CHAPTER 2 - CONCEPTS IN STRUCTURAL STEEL DESIGN

<u>2-1</u> D = 9 kips, $L_r = 5$ kips, S = 6 kips, R = 7 kips, W = 8 kips (a) 1: 1.4D = 1.4(9) = 12.6 kips 3: 1.2D + 1.6 + 0.5W = 1.2(9) + 1.6(7) + 0.5(8) = 26 kips 4: 1.2D + 1.0W = 1.2(9) + 1.0(8) = 18.8 kips $R_u = 26$ kips (combination 3) (but the column must be checked for an uplift of 4.7 kips.) $\phi R_n = 26$ kips (b) $R_n = \frac{\varphi R_n}{\varphi} = \frac{26}{0.90} = 28.9$ kips $R_n = 28.9$ kips (c) (d) 3: D + R = 9 + 7 = 16 kips D + 0.75(0.6W) + 0.75(R) = 9 + 0.75(0.6)(8) + 0.75(7) = 17.9 kips 6. $R_a = 17.9$ kips (combination 6) (but the column must be checked for an uplift of 2.6 kips) $R_n = 29.9 \text{ kips}$ $R_n = \Omega R_a = 1.67(17.9) = 29.9$ kips (e)

2-2

1:
$$1.4D = 1.4(9) = 12.6$$
 kips

3:
 $1.2D + 1.6S + 0.5W = 1.2(9) + 1.6(6) + 0.5(8) = 24.4$ kips

4:
 $1.2D + 1.0W + 0.5S = 1.2(9) + 1.0(8) + 0.5(6) = 21.8$ kips

(a)
 24.4 kips (combination 3)

(b)
 $\phi R_n = 24.4$ kips

(c)
 $R_n = \frac{\phi R_n}{\phi} = \frac{24.4}{0.90} = 27.1$ kips

 $R_n = 27.1$ kips

<u>(d)</u>		
3.	D + S = 9 + 6 = 15 kips	
5.	D + 0.6W = 9 + 0.6(8) = 13.8 kips	
6.	D + 0.75(0.6W) + 0.75S = 9 + 0.75(0.6)(8) + 0.75(6) = 17.1 kips	
		17.1 kips (Combination 6)
(e)	$R_n = \Omega R_a = 1.67(17.1) = 28.6$ kips	$R_n = 28.6$ kips

<u>2-3</u>

(a) Combination 1:		1.4D = 1.4(45) = 63 ft-kips	
Combination 2:		$1.2D + 1.6L + 0.5L_r = 1.2(45) + 1.6(63) + 0.5(0) = 154.8$ ft-kips	
			$R_u = 155 \text{ft} - \text{kips} (\text{combination } 2)$
(b)	$R_n = \frac{R_u}{\phi} = \frac{15}{0}$	$\frac{54.8}{0.9} = 172 \text{ ft} - \text{kips}$	$R_n = 172 \text{ ft} - \text{kips}$
(c)	Combination	2: $D + L = 45 + 63 = 108$ ft-kips	$\underline{R}_{\underline{a}} = 108 \text{ ft-kips} (\text{combination } 2)$
(d)	$R_n = \Omega R_a = 1$.67(108) = 180 ft-kip	$\underline{R}_{\underline{n}} = 180 \text{ ft-kips}$

<u>2-4</u>

D = 18 kips, L = 2 kips (a) 1: 1.4D = 1.4(18) = 25.2 kips 2: 1.2D + 1.6L = 1.2(18) + 1.6(2) = 24.8 kips $R_u = 25.2$ kips (combination 1) (b) D + L = 18 + 2 = 20 kips. $R_a = 20$ kips (combination 2) 2:

<u>2-5</u>

D = 21 psf, $L_r = 12$ psf, S = 13.5 psf, W = 22 psf upward (*in this particular case, the wind* load cannot be reversed, even in those cases where reversal would normally be considered.)

Treat gravity loads as positive and wind load as negative:

(a)

1: 1.4D = 1.4(21) = 29.4 psf

2:
$$1.2D + 0.5S = 1.2(21) + 0.5(13.5) = 32.0 \text{ psf}$$

3:
$$1.2D + 1.6S + 0.5W = 1.2(21) + 1.6(13.5) + 0.5(-22) = 35.8 \text{ psf}$$

$$1.2D + 1.6S + 0.5L = 1.2(21) + 1.6(13.5) + 0.5(0) = 46.8 \text{ psf}$$

 $R_u = 46.8 \text{ psf} \text{ (combination 3)}$

(Combination 5, with $R_u = -3.1$ psf, would also need to be considered in the design of the roof in order to prevent uplift.)

(b)

3:
$$D + S = 21 + 13.5 = 34.5 \text{ psf}$$

5:
$$D + 0.6W = 21 + 0.6(-22) = 7.8 \text{ psf}$$

6:
$$D + 0.75(0.6W) + 0.75S = 21 + 0.75(0.6)(-22) + 0.75(13.5) = 21.2 \text{ psf}$$

7: 0.6D + 0.6W = 0.6(21) + (-22) = -9.4 psf

 $R_a = 34.5 \text{ psf}$ (combination 3)

(Combination 7, with $R_a = -9.4$ psf, would also need to be considered in the design of the roof in order to prevent uplift.)