of these predictors for all 
of the horses, Height would be the better option. 

Some regression output for fitting the linear model to predict P rice based on Height is shown 
below. 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) -133791 48817 -2.741 0.00876 ** 
Height 9905 2987 3.316 0.00181 ** 

The estimated linear fit is Pj rice = −133791 + 9905Height. The s mall P  -value (0.00181) for the 
t-test of slope indicates that there is strong evidence for a positive relationship between horse P rice 
and Height. 

A plot of residuals versus fits for the model based on Height shows a reasonably good scatter around 
the zero line, although there are very few horses with small predicted prices (below $20,000) and 
these all have positive residuals. A normal quantile plot of the residuals shows a relatively consistent 
linear trend, which gives support for the normality condition. 

Normal Q−Q Plot 
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Female horses:  
Most of the smaller (height) horses are female, so we consider a model for just the data on 20 female  
horses. Scatterplots now indicate a stronger relationship between P rice and Age (r = −0.439) than  
Height (r = −0.132).  
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Fitting the regression for P rice based on Age for the female horses gives 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 22877.8 3827.5 5.977 1.18e-05 *** 
Age -827.6 399.3 -2.073 0.0528 

The estimated linear fit is Pj rice = 22877.8 − 827.6Age. The P  -value (0.0528) for the t-test of 
slope is not (quite) significant at a 5% level, leaving some doubt still about the strength of this lin
ear relationship (although it’s stronger than the P rice versus Height relationship for female horses). 

The residual versus fits plot for the P rice versus Age model for female horses shows a reasonably 
random scatter on either side of the zero line with a possibility of variability increasing as the 
predicted prices increase. We see no serious concerns with lack of normality in the normal quantile 
plot for the residuals. 
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Male horses: 
Data for the male horses alone looks more like the combined data; a stronger positive relationship 
between P rice and Height (r = 0.409) and a smaller (but now positive) slope between P rice and 
Age (r = 0.232). We might have some concern about influential points with the two horses that 
are smaller in Height than the rest of the male horses. 
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Fitting the regression for P rice based onHeight for the male horses gives 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) -120546 66679 -1.808 0.0818 . 
Height 9346 4016 2.327 0.0277 * 

The estimated linear fit is Pj rice = −120, 546 + 9346Height. The P  -value (0.0277) for the t-test of 
slope is significant at a 5% level, indicating some positive association between P rice and Height 
for male horses. Note that the P -value is smaller (0.00181) for the combined data, but that model 
is based on a larger sample size and includes the smaller, less expensive female horses. 

The residual versus fits plot for the P rice versus Height model for male horses shows a reasonably 
random scatter on either side of the zero line. We note that the outlier small horse is predicted 
quite accurately, possibly a consequence of it having influence on the slope of the regression line. 
We see no serious concerns with lack of normality in the normal quantile plot for the residuals. 
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Given that the separate analyses show that Age is a stronger predictor of Price for female horses 
(and in fact the correlation between Price and Height for the sample of female horses is negative), 
while Height has a stronger (and positive) association with Price for the sample of male horses, 
we should use the separate regression equations to predict the Price of a horse, depending on 
its sex. Also the estimated standard deviation of the regression in the separate models (females, 
sǫ = 10, 194 and males, sǫ = 11, 830) is smaller than for the combined data (sǫ = 13, 363). 

Prrice = 22, 877.8 − 827.6Age (for female horses) 
Price = −120, 546 + 9346Height (for male horses) r
2.58	 a. The scatterplot of Mortality versus Y ear shows a consistent decreasing trend, but the 

relationship is curved rather than linear. 

b. The prediction equation is Mortality = 1656.46−0.827Y ear.r A plot of residuals versus fitted 
values illustrates the curved nature of the relationship. The linearity condition for a linear 
model is not satisfied. 
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c. A log transform for Mortality to lnMortality = log(Mortality) provides a more linear 
relationship with Y ear as seen in the scatterplot and residual plot below. The curved pattern 
is no longer apparent in either of these plots. 

d. The hypotheses are H0 : β1 = 0 versus Ha : β1 = 0. � Some computer output for fitting this 
model to lnMortality is given below. 

Estimate Std. Error t value Pr(>|t|)  
(Intercept) 62.8951 1.9734 31.9 1.0e-09 ***  
Year -0.0305 0.0010 -30.3 1.5e-09 ***  

The test statistic is t = −30.3 and the P -value is 1.5 · 10−9, or roughly zero, so the data 
suggest that there is strong evidence that log(Mortality) (and thus Mortality also) has gone 
down over time. 

e. The estimated value for Y ear = 2020 is lnMortality = 62.89 − 0.0305(2020) = 1.38. r We 
convert this to an estimate for Mortality with  Mortality = e1.38 = 3.97,r  or about 4 deaths 
per 1000 infants in 2020. We can also use technology to find a 95% prediction interval for 
lnMortality when Y ear = 2020. 
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fit lwr upr  
1 1.38598 1.13127 1.6407  

We exponentiate the endpoints of the interval to produce a prediction interval for Mortality 
in 2020 that goes from e1.1313 1.6407 = 3.10 to e = 5.16. 

2.59 Following is some output for fitting a linear model to predict LogNassim using LogMass 
based on the entire sample of caterpillars. 

The regression equation is LogNassim = - 1.89 + 0.371 LogMass  

Predictor Coef SE Coef T P 
Constant -1.88738 0.01841 -102.53 0.000 
LogMass 0.37096 0.01332 27.85 0.000 

S = 0.250145 R-Sq = 75.5% R-Sq(adj) = 75.5%  

Here is corresponding output for fitting the model using only the caterpillars in the free growth 
period (Fgp = “Y ”). 

The regression equation is LogNassimFgpY = - 1.75 + 0.430 LogMassFgpY  

Predictor Coef SE Coef T P  
Constant -1.74642 0.01489 -117.27 0.000  
LogMassFgpY 0.429738 0.009946 43.21 0.000  

S = 0.148628 R-Sq = 91.8% R-Sq(adj) = 91.7%  

We see that when the model is restricted to just caterpillars in the free growth period, the per
cent of variability in LogNassim that is explained by the model goes up from 75.5% to 91.8%. 
Furthermore, the scatterplots and residual plots using the entire data (on the left in the following 
image) show more concerns with the conditions (especially several places with unusually low val
ues of LogNassim and much greater variability) than the plots (on the right) for the free growth 
caterpillars. While both relationships exhibit a bit of curvature in the residual versus fits plots, the 
normality plots look much better when the data include only caterpillars in the free growth period. 
(Recall that we examined a scatterplot of this relationship with different plotting symbols back in 
Chapter 1.) 
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2.60	 a. Since the interval bounds include most (if not all) of the data values, they are most 
likely prediction intervals for individual values, rather than confidence intervals for the mean 
values. 

b. Since the P -value is not very small (above a 5% significance level), there is not strong evidence 
against an assumption that the data are from a normal distribution. So a normality condition 
would be reasonable for these data. 

c. The points in the normal probability plot follow the linear trend reasonably well, which is 
consistent with the conclusion of the test that the data could reasonably come from a normal 
distribution. 

2.61 a. Based on the sample statistics and formulas for the slope and intercept, we have 

ˆ	 sSlope: β = r y = 0.701 104,807 
1 = 111.826 

sx 657 

( )
ˆIntercept: β0 = y − β̂1x = 247,235 − 111.826(2009) = 22,576.6 

This gives a fitted line of Gate = 22,576.6 + 111.826Enroll. r
b. The coefficient of determination is  r2 = 0.7012 = 0.491, so the enrollments can explain about 

49.1% of the variation in the gate counts. 
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c. For a college with an enrollment of 1445, the predicted gate count is
 

Gate = 22,576.6 + 111.826(1445) = 184,165.2
r
d. The predicted value for a school with 2200 students is
 

Gate = 22,576.6 + 111.826(2200) = 268,593.8
r
If the actual gate count is 130,000 the residual is
 

Gate−Gate = 130,000− 268,593.8 = −138,593.8
 r
2.62	 a. The R command plot(Calories Sugar, data=Cereal) shows that there is an upward 

trend between Calories and Sugar. The command cor(Calories,Sugar, data=Cereal) gives 
the correlation as 0.515. 

b. The R command cor.test( Sugar+Calories, data=Cereal) gives the P -value as 0.0013 and the 
95% CI as (0.225,0.722). 

c. The P -value of 0.0013 is fairly close to the probability that the true correlation is negative. 

d. The 95% CI is (0.225, 0.722), which is similar to the 95% credible interval of (0.21, 0.72.) 
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