
Programming Logic and Design, 9e Solutions 2-1

Programming Logic and Design, 9th Edition

Chapter 2

Review Questions

1. What does a declaration provide for a variable?

a. a name

b. a data type

c. both of the above

d. none of the above

2. A variable’s data type describes all of the following except________.

a. what values the variable can hold

b. the scope of the variable

c. how the variable is stored in memory

d. what operations can be performed with the variable

3. The value stored in an uninitialized variable is _________.

a. null

b. garbage

c. compost

d. its identifier

4. The value 3 is a ___________.

a. numeric variable

b. string variable

c. numeric constant

d. string constant

Programming Logic and Design, 9e Solutions 2-2

5. The assignment operator ___________.

a. is a binary operator

b. has left-to-right associativity

c. is most often represented by a colon

d. two of the above

6. Multiplication has a lower precedence than _____.

a. division

b. subtraction

c. assignment

d. none of the above

7. Which of the following is not a term used as a synonym for module?

a. method

b. object

c. procedure

d. subroutine

8. Modularization _____.

a. eliminates abstraction

b. reduces overhead

c. facilitates reusability

d. increases the need for correct syntax

9. What is the name for the process of paying attention to important properties while

ignoring nonessential details?

a. abstraction

Programming Logic and Design, 9e Solutions 2-3

b. extraction

c. extinction

d. modularization

10. Every module has all of the following except___________ .

a. a header

b. local variables

c. a body

d. a return statement

11. Programmers say that one module can ___________ another, meaning that the first

module causes the second module to execute.

a. declare

b. define

c. enact

d. call

12. The more that a module’s statements contribute to the same job, the greater the

___________ of the module.

a. structure

b. modularity

c. functional cohesion

d. size

13. In most modern programming languages, a variable or constant that is declared in a

module is ___________ in that module.

a. global

Programming Logic and Design, 9e Solutions 2-4

b. invisible

c. in scope

d. undefined

14. Which of the following is not a typical housekeeping task?

a. displaying instructions

b. printing summaries

c. opening files

d. displaying report headings

15. Which module in a typical program will execute the most times?

a. the housekeeping module

b. the detail loop

c. the end-of-job module

d. It is different in every program.

16. A hierarchy chart tells you ___________.

a. which modules call other modules

b. what tasks are to be performed within each program module

c. when a module executes

d. all of the above

17. What are nonexecuting statements that programmers place within code to explain

program statements in English?

a. pseudocode

b. trivia

c. user documentation

Programming Logic and Design, 9e Solutions 2-5

d. comments

18. Program comments are ___________.

a. required to create a runnable program

b. a form of external documentation

c. both of the above

d. none of the above

19. Which of the following is valid advice for naming variables?

a. To save typing, make most variable names one or two letters.

b. To avoid conflict with names that others are using, use unusual or

unpronounceable names.

c. To make names easier to read, separate long names by using underscores or

capitalization for each new word.

d. To maintain your independence, shun the conventions of your organization.

20. A message that asks a user for input is a(n) ___________.

a. comment

b. echo

c. prompt

d. declaration

Programming Exercises

1. Explain why each of the following names does or does not seem like a good variable

name to you.

Answer:

Answers will vary. A possible solution:

a. stateTaxRate

– This is a good variable

name.

Programming Logic and Design, 9e Solutions 2-6

b. txRt – This is a legal variable

name, but cryptic.

c. t – This is a legal variable

name, but too short to

have much meaning.

d. stateSalesTaxRateValue – This is a legal variable

name and very

descriptive, but a little

unwieldy.

e. state tax rate – This is an illegal variable

name because of the

embedded spaces.

f. taxRate – This is a good variable

name.

g. 1TaxRate – This variable name is

illegal because it starts

with a digit.

h. moneyCharged – This is a good variable

name, although more

could be added to specify

if this is a rate, a dollar

amount, or a string

perhaps indicating “Y” or

“N”.

2. If productCost and productPrice are numeric variables, and productName

is a string variable, which of the following statements are valid assignments? If a

statement is not valid, explain why not.

Answer:

a. productCost = 100 – Valid

b. productPrice = productCost – Valid

c. productPrice = productName – Not valid. Variables are different data types.

d. productPrice = “24.95” – Not valid. Variables are different data types.

e. 15.67 = productCost – Not valid. Value on left cannot be a constant.

f. productCost = $1,35.52 – Not valid. Numeric constant cannot have

punctuation.

g. productCost = productPrice -

10
– Valid

h. productName = “mouse pad” – Valid

i. productCost + 20 =

productPrice
– Not valid. Value on left must represent an

address.

j. productName = 3-inch nails – Not valid. String constant must be placed

within quotes.

k. productName = 43 – Not valid Variable on left is a string but

value on right is numeric.

l. productName = “44” – Valid.

Programming Logic and Design, 9e Solutions 2-7

m. “99” = productName – Not valid. Value on left must represent an

address.

n. productName = brush – Not valid. String constant must appear within

quotes.

o. battery = productName – Not valid. Value on left is not a declared

variable.

p. productPrice = productPrice

– Valid, but trivial.

q. productName = productCost – Valid.

3. Assume that speed = 10 and miles = 5. What is the value of each of the

following expressions?

Answer:

a. speed + 12 - miles * 2 12

b. speed + miles * 3 25

c. (speed + miles) * 3 45

d. speed + speed * miles + miles 65

e. (10 – speed) + miles / miles 1

4. Draw a typical hierarchy chart for a program that produces a monthly bill for a cell

phone customer. Try to think of at least 10 separate modules that might be included.

For example, one module might calculate the charge for daytime phone minutes used.

Answer:

produceCellPhoneBill()

getUsageInfo() getCustomerInfo() printBill()

calcLocalTax() calcFedTax()

computeTextFee() computeCallFee()

calcStateTax()

computeTaxes()

getNightMins() getDaytimeMins()

Programming Logic and Design, 9e Solutions 2-8

5. a. Draw the hierarchy chart and then plan the logic for a program needed by

Hometown Bank. The program determines a monthly checking account fee. Input

includes an account balance and the number of times the account was overdrawn. The

output is the fee, which is 1 percent of the balance minus 5 dollars for each time the

account was overdrawn. Use three modules. The main program declares global

variables and calls housekeeping, detail, and end-of-job modules. The housekeeping

module prompts for and accepts a balances. The detail module prompts for and

accepts the number of overdrafts, computes the fee, and displays the result. The end-

of-job module displays the message Thanks for using this program.

Answer: A sample solution is as follows:

a. Hierarchy chart:

Flowchart:

main program

housekeeping() detail() endOfJob()

Programming Logic and Design, 9e Solutions 2-9

Pseudocode:

start

Declarations

 num balance

 num numOverdrafts

 num fee

 string BALANCE_PROMPT = “Enter the balance: ”

 string OVERDRAFT_PROMPT =

“Enter the number of overdrafts: ”

 string END_LINE = “Thanks for using this program”

 housekeeping()

 detail()

 endOfJob()

stop

housekeeping()

 output BALANCE_PROMPT

 input balance

return

detail()

 output OVERDRAFT_PROMPT

 input numOverdrafts

 fee = (0.01 * balance) – (5 * numOverdrafts)

 output fee

return

endOfJob()

 output END_LINE

Programming Logic and Design, 9e Solutions 2-10

return

b. Revise the banking program so that it runs continuously for any number of

accounts. The detail loop executes continuously while the balance entered is not

negative; in addition to calculating the fee, it prompts the user for and gets the

balance for the next account. The end-of-job module executes after a number less

than 0 is entered for the account balance.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-11

Pseudocode:

start

Declarations

 num balance

 num numOverdrafts

 num fee

 string BALANCE_PROMPT = “Enter the balance: ”

 string OVERDRAFT_PROMPT = “Enter the number

of overdrafts: ”

 string END_LINE = “Thanks for using this program”

 housekeeping()

 while balance >= 0

detailLoop()

 endwhile

 endOfJob()

stop

housekeeping()

 output BALANCE_PROMPT

 input balance

return

detailLoop()

 output OVERDRAFT_PROMPT

 input numOverdrafts

 fee = (0.01 * balance) – (5 * numOverdrafts)

 output fee

 output BALANCE_PROMPT

 input balance

return

endOfJob()

 output END_LINE

return

6. a. Draw the hierarchy chart and then plan the logic for a program that calculates a

person’s body mass index (BMI). BMI is a statistical measure that compares a

person’s weight and height. The program uses three modules. The first prompts a user

for and accepts the user’s height in inches. The second module accepts the user’s

weight in pounds and converts the user’s height to meters and weight to kilograms.

Then, it calculates BMI as weight in kilograms divided by height in meters squared,

and displays the results. There are 2.54 centimeters in an inch, 100 centimeters in a

meter, 453.59 grams in a pound, and 1,000 grams in a kilogram. Use named constants

whenever you think they are appropriate. The last module displays the message End

of job.

Answer: A sample solution is as follows:

Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-12

Flowchart:

Pseudocode:

start

 Declarations

 num heightInches

 num weightPounds

 num heightMeters

 num weightKilos

 num bmi

main program

housekeeping() detail() endOfJob()

Programming Logic and Design, 9e Solutions 2-13

 num CENT_IN_INCH = 2.54

 num CENT_IN_METER = 100

 num GRAM_IN_POUND = 453.59

 num GRAM_IN_KILO = 1000

 string HEIGHT_PROMPT = “Enter the user’s height in

 inches: ”

 string WEIGHT_PROMPT = “Enter the user’s weight in

 pounds: ”

 string END_LINE = “End of job”

 housekeeping()

 detail()

 endOfJob()

stop

housekeeping()

 output HEIGHT_PROMPT

 input heightInches

return

detail()

 output WEIGHT_PROMPT

 input weightPounds

 heightMeters = heightInches * CENT_IN_INCH / CENT_IN_METER

 weightKilos = userPounds * GRAM_IN_POUND / GRAM_IN_KILO

 bmi = weightKilos / (heightMeters * heightMeters)

 output bmi

return

endOfJob()

 output END_LINE

return

b. Revise the BMI-determining program to execute continuously until the user enters

0 for the height in inches.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-14

Pseudocode:

start

 Declarations

 num heightInches

 num weightPounds

 num heightMeters

 num weightKilos

 num bmi

 num CENT_IN_INCH = 2.54

 num CENT_IN_METER = 100

 num GRAM_IN_POUND = 453.59

 num GRAM_IN_KILO = 1000

 string HEIGHT_PROMPT = “Enter the user’s height in

 inches: ”

 string WEIGHT_PROMPT = “Enter the user’s weight in

 pounds: ”

 string END_LINE = “End of job”

Programming Logic and Design, 9e Solutions 2-15

 housekeeping()

 while heightInches <> 0

 detailLoop()

 endwhile

 endOfJob()

stop

housekeeping()

 output HEIGHT_PROMPT

 input heightInches

return

detailLoop()

 output WEIGHT_PROMPT

 input weightPounds

 heightMeters = heightInches * CENT_IN_INCH / CENT_IN_METER

 weightKilos = weightPounds * GRAM_IN_POUND / GRAM_IN_KILO

 bmi = weightKilos / (heightMeters * heightMeters)

 output bmi

 output HEIGHT_PROMPT

 input heightInches

return

endOfJob()

 output END_LINE

return

7. Draw the hierarchy chart and design the logic for a program that calculates service

charges for Hazel’s Housecleaning service. The program contains housekeeping,

detail loop, and end-of-job modules. The main program declares any needed global

variables and constants and calls the other modules. The housekeeping module

displays a prompt for and accepts a customer’s last name. While the user does not

enter ZZZZ for the name, the detail loop accepts the number of bathrooms and the

number of other rooms to be cleaned. The service charge is computed as $40 plus $15

for each bathroom and $10 for each of the other rooms. The detail loop also displays

the service charge and then prompts the user for the next customer’s name. The end-

of-job module, which executes after the user enters the sentinel value for the name,

displays a message that indicates the program is complete.

Answer: A sample solution is as follows:

Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-16

Flowchart:

Pseudocode:

start

 Declarations

 string customerLastName

 num numOfBaths

 num numOfOtherRooms

 num serviceCharge

 num CHARGE_BASE = 40

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-17

 num CHARGE_BATH = 15

 num CHARGE_OTHER_ROOM = 10

 string QUIT = “ZZZZ”

 string NAME_PROMPT = “Enter the customer’s last name: ”

 string BATH_PROMPT = “Enter the number of bathrooms to be

 cleaned: ”

 string ROOMS_PROMPT = “Enter the number of other rooms to

 be cleaned: ”

 string END_LINE = “Thank you for using the program”

 housekeeping()

 while customerLastName <> QUIT

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output NAME_PROMPT

 input customerLastName

return

detailLoop()

 output BATH_PROMPT

 input numOfBaths

 output ROOM_PROMPT

 input numOfOtherRooms

 serviceCharge = CHARGE_BASE + (CHARGE_BATH * numOfBaths) +

 (CHARGE_ROOM * numOfOtherRooms)

 output serviceCharge

 output NAME_PROMPT

 input customerLastName

return

endOfJob()

 output END_LINE

return

8. Draw the hierarchy chart and design the logic for a program that calculates the

projected cost of a remodeling project. Assume that the labor cost is $30 per hour.

Design a program that prompts the user for a number hours projected for the job and

the wholesale cost of materials. The program computes and displays the cost of the

job which is the number of hours times the hourly rate plus the 120% of the wholesale

cost of materials. The program accepts data continuously until 0 is entered for the

number of hours. Use appropriate modules, including one that displays End of

program when the program is finished.

Answer: A sample solution is as follows:

Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-18

Flowchart:

Pseudocode:

start

 Declarations

 string numHours

 num materialsCost

 num jobCost

 num LABOR_COST = 30

 num MATERIAL_INCREASE = 1.2

 string HOURS_PROMPT = “Enter the number of hours

 projected: ”

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-19

 string COST_PROMPT = “Enter the wholesale cost

 of the materials: ”

 string END_LINE = “End of program”

 housekeeping()

 while numHours <> 0

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output HOURS_PROMPT

 input numHours

return

detailLoop()

 output COST_PROMPT

 input materialsCost

 jobCost = (numHours * LABOR_COST) +

 (materialsCost * MATERIAL_INCREASE)

 output jobCost

 output HOURS_PROMPT

 input numHours

return

endOfJob()

 output END_LINE

return

9. a. Draw the hierarchy chart and design the logic for a program needed by the manager

of the Stengel County softball team, who wants to compute slugging percentages for

his players. A slugging percentage is the total bases earned with base hits divided by

the player’s number of at-bats. Design a program that prompts the user for a player

jersey number, the number of bases earned, and the number of at-bats, and then

displays all the data, including the calculated slugging average. The program accepts

players continuously until 0 is entered for the jersey number. Use appropriate

modules, including one that displays End of job after the sentinel is entered for the

jersey number.

Answer: A sample solution is as follows:

Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-20

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-21

Pseudocode:

start

 Declarations

 num jerseyNumber

 num numBasesEarned

 num numAtBats

 num sluggingPercent

 string NUM_PROMPT = “Enter the player’s jersey number: ”

 string BASES_PROMPT = “Enter the number of bases

 earned (hits): ”

 string BATS_PROMPT = “Enter the number of at bats: ”

 string END_LINE = “End of job”

 housekeeping()

 while jerseyNumber <> 0

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output NUM_PROMPT

 input jerseyNumber

return

detailLoop()

 output BASES_PROMPT

 input numBasesEarned

 output BATS_PROMPT

 input numAtBats

 sluggingPercent = numBasesEarned / numAtBats

 output numBasesEarned

 output numAtBats

 output sluggingPercent

 output NUM_PROMPT

 input jerseyNumber

return

endOfJob()

 output END_LINE

return

b. Modify the slugging percentage program to also calculate a player’s on-base

percentage. An on-base percentage is calculated by adding a player’s hits and walks,

and then dividing by the sum of at-bats, walks, and sacrifice flies. Prompt the user for

all the additional data needed, and display all the data for each player.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-22

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-23

Pseudocode:

start

 Declarations

 num jerseyNumber

 num numBasesEarned

Programming Logic and Design, 9e Solutions 2-24

 num numAtBats

 num sluggingPercent

 num numWalks

 num numSacFlies

 num onBasePercent

 string NUM_PROMPT = “Enter the player’s jersey number: ”

 string BASES_PROMPT = “Enter the number of bases

 earned (hits): ”

 string WALKS_PROMPT = “Enter the number of walks: ”

 string BATS_PROMPT = “Enter the number of at bats: ”

 string FLIES_PROMPT = “Enter the number of sacrifice

 flies: ”

 string END_LINE = “End of job”

 housekeeping()

 while jerseyNumber <> 0

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output NUM_PROMPT

 input jerseyNumber

return

detailLoop()

 output BASES_PROMPT

 input numBasesEarned

 output BATS_PROMPT

 input numAtBats

 output WALKS_PROMPT

 input numWalks

 output FLIES_PROMPT

 input numSacFlies

 sluggingPercent = numBasesEarned / numAtBats

 onBasePercent = (numBasesEarned + numWalks) /

 (numAtBats + numWalks + numSacFlies)

 output numBasesEarned, numAtBats, numWalks, numSacFlies,

 sluggingPercent, onBasePercent

 output NUM_PROMPT

 input jerseyNumber

return

endOfJob()

 output END_LINE

return

c. Modify the softball program to also compute a gross production average (GPA) for

each player. A GPA is calculated by multiplying a player’s on-base percentage by

1.8, then adding the player’s slugging percentage, and then dividing by four.

Answer: A sample solution is as follows:

c. Hierarchy chart:

Programming Logic and Design, 9e Solutions 2-25

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-26

Pseudocode:

Programming Logic and Design, 9e Solutions 2-27

start

 Declarations

 num jerseyNumber

 num numBasesEarned

 num numAtBats

 num sluggingPercent

 num numWalks

 num numSacFlies

 num onBasePercent

 num gpa

 string NUM_PROMPT = “Enter the player’s jersey number: ”

 string BASES_PROMPT = “Enter the number of bases

 earned (hits): ”

 string WALKS_PROMPT = “Enter the number of walks: ”

 string BATS_PROMPT = “Enter the number of at bats: ”

 string FLIES_PROMPT = “Enter the number of sacrifice

 flies: ”

 string END_LINE = “End of job”

 housekeeping()

 while jerseyNumber <> 0

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output NUM_PROMPT

 input jerseyNumber

return

detailLoop()

 output BASES_PROMPT

 input numBasesEarned

 output BATS_PROMPT

 input numAtBats

 output WALKS_PROMPT

 input numWalks

 output FLIES_PROMPT

 input numSacFlies

 sluggingPercent = numBasesEarned / numAtBats

 onBasePercent = (numBasesEarned + numWalks) /

 (numAtBats + numWalks + numSacFlies)

 gpa = ((onBasePercent * 1.8) + sluggingPercent) / 4

 output numBasesEarned, numAtBats, numWalks, numSacFlies,

 sluggingPercent, onBasePercent, gpa

 output NUM_PROMPT

 input jerseyNumber

return

endOfJob()

 output END_LINE

return

Programming Logic and Design, 9e Solutions 2-28

10. Draw the hierarchy chart and design the logic for a program for Arnie’s Appliances.

Design a program that prompts the user for a refrigerator model name and the interior

height, width, and depth in inches. Calculate the refrigerator capacity in cubic feet by

first multiplying the height, width, and depth to get cubic inches, and then dividing by

1728 (the number of cubic inches in a cubic foot). The program accepts model names

continuously until “XXX” is entered. Use named constants where appropriate. Also

use modules, including one that displays End of job after the sentinel is entered for

the model name.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

main program

housekeeping() detailLoop() endOfJob()

Programming Logic and Design, 9e Solutions 2-29

Pseudocode:

start

 Declarations

 string modelName

 num height

 num width

 num depth

 num capacity

 num CUBIC_INCHES = 1728

 string MODEL_PROMPT = “Enter the model name: ”

 string HEIGHT_PROMPT = “Enter the interior height: ”

 string WIDTH_PROMPT = “Enter the interior width: ”

 string DEPTH_PROMPT = “Enter the interior depth: ”

Programming Logic and Design, 9e Solutions 2-30

 string END_LINE = “End of job”

 housekeeping()

 while modelName <> “XXX”

 detailLoop()

 endwhile

 endOfJob()

 stop

housekeeping()

 output MODEL_PROMPT

 input modelName

return

detailLoop()

 output WIDTH_PROMPT

 input width

 output HEIGHT_PROMPT

 input height

 output DEPTH_PROMPT

 input depth

 capacity = (height * width * depth) / CUBIC_INCHES

 output capacity

 output MODEL_PROMPT

 input modelNumber

return

endOfJob()

 output END_LINE

return

Performing Maintenance

1. A file named MAINTENANCE02-01.txt is included with your downloadable student

files. Assume that this program is a working program in your organization and that it

needs modifications as described in the comments (lines that begin with two slashes)

at the beginning of the file. Your job is to alter the program to meet the new

specifications.

Answer:

// This program accepts any number of purchase prices

// and computes state sales tax as 6% of the value

// and city sales tax as 2% of the value

// Modify the program so that the user enters

// the two tax rates

// at the start of the program

start

 Declarations

 num price

 num stateTaxRate

 num cityTaxRate

 num totalTax

 num total

 startUp()

Programming Logic and Design, 9e Solutions 2-31

 while price not equal to 0

 mainLoop()

 endwhile

 finishUp()

stop

startUp()

 output "Enter state tax rate"

 input stateTaxRate

 output "Enter city tax rate"

 input cityTaxRate

 output "Enter a price or 0 to quit"

 input price

return

mainLoop()

 totalTax = price * stateTaxRate + price * cityTaxRate

 total = price + totalTax

 output "Price is " , price, " and total tax is ", totalTax

 output "Total is ", total

 output "Enter a price or 0 to quit"

 input price

return

finishUp()

 output "End of program"

return

Find the Bugs

1. Your downloadable files for Chapter 2 include DEBUG02-01.txt, DEBUG02-02. txt,

and DEBUG02-03.txt. Each file starts with some comments that describe the

problem. Comments are lines that begin with two slashes (//). Following the

comments, each file contains pseudocode that has one or more bugs you must find

and correct.

Answer:

DEBUG02-01

// This pseudocode segment is intended to compute and display

// the average grade of three tests

start

 Declarations

 num test1

 num test2

 num test3

 // test2 was declared twice, and test3 was not declared

 num average

 output "Enter score for test 1 "

 // Closing quote on prompt was missing

Programming Logic and Design, 9e Solutions 2-32

 input test1

 output "Enter score for test 2 "

 input test2

 output "Enter score for test 3 "

 input test3

 average = (test1 + test2 + test3) / 3

 // parentheses are needed; otherwise only test3 is divided

by 3

 output "Average is ", average

 // variable name is average

end

DEBUG02-02

// This pseudocode segment is intended to compute and display

// the average grade of three tests for any number of students.

// The program executes until the user enters a negative value

// for the first test score.

start

 Declarations

 num test1

 num test2

 num test3

 num average

 housekeeping()

 while test1 >= 0

 mainLoop()

 endwhile

 endOfJob()

stop

housekeeping()

 output "Enter score for test 1 or a negative number to quit"

 input test1

 // A value for test1 must be input

return

mainLoop()

 output "Enter score for test 2"

 input test2

 output "Enter score for test 3"

 input test3

 // A value for test3 must be input

 average = (test1 + test2 + test3) / 3

 output "Average is ", average

 output "Enter score for test 1 or a negative number to quit"

 input test1

 // test1 was misspelled

return

endOfJob()

 output "End of program"

Programming Logic and Design, 9e Solutions 2-33

return

DEBUG02-03

// This pseudocode segment is intended to compute and display

// the cost of home ownership for any number of users

// The program ends when a user enters 0 for the mortgage payment

start

 Declarations

 num mortgagePayment

 num utilities

 num taxes

 num upkeep

 num total

 startUp()

 // Method name has uppercase U

 while mortgagePayment not equal to 0

 mainLoop()

 // Method name has lowercase m

 endwhile

 finishUp()

stop

startUp()

 output "Enter your mortgage payment or 0 to quit"

 input mortgagePayment

 // Variable name was misspelled

return

mainLoop()

 output "Enter utilities"

 input utilities

 output "Enter taxes"

 input taxes

 output "Enter amount for upkeep"

 input upkeep

 total = mortgagePayment + utilities + taxes + upkeep

 output "Total is ", total

 output "Enter your mortgage payment or 0 to quit"

 input mortgagePayment

 // The next mortgagePayment must be entered before the mainLoop()

ends

return

finishUp()

 output "End of program"

return

2. Your downloadable files for Chapter 2 include a file named DEBUG02-04.jpg that

contains a flowchart with syntax and/or logical errors. Examine the flowchart and

then find and correct all the bugs.

Answer:

Programming Logic and Design, 9e Solutions 2-34

Game Zone

1. Create a flowchart or pseudocode that shows the logic for a program that generates a

random number, then asks the user to think of a number between 1 and 10. Then

display the randomly generated number so the user can see whether his or her guess

was accurate. (In future chapters you will improve this game so that the user can enter

a guess and the program can determine whether the user was correct.)

Programming Logic and Design, 9e Solutions 2-35

Answer: A sample solution is as follows:

Flowchart:

Pseudocode:
start

 Declarations

 num myRandomNumber

 num guess

 string PROMPT = “Enter a number between 1 and 10: ”

 string END_LINE = “Thank you for playing”

 housekeeping()

 detail()

 endOfJob()

 stop

 housekeeping()

 myRandomNumber = random(10)

 output PROMPT

 input guess

 return

 detail()

 output myRandomNumber

return

endOfJob()

 output END_LINE

return

