CHAPTER 2 - CONCEPTS IN STRUCTURAL STEEL DESIGN

2-1

$D=9 \mathrm{kips}, L_{r}=5 \mathrm{kips}, S=6 \mathrm{kips}, R=7 \mathrm{kips}, W=8 \mathrm{kips}$
(a)

1: $\quad 1.4 D=1.4(9)=12.6 \mathrm{kips}$
3: $\quad 1.2 D+1.6+0.5 W=1.2(9)+1.6(7)+0.5(8)=26$ kips
4: $\quad 1.2 D+1.0 \mathrm{~W}=1.2(9)+1.0(8)=18.8$ kips

$$
R_{u}=26 \text { kips }(\text { combination } 3)
$$

(but the column must be checked for an uplift of 4.7 kips.)
(b)

$$
\begin{aligned}
& \phi R_{n}=26 \mathrm{kips} \\
& R_{n}=28.9 \mathrm{kips}
\end{aligned}
$$

(c) $\quad R_{n}=\frac{\varphi R_{n}}{\varphi}=\frac{26}{0.90}=28.9 \mathrm{kips}$
(d)

3: $\quad D+R=9+7=16$ kips
6. $D+0.75(0.6 W)+0.75(R)=9+0.75(0.6)(8)+0.75(7)=17.9 \mathrm{kips}$

$$
R_{a}=17.9 \text { kips (combination } 6 \text {) }
$$

(but the column must be checked for an uplift of 2.6 kips)
(e) $\quad R_{n}=\Omega R_{a}=1.67(17.9)=29.9$ kips

$$
R_{n}=29.9 \text { kips }
$$

2-2

1: $\quad 1.4 D=1.4(9)=12.6$ kips
3: $\quad 1.2 D+1.6 S+0.5 W=1.2(9)+1.6(6)+0.5(8)=24.4$ kips
4: $\quad 1.2 D+1.0 W+0.5 S=1.2(9)+1.0(8)+0.5(6)=21.8$ kips
(a)
24.4 kips (combination 3)
(b)

$$
\begin{array}{r}
\phi R_{n}=24.4 \mathrm{kips} \\
R_{n}=27.1 \mathrm{kips} \\
\hline
\end{array}
$$

(c) $\quad R_{n}=\frac{\phi R_{n}}{\phi}=\frac{24.4}{0.90}=27.1 \mathrm{kips}$
(d)
3. $D+S=9+6=15$ kips
5. $D+0.6 W=9+0.6(8)=13.8$ kips
6. $D+0.75(0.6 W)+0.75 S=9+0.75(0.6)(8)+0.75(6)=17.1 \mathrm{kips}$
17.1 kips (Combination 6)
(e) $\quad R_{n}=\Omega R_{a}=1.67(17.1)=28.6$ kips
$R_{n}=28.6$ kips

2-3

(a) Combination 1: $1.4 D=1.4(45)=63 \mathrm{ft}$-kips

Combination 2: $\quad 1.2 D+1.6 L+0.5 L_{r}=1.2(45)+1.6(63)+0.5(0)=154.8 \mathrm{ft}-\mathrm{kips}$

$$
R_{u}=155 \mathrm{ft}-\mathrm{kips} \text { (combination 2) }
$$

(b) $\quad R_{n}=\frac{R_{u}}{\phi}=\frac{154.8}{0.9}=172 \mathrm{ft}-$ kips

$$
R_{n}=172 \mathrm{ft}-\mathrm{kips}
$$

(c) Combination 2: $D+L=45+63=108 \mathrm{ft}$-kips $\quad \underline{R}_{\underline{a}}=108 \mathrm{ft}$-kips (combination 2)
(d) $\quad R_{n}=\Omega R_{a}=1.67(108)=180$ ft-kip
$\underline{R}_{n}=180 \mathrm{ft}-\mathrm{kips}$

2-4

$D=18$ kips, $L=2$ kips
(a)

1: $\quad 1.4 D=1.4(18)=25.2$ kips
2: $\quad 1.2 D+1.6 L=1.2(18)+1.6(2)=24.8 \mathrm{kips}$

$$
R_{u}=25.2 \text { kips (combination } 1 \text {) }
$$

(b)

2: $D+L=18+2=20$ kips. $\quad R_{a}=20$ kips (combination 2)

2-5

$D=21 \mathrm{psf}, L_{r}=12 \mathrm{psf}, S=13.5 \mathrm{psf}, W=22 \mathrm{psf}$ upward (in this particular case, the wind load cannot be reversed, even in those cases where reversal would normally be considered.)

Treat gravity loads as positive and wind load as negative:
(a)

1: $\quad 1.4 D=1.4(21)=29.4 \mathrm{psf}$
2: $\quad 1.2 D+0.5 S=1.2(21)+0.5(13.5)=32.0 \mathrm{psf}$
3: $\quad 1.2 D+1.6 S+0.5 W=1.2(21)+1.6(13.5)+0.5(-22)=35.8 \mathrm{psf}$
$1.2 D+1.6 S+0.5 L=1.2(21)+1.6(13.5)+0.5(0)=46.8 \mathrm{psf}$
$R_{u}=46.8 \mathrm{psf}$ (combination 3)
(Combination 5, with $R_{u}=-3.1 \mathrm{psf}$, would also need to be considered in the design of the roof in order to prevent uplift.)
(b)

3: $\quad D+S=21+13.5=34.5 \mathrm{psf}$
5: $\quad D+0.6 W=21+0.6(-22)=7.8 \mathrm{psf}$
6: $\quad D+0.75(0.6 \mathrm{~W})+0.75 S=21+0.75(0.6)(-22)+0.75(13.5)=21.2 \mathrm{psf}$
7: $\quad 0.6 D+0.6 W=0.6(21)+(-22)=-9.4 \mathrm{psf}$

$$
R_{a}=34.5 \mathrm{psf}(\text { combination } 3 \text {) }
$$

(Combination 7, with $R_{a}=-9.4$ psf, would also need to be considered in the design of the roof in order to prevent uplift.)

