\qquad
\qquad
\qquad

Chapter 02

Multiple Choice

1. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet). What is $S E_{\hat{\beta}}$?
```
> summary(time.lm)
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2100541 1.8661683 2.256 0.02909 *
Ascent 0.0020805 0.0005909 3.521 0.00101 **
---
Signif. codes: 0'***'0.001'**'0.01'*'0.05'.'0.1'`1
Residual standard error: 2.496 on 44 degrees of freedom
Multiple R-squared: 0.2198, Adjusted R-squared: 0.2021
F-statistic: 12.4 on 1 and 44 DF, p-value: 0.001014
a. 4.21005
b. 1.86617
c. 0.00208
d. 0.00059
e. 2.496
f. 0.2198
g. 0.2021
h. 0.001014
ANSWER: d
```

2. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet). What is the coefficient of determination?
```
> summary(time.lm)
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2100541 1.8661683 2.256 0.02909 *
Ascent 0.0020805 0.0005909 3.521 0.00101 **
---
Signif. codes: 0'***'0.001'**'0.01'*'0.05'.'0.1'`1
Residual standard error: 2.496 on 44 degrees of freedom
Multiple R-squared: 0.2198, Adjusted R-squared: 0.2021
F-statistic: 12.4 on 1 and 44 DF, p-value: 0.001014
    a. 4.21005
    b. 1.86617
```

\qquad
\qquad
\qquad

Chapter 02

c. 0.00208
d. 0.00059
e. 2.496
f. 0.2198
g. 0.2021
h. 0.001014

ANSWER: f
3. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. The relationship between $Y=$ Time (expected trip time to hike the peak, in hours) on X $=$ Ascent (in feet) is positive. The linear regression model Time on Ascent results in $r^{2}=21.98 \%$. Determine the correlation coefficient.
a. 0.0483
b. 0.2198
c. 0.4688
d. 4.6883
e. Unable to determine

ANSWER: c
4. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet). Use this output to calculate the coefficient of determination.

```
> anova(time.lm)
Analysis of Variance Table
Response: Time
            Df Sum Sq Mean Sq F value Pr(>F)
Ascent 1 77.261 77.261 12.399 0.001014 **
Residuals 44 274.174 6.231
a. 0.2198
b. 0.2818
c. \(12.399 \%\)
d. Unable to determine
ANSWER: a
```

5. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Find the P-value for the test of the hypothesis that the correlation between Time and Ascent is 0 .

```
> summary(time.lm)
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Coefficients:
```

\qquad
\qquad
\qquad

Chapter 02

```
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2100541 1.8661683 2.256 0.02909 *
Ascent 0.0020805 0.0005909 3.521 0.00101 **
Signif. codes: 0'***'0.001'**'0.01'*'0.05'.'0.1''1
Residual standard error: 2.496 on 44 degrees of freedom
Multiple R-squared: 0.2198, Adjusted R-squared: 0.2021
F-statistic: 12.4 on 1 and 44 DF, p-value: 0.001014
```

a. 0.02909
b. 0.00101
c. Unable to determine

ANSWER: b
6. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Report a 95\% confidence interval for the mean trip time when Ascent is 3000 feet.

```
> predict.lm(time.lm, newdata=data.frame(Ascent=3000),interval="confidence")
    fit lwr upr
1 10.45163 9.701043 11.20222
> predict.lm(time.lm, newdata=data.frame(Ascent=3000),interval="prediction")
    fit lwr upr
1 10.45163 5.365099 15.53816
    a. (9.701 hours, 11.202 hours)
    b. (5.365 hours, 15.538 hours)
    c. }10.452\mathrm{ hours
    d. Unable to determine
ANSWER: a
```

7. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Report a 95% prediction interval for the trip time when Ascent is 3000 feet. Then interpret the interval in context.

```
> predict.lm(time.lm, newdata=data.frame(Ascent=3000),interval="confidence")
    fit lwr upr
1 10.45163 9.701043 11.20222
> predict.lm(time.lm, newdata=data.frame(Ascent=3000),interval="prediction")
    fit lwr upr
1 10.45163 5.365099 15.53816
a. ( 9.701 hours, 11.202 hours)
b. (5.365 hours, 15.538 hours)
c. 10.452 hours
d. Unable to determine
```

\qquad
\qquad
\qquad

Chapter 02

ANSWER: b
8. Consider the following statement: "When predicting the value of Y at a value $X=x^{*}$, the 90% confidence interval for the mean response is wider than the 90% prediction interval for a particular response."

Is this statement always true, sometimes true, or never true?
a. Always true
b. Sometimes true
c. Never true

ANSWER: c
9. Cholesterol levels are measured on a sample of 21 volunteers. HDL (high-density lipoprotein, or "good" cholesterol) is regressed on total cholesterol, which results in $r^{2}=37.5 \%$. From this information, which of the following are true? (You may select more than one.)
a. 37.5% of the variability in HDL is explained by the linear relationship with total cholesterol.
b. 37.5% of the variability in total cholesterol is explained by the linear relationship with HDL.
c. The relationship between HDL and total cholesterol is important.
d. The relationship between HDL and total cholesterol is strong.
e. The evidence for an association between HDL and total cholesterol is strong.
f. The relationship between HDL and total cholesterol is positive.

ANSWER: a
10. Cholesterol levels are measured on a sample of 21 volunteers. Our response variable is HDL (high-density lipoprotein, or "good" cholesterol). Below are the correlations between HDL and three different potential predictors: total cholesterol (Chol), total triglycerides (Triglyc), and the presence (1) or absence (0) of a sticky substance called sinking pre-beta ($S P B$).

Based on the information in the correlations, which of the potential predictors (Chol, Triglyc, SPB) is the weakest predictor (on its own) of the HDL response variable?

```
> cor(HDL)
```

	HDL	Chol	Triglyc	SPB
HDL	1.0000000	0.6123659	0.7236147	0.6698262
Chol	0.6123659	1.0000000	0.6972721	0.3102052
Triglyc	0.7236147	0.6972721	1.0000000	0.4154681
SPB	0.6698262	0.3102052	0.4154681	1.0000000

a. Chol
b. Triglyc
c. $S P B$
d. Unable to determine

ANSWER: a

Multiple Response

11. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations
\qquad
\qquad

Chapter 02

near or above 4000 feet. $Y=$ Time (expected trip time to hike the peak, in hours) is regressed on $X=$ Ascent (in feet). The t test for the slope results in a P-value of 0.001 . Based only on this information, which of the following is true? Assume all the conditions for the model are met. (You may select more than one.)
a. The probability that there is no linear relationship is 0.001 .
b. The probability that there is a linear relationship is 0.001 .
c. If there is no linear relationship between Time and Ascent, the probability of getting results like ours is about 0.001 .
d. If there is a linear relationship between Time and Ascent, the probability of getting results like ours is about 0.001 .
e. The relationship between Time and Ascent is important.
f. The relationship between Time and Ascent is strong.
g. The evidence for an association between Time and Ascent is strong.

ANSWER: c, g
12. Cholesterol levels are measured on a sample of 21 volunteers. HDL (high-density lipoprotein, or "good" cholesterol) is regressed on total cholesterol. An ANOVA F test is performed and returns a P-value of 0.003 . Assuming all the conditions for the model are met, which of the following is true? (You may select more than one.)
a. The probability that there is no linear relationship is 0.003 .
b. The probability that there is a linear relationship is 0.003 .
c. If there is no linear relationship between HDL and total cholesterol, the probability of getting results like ours is about 0.003 .
d. If there is a linear relationship between HDL and total cholesterol, the probability of getting results like ours is about 0.003 .
e. The relationship between HDL and total cholesterol is important.
f. The relationship between HDL and total cholesterol is strong.
g. The evidence for an association between HDL and total cholesterol is strong.
h. The relationship between HDL and total cholesterol is positive.

ANSWER: c, g

Essay

13. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Use this output to test the null hypothesis that Ascent is not linearly related to Time. Provide the P-value and state the conclusion.

```
> summary(time.lm)
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2100541 1.8661683 2.256 0.02909 *
```

\qquad
\qquad

Chapter 02

Ascent 0.00208050 .00059093 .5210 .00101 **
Signif. codes: 0‘***’ 0.001 '**' 0.01 '*’ $0.05^{\prime} .{ }^{\prime} 0.1^{\prime \prime} 1$
ANSWER: P-value $=0.001$. Assuming all conditions for the linear model are met, there is strong evidence that Ascent and Time have a linear relationship.
14. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

We believe that Ascent and Time will have a positive relationship. Use this output to test this hypothesis. Provide the P-value and state the conclusion.

```
> summary(time.lm)
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2100541 1.8661683 2.256 0.02909 *
Ascent 0.0020805 0.0005909 3.521 0.00101 **
Signif. codes: 0'***'0.001'**'0.01'*' 0.05'.'0.1''1
```

ANSWER: P-value $=0.001 / 2=0.0005$. Assuming all conditions for the linear model are met, there is strong evidence that Ascent and Time have a positive linear relationship.
15. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Use this output to test the null hypothesis that Ascent is not linearly related to Time. Provide the P-value and state the conclusion.

```
Call:
lm(formula = Time ~ Ascent, data = HighPeaks)
Residual standard error: 2.496 on 44 degrees of freedom
Multiple R-squared: 0.2198, Adjusted R-squared: 0.2021
F-statistic: 12.4 on 1 and 44 DF, p-value: 0.001014
```

ANSWER: P-value $=0.001$. Assuming all conditions for the linear model are met, there is strong evidence that Ascent and Time have a linear relationship.
16. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. Below is some R output from a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet).

Use this output to test the null hypothesis that Ascent is not linearly related to Time. Provide the P-value and state the conclusion.

```
> anova(time.lm)
Analysis of Variance Table
```

\qquad
\qquad
\qquad

Chapter 02

```
Response: Time
    Df Sum Sq Mean Sq F value Pr(>F)
Ascent 1 77.261 77.261 12.399 0.001014 **
Residuals 44 274.174 6.231
```

ANSWER: P-value $=0.001$. Assuming all conditions for the linear model are met, there is strong evidence that Ascent and Time have a linear relationship.
17. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. We fit a linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet). The 95% confidence interval for β_{1}, the coefficient of Ascent, is $(0.00089$, 0.00327). Interpret this interval in the context of the problem.

ANSWER: We are 95% confident that for each additional foot of ascent, the trip should take between 0.00089 and 0.00327 additional hours. Or, if we rephrase to have more pleasant units: We are 95% confident that for each additional 1000 feet of ascent, the trip should take between 0.89 and 3.27 additional hours.
18. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. The linear regression model of $Y=$ Time (expected trip time to hike the peak, in hours) on $X=$ Ascent (in feet) results in $r^{2}=21.98 \%$. Interpret this value in context.
ANSWER: About 22% of the variability in trip Time is explained by the linear relationship with Ascent.
19. Forty-six mountains in the Adirondacks of upstate New York are known as the High Peaks with elevations near or above 4000 feet. $Y=$ Time (expected trip time to hike the peak, in hours) is regressed on $X=$ Ascent (in feet). When Ascent is 3000 feet, the 95% confidence interval for the mean is $9.701,11.202$). Interpret this interval in the context of this problem.
ANSWER: We are 95% confident that the average trip time for all ascents of 3000 feet is between 9.7 hours and 11.2 hours.
20. Cholesterol levels are measured on a sample of 21 volunteers. HDL (high-density lipoprotein, or "good" cholesterol) is regressed on total cholesterol. An ANOVA F test is performed and returns a P-value of 0.003 . Write down the hypotheses being tested.
ANSWER: We are testing if the linear model is effective. that is, whether the slope of the linear model is 0 . In symbols,

$$
H_{0} ; \beta_{1}=0 \quad \text { vs. } \quad H_{0} ; \beta_{1} \neq 0
$$

21. Cholesterol levels are measured on a sample of 21 volunteers. HDL (high-density lipoprotein, or "good" cholesterol) is regressed on total cholesterol. An ANOVA F test is performed and returns a P-value of 0.003 . Make a conclusion based on this P-value. (You may assume all conditions are met.) ANSWER: We have strong evidence that there is a linear relationship between HDL and total cholesterol.
22. Cholesterol levels are measured on a sample of 21 volunteers. Our response variable is HDL (high-density lipoprotein, or "good" cholesterol). We are interested in the correlations between HDL and three different potential predictors: total cholesterol (Chol), total triglycerides (Triglyc), and the presence (1) or absence (0) of a sticky substance called sinking pre-beta ($S P B$).

Below is some R output. Write down the hypotheses being tested here.
\qquad
\qquad
\qquad

Chapter 02

```
> cor.test(x=HDL$Triglyc,y=HDL$HDL, conf.level=0.9)
Pearson's product-moment correlation
data: HDL$Triglyc and HDL$HDL
t = 4.5699, df = 19, p-value = 0.0002093
alternative hypothesis: true correlation is not equal to 0
90 percent confidence interval:
0.4834646 0.8624646
sample estimates:
    cor
0.7236147
```

ANSWER: We are testing if there is significant correlation between HDL and total triglycerides. In symbols, $H_{0} ; \rho=0 \quad$ vs. $\quad H_{0} ; \rho \neq 0$
23. Cholesterol levels are measured on a sample of 21 volunteers. The correlation between HDL (high-density lipoprotein, or "good" cholesterol) and triglycerides is 0.723 , with an associated 90% confidence interval of ($0.4835,0.8625$). Interpret this interval in the context of this problem.
ANSWER: Based on this sample of 21 , we are 90% confident that the true correlation between HDL and triglycerides is between 0.4835 and 0.8635 .
24. Cholesterol levels are measured on a sample of 21 volunteers. HDL (high-density lipoprotein, or "good" cholesterol) is regressed on total cholesterol. We want to find an interval that would be 95% certain to contain the actual HDL level for a patient with a total cholesterol level of $280 \mathrm{mg} / \mathrm{dl}$. Do we want to construct a confidence interval or a prediction interval?
ANSWER: prediction interval
25. Below is a partial ANOVA table from a simple linear regression model. Using only the information given, fill in the missing values (A, B, and C).
Analysis of Variance Table
Response: Y

| | Df | Sum Sq Mean Sq | F value | $\operatorname{Pr}(>F)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| X | 1 | A | 791.45 | 11.4 | 0.00317 |
| Residuals | C | 1319.12 | B | | |

ANSWER: $\mathrm{A}=791.45 ; \mathrm{B}=69.43 ; \mathrm{C}=19$

