Programming Logic and Design, 9th Edition

Chapter 2

Review Questions

1. What does a declaration provide for a variable?
a. a name
b. a data type
c. both of the above
d. none of the above
2. A variable's data type describes all of the following except \qquad .
a. what values the variable can hold
b. the scope of the variable
c. how the variable is stored in memory
d. what operations can be performed with the variable
3. The value stored in an uninitialized variable is \qquad .
a. null
b. garbage
c. compost
d. its identifier
4. The value 3 is a \qquad .
a. numeric variable
b. string variable
c. numeric constant
d. string constant
5. The assignment operator \qquad .
a. is a binary operator
b. has left-to-right associativity
c. is most often represented by a colon
d. two of the above
6. Multiplication has a lower precedence than \qquad .
a. division
b. subtraction
c. assignment
d. none of the above
7. Which of the following is not a term used as a synonym for module?
a. method
b. object
c. procedure
d. subroutine
8. Modularization \qquad .
a. eliminates abstraction
b. reduces overhead
c. facilitates reusability
d. increases the need for correct syntax
9. What is the name for the process of paying attention to important properties while ignoring nonessential details?
```
a. abstraction
```

b. extraction
c. extinction
d. modularization
10. Every module has all of the following except
a. a header
b. local variables
c. a body
d. a return statement
11. Programmers say that one module can \qquad another, meaning that the first module causes the second module to execute.
a. declare
b. define
c. enact
d. call
12. The more that a module's statements contribute to the same job, the greater the
\qquad of the module.
a. structure
b. modularity
c. functional cohesion
d. size
13. In most modern programming languages, a variable or constant that is declared in a module is \qquad in that module.
a. global
b. invisible
c. in scope
d. undefined
14. Which of the following is not a typical housekeeping task?
a. displaying instructions
b. printing summaries
c. opening files
d. displaying report headings
15. Which module in a typical program will execute the most times?
a. the housekeeping module
b. the detail loop
c. the end-of-job module
d. It is different in every program.
16. A hierarchy chart tells you \qquad .
a. which modules call other modules
b. what tasks are to be performed within each program module
c. when a module executes
d. all of the above
17. What are nonexecuting statements that programmers place within code to explain program statements in English?
a. pseudocode
b. trivia
c. user documentation

d. comments

18. Program comments are \qquad .
a. required to create a runnable program
b. a form of external documentation
c. both of the above
d. none of the above
19. Which of the following is valid advice for naming variables?
a. To save typing, make most variable names one or two letters.
b. To avoid conflict with names that others are using, use unusual or unpronounceable names.
c. To make names easier to read, separate long names by using underscores or capitalization for each new word.
d. To maintain your independence, shun the conventions of your organization.
20. A message that asks a user for input is $\mathrm{a}(\mathrm{n})$ \qquad .
a. comment
b. echo
c. prompt
d. declaration

Programming Exercises

1. Explain why each of the following names does or does not seem like a good variable name to you.

Answer:
Answers will vary. A possible solution:
a. stateTaxRate - This is a good variable name.
b. txRt
c. t
d. stateSalesTaxRateValue
e. state tax rate
f. taxRate
g. 1TaxRate
h. moneyCharged

- This is a legal variable name, but cryptic.
- This is a legal variable name, but too short to have much meaning.
- This is a legal variable name and very descriptive, but a little unwieldy.
- This is an illegal variable name because of the embedded spaces.
- This is a good variable name.
- This variable name is illegal because it starts with a digit.
- This is a good variable name, although more could be added to specify if this is a rate, a dollar amount, or a string perhaps indicating " Y " or "N".

2. If productCost and productPrice are numeric variables, and productName is a string variable, which of the following statements are valid assignments? If a statement is not valid, explain why not.

Answer:
a. productCost $=100 \quad-\quad$ Valid
b. productPrice = productCost - Valid
c. productPrice $=$ productName $\quad-$ Not valid. Variables are different data types.
d. productPrice $=$ " 24.95 " \quad Not valid. Variables are different data types.
e. 15.67 = productCost
f. productCost $=\$ 1,35.52$

- Not valid. Value on left cannot be a constant.
- Not valid. Numeric constant cannot have punctuation.
g. productCost $=$ productPrice - - Valid 10
h. productName = "mouse pad" - Valid
i. productCost $+20=$ productPrice
j. productName = 3-inch nails
- Not valid. String constant must be placed within quotes.
k. productName $=43$
- Not valid Variable on left is a string but value on right is numeric.

1. productName $=$ "44"

- Valid.
m. "99" = productName
n. productName = brush
o. battery = productName
p. productPrice = productPrice
q. productName = productCost
- Not valid. Value on left must represent an address.
- Not valid. String constant must appear within quotes.
- Not valid. Value on left is not a declared variable.
- Valid, but trivial.
- Valid.

3. Assume that speed $=10$ and miles $=5$. What is the value of each of the following expressions?

Answer:
a. speed + 12 - miles * $2 \quad 12$
b. speed + miles * $3 \quad 25$
c. (speed + miles) * 3445
d. speed + speed * miles + miles 65
e. (10 - speed) + miles / miles 1
4. Draw a typical hierarchy chart for a program that produces a monthly bill for a cell phone customer. Try to think of at least 10 separate modules that might be included. For example, one module might calculate the charge for daytime phone minutes used.

Answer:

5. a. Draw the hierarchy chart and then plan the logic for a program needed by Hometown Bank. The program determines a monthly checking account fee. Input includes an account balance and the number of times the account was overdrawn. The output is the fee, which is 1 percent of the balance minus 5 dollars for each time the account was overdrawn. Use three modules. The main program declares global variables and calls housekeeping, detail, and end-of-job modules. The housekeeping module prompts for and accepts a balances. The detail module prompts for and accepts the number of overdrafts, computes the fee, and displays the result. The end-of-job module displays the message Thanks for using this program.

Answer: A sample solution is as follows:

a. Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            num balance
            num numOverdrafts
            num fee
            string BALANCE PROMPT = "Enter the balance: "
            string OVERDRAFT_PROMPT =
                            "Enter the number of overdrafts: "
            string END_LINE = "Thanks for using this program"
        housekeeping()
        detail()
        endOfJob()
stop
housekeeping()
        output BALANCE_PROMPT
        input balance
    return
detail()
    output OVERDRAFT PROMPT
    input numOverdrafts
    fee = (0.01 * balance) - (5 * numOverdrafts)
    output fee
return
endOfJob()
    output END_LINE
```

return
b. Revise the banking program so that it runs continuously for any number of accounts. The detail loop executes continuously while the balance entered is not negative; in addition to calculating the fee, it prompts the user for and gets the balance for the next account. The end-of-job module executes after a number less than 0 is entered for the account balance.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            num balance
            num numOverdrafts
            num fee
            string BALANCE PROMPT = "Enter the balance: "
            string OVERDRAFT_PROMPT = "Enter the number
                                    of overdrafts: "
            string END_LINE = "Thanks for using this program"
    housekeeping()
    while balance >= 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output BALANCE_PROMPT
    input balance
return
detailLoop()
    output OVERDRAFT_PROMPT
    input numOverdrafts
    fee = (0.01 * balance) - (5 * numOverdrafts)
    output fee
    output BALANCE_PROMPT
    input balance
return
endOfJob()
    output END_LINE
return
```

6. a. Draw the hierarchy chart and then plan the logic for a program that calculates a person's body mass index (BMI). BMI is a statistical measure that compares a person's weight and height. The program uses three modules. The first prompts a user for and accepts the user's height in inches. The second module accepts the user's weight in pounds and converts the user's height to meters and weight to kilograms. Then, it calculates BMI as weight in kilograms divided by height in meters squared, and displays the results. There are 2.54 centimeters in an inch, 100 centimeters in a meter, 453.59 grams in a pound, and 1,000 grams in a kilogram. Use named constants whenever you think they are appropriate. The last module displays the message End of job.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            num heightInches
            num weightPounds
            num heightMeters
            num weightKilos
            num bomi
```

```
                    num CENT IN INCH = 2.54
                    num CENT_IN_METER = 100
                    num GRAM_IN_POUND = 453.59
                    num GRAM_IN_KILO = 1000
                    string HEIGHT_PROMPT = "Enter the user's height in
                    inches: "
                    string WEIGHT_PROMPT = "Enter the user's weight in
                    pounds: "
                    string END_LINE = "End of job"
        housekeeping()
        detail()
        endOfJob()
stop
housekeeping()
        output HEIGHT_PROMPT
        input heightInches
return
detail()
    output WEIGHT_PROMPT
    input weightPounds
    heightMeters = heightInches * CENT_IN_INCH / CENT_IN_METER
    weightKilos = userPounds * GRAM_IN_POŪND / GRAM_IN__KİLO
    bmi = weightKilos / (heightMeters * heightMeters)
    output bmi
return
endOfJob()
    output END_LINE
return
```

b. Revise the BMI-determining program to execute continuously until the user enters 0 for the height in inches.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            num heightInches
            num weightPounds
            num heightMeters
            num weightKilos
            num bmi
            num CENT_IN_INCH = 2.54
            num CENT_IN_METER = 100
            num GRAM 'IN -}\mathrm{ POUND = 453.59
            num GRAM_IN_KILO = 1000
            string HEIGHT_PROMPT = "Enter the user's height in
                        inches: "
                    string WEIGHT_PROMPT = "Enter the user's weight in
                                    pounds: "
    string END_LINE = "End of job"
```

```
    housekeeping()
    while heightInches <> 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output HEIGHT_PROMPT
    input heightInches
return
detailLoop()
    output WEIGHT_PROMPT
    input weightPounds
    heightMeters = heightInches * CENT_IN_INCH / CENT_IN_METER
    weightKilos = weightPounds * GRAM_IN_POUND / GRAM_IN_KILO
    bmi = weightKilos / (heightMeters }\mp@subsup{}{}{-
    output bmi
    output HEIGHT_PROMPT
    input heightInches
return
endOfJob()
    output END_LINE
return
```

7. Draw the hierarchy chart and design the logic for a program that calculates service charges for Hazel's Housecleaning service. The program contains housekeeping, detail loop, and end-of-job modules. The main program declares any needed global variables and constants and calls the other modules. The housekeeping module displays a prompt for and accepts a customer's last name. While the user does not enter ZZZZ for the name, the detail loop accepts the number of bathrooms and the number of other rooms to be cleaned. The service charge is computed as $\$ 40$ plus $\$ 15$ for each bathroom and $\$ 10$ for each of the other rooms. The detail loop also displays the service charge and then prompts the user for the next customer's name. The end-of-job module, which executes after the user enters the sentinel value for the name, displays a message that indicates the program is complete.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            string customerLastName
            num numOfBaths
            num numOfOtherRooms
            num serviceCharge
            num CHARGE_BASE = 40
```

```
            num CHARGE BATH = 15
                num CHARGE_OTHER ROOM = 10
                string QUIT = "Z\overline{ZZZ"}
                string NAME_PROMPT = "Enter the customer's last name: "
                string BATH_PROMPT = "Enter the number of bathrooms to be
                    cleaned: "
                    string ROOMS_PROMPT = "Enter the number of other rooms to
                    be cleaned: "
                string END_LINE = "Thank you for using the program"
    housekeeping()
    while customerLastName <> QUIT
                    detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output NAME PROMPT
    input customerLastName
return
detailLoop()
    output BATH PROMPT
    input numOf\overline{B}aths
    output ROOM_PROMPT
    input numOfÖtherRooms
    serviceCharge = CHARGE_BASE + (CHARGE_BATH * numOfBaths) +
                            (CHA\overline{RGE_ROOM * numOf}OtherRooms)
    output serviceCharge
    output NAME_PROMPT
    input customerLastName
return
endOfJob()
    output END_LINE
return
```

8. Draw the hierarchy chart and design the logic for a program that calculates the projected cost of a remodeling project. Assume that the labor cost is $\$ 30$ per hour. Design a program that prompts the user for a number hours projected for the job and the wholesale cost of materials. The program computes and displays the cost of the job which is the number of hours times the hourly rate plus the 120% of the wholesale cost of materials. The program accepts data continuously until 0 is entered for the number of hours. Use appropriate modules, including one that displays End of program when the program is finished.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
        string numHours
        num materialsCost
        num jobCost
        num LABOR COST = 30
        num MATERIAL_INCREASE = 1.2
        string HOURS_PROMPT = "Enter the number of hours
        projected: "
```

```
                string COST_PROMPT = "Enter the wholesale cost
                    of the materials: "
                string END_LINE = "End of program"
    housekeeping()
    while numHours <> 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output HOURS_PROMPT
    input numHours
return
detailLoop()
    output COST_PROMPT
    input materíialsCost
    jobCost = (numHours * LABOR_COST) +
                (materialsCost * MATERIAL_INCREASE)
    output jobCost
    output HOURS_PROMPT
    input numHours
return
endOfJob()
    output END_LINE
return
```

9. a. Draw the hierarchy chart and design the logic for a program needed by the manager of the Stengel County softball team, who wants to compute slugging percentages for his players. A slugging percentage is the total bases earned with base hits divided by the player's number of at-bats. Design a program that prompts the user for a player jersey number, the number of bases earned, and the number of at-bats, and then displays all the data, including the calculated slugging average. The program accepts players continuously until 0 is entered for the jersey number. Use appropriate modules, including one that displays End of job after the sentinel is entered for the jersey number.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
                    num jerseyNumber
                    num numBasesEarned
                    num numAtBats
                    num sluggingPercent
                    string NUM_PROMPT = "Enter the player's jersey number: "
                    string BASESS_PROMPT = "Enter the number of bases
                                    earned (hits): "
                    string BATS_PROMPT = "Enter the number of at bats: "
            string END_\overline{LINE = "End of job"}
    housekeeping()
    while jerseyNumber <> 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output NUM_PROMPT
    input jersēyNumber
return
detailLoop()
    output BASES_PROMPT
    input numBasēsEarned
    output BATS_PROMPT
    input numAt\overline{Bats}
    sluggingPercent = numBasesEarned / numAtBats
    output numBasesEarned
    output numAtBats
    output sluggingPercent
    output NUM_PROMPT
    input jerseyNumber
return
endOfJob()
    output END_LINE
return
```

b. Modify the slugging percentage program to also calculate a player's on-base percentage. An on-base percentage is calculated by adding a player's hits and walks, and then dividing by the sum of at-bats, walks, and sacrifice flies. Prompt the user for all the additional data needed, and display all the data for each player.

Answer: A sample solution is as follows:

b. Hierarchy chart:

Flowchart:

Pseudocode:

```
start
```

 Declarations
 num jerseyNumber
 num numBasesEarned
    ```
                    num numAtBats
                    num sluggingPercent
                    num numWalks
                    num numSacFlies
                    num onBasePercent
                    string NUM_PROMPT = "Enter the player's jersey number: "
                    string BASES_PROMPT = "Enter the number of bases
                    earned (hits): "
                    string WALKS_PROMPT = "Enter the number of walks: "
                    string BATS_PROMPT = "Enter the number of at bats: "
                    string FLIES_PROMPT = "Enter the number of sacrifice
                    flies: "
                    string END_LINE = "End of job"
    housekeeping()
    while jerseyNumber <> 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output NUM_PROMPT
    input jerseyNumber
return
detailLoop()
    output BASES_PROMPT
    input numBaseseEarned
    output BATS_PROMPT
    input numAt\overline{B}ats
    output WALKS_PROMPT
    input numWalks
    output FLIES_PROMPT
    input numSac\overline{Flies}
    sluggingPercent = numBasesEarned / numAtBats
    onBasePercent = (numBasesEarned + numWalks) /
                                    (numAtBats + numWalks + numSacFlies)
    output numBasesEarned, numAtBats, numWalks, numSacFlies,
                sluggingPercent, onBasePercent
    output NUM_PROMPT
    input jerseyNumber
return
endOfJob()
    output END_LINE
return
```

c. Modify the softball program to also compute a gross production average (GPA) for each player. A GPA is calculated by multiplying a player's on-base percentage by 1.8 , then adding the player's slugging percentage, and then dividing by four.

Answer: A sample solution is as follows:

c. Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            num jerseyNumber
            num numBasesEarned
            num numAtBats
            num sluggingPercent
            num numWalks
            num numSacFlies
            num onBasePercent
            num gpa
            string NUM_PROMPT = "Enter the player's jersey number: "
            string BASES_PROMPT = "Enter the number of bases
                    earned (hits): "
            string WALKS PROMPT = "Enter the number of walks: "
            string BATS_PROMPT = "Enter the number of at bats: "
            string FLIES_PROMPT = "Enter the number of sacrifice
                                    flies: "
            string END_LINE = "End of job"
    housekeeping()
    while jerseyNumber <> 0
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output NUM_PROMPT
    input jerseyNumber
return
detailLoop()
    output BASES_PROMPT
    input numBasesEarned
    output BATS_PROMPT
    input numAt\overline{Bats}
    output WALKS_PROMPT
    input numWalks
    output FLIES_PROMPT
    input numSacFlies
    sluggingPercent = numBasesEarned / numAtBats
    onBasePercent = (numBasesEarned + numWalks) /
                            (numAtBats + numWalks + numSacFlies)
    gpa = ((onBasePercent * 1.8) + sluggingPercent) / 4
    output numBasesEarned, numAtBats, numWalks, numSacFlies,
                                    sluggingPercent, onBasePercent, gpa
    output NUM_PROMPT
    input jersēyNumber
return
endOfJob()
    output END_LINE
return
```

10. Draw the hierarchy chart and design the logic for a program for Arnie's Appliances. Design a program that prompts the user for a refrigerator model name and the interior height, width, and depth in inches. Calculate the refrigerator capacity in cubic feet by first multiplying the height, width, and depth to get cubic inches, and then dividing by 1728 (the number of cubic inches in a cubic foot). The program accepts model names continuously until "XXX" is entered. Use named constants where appropriate. Also use modules, including one that displays End of job after the sentinel is entered for the model name.

Answer: A sample solution is as follows:

Hierarchy chart:

Flowchart:

Pseudocode:

```
start
    Declarations
            string modelName
            num height
            num width
            num depth
            num capacity
            num CUBIC INCHES = 1728
            string MO\overline{DEL_PROMPT = "Enter the model name: "}
            string HEIGHT_PROMPT = "Enter the interior height: "
            string WIDTH_\overline{PROMPT = "Enter the interior width: "}
            string DEPTH_PROMPT = "Enter the interior depth: "
```

```
            string END_LINE = "End of job"
        housekeeping()
        while modelName <> "XXX"
            detailLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output MODEL_PROMPT
    input modelName
return
detailLoop()
    output WIDTH_PROMPT
    input width
    output HEIGHT_PROMPT
    input height
    output DEPTH_PROMPT
    input depth
    capacity = (height * width * depth) / CUBIC_INCHES
    output capacity
    output MODEL_PROMPT
    input modelNümber
return
endOfJob()
    output END_LINE
return
```


Performing Maintenance

1. A file named MAINTENANCE02-01.txt is included with your downloadable student files. Assume that this program is a working program in your organization and that it needs modifications as described in the comments (lines that begin with two slashes) at the beginning of the file. Your job is to alter the program to meet the new specifications.

Answer:

```
// This program accepts any number of purchase prices
// and computes state sales tax as 6% of the value
// and city sales tax as 2% of the value
// Modify the program so that the user enters
// the two tax rates
// at the start of the program
start
    Declarations
        num price
        num stateTaxRate
        num cityTaxRate
        num totalTax
        num total
    startUp()
```

```
    while price not equal to 0
        mainLoop()
    endwhile
    finishUp()
stop
startUp()
    output "Enter state tax rate"
    input stateTaxRate
    output "Enter city tax rate"
    input cityTaxRate
    output "Enter a price or 0 to quit"
    input price
return
mainLoop()
    totalTax = price * stateTaxRate + price * cityTaxRate
    total = price + totalTax
    output "Price is " , price, " and total tax is ", totalTax
    output "Total is ", total
    output "Enter a price or 0 to quit"
    input price
return
finishUp()
    output "End of program"
return
```


Find the Bugs

1. Your downloadable files for Chapter 2 include DEBUG02-01.txt, DEBUG02-02. txt, and DEBUG02-03.txt. Each file starts with some comments that describe the problem. Comments are lines that begin with two slashes (//). Following the comments, each file contains pseudocode that has one or more bugs you must find and correct.

Answer:

DEBUG02-01

```
// This pseudocode segment is intended to compute and display
// the average grade of three tests
start
    Declarations
        num test1
        num test2
        num test3
            // test2 was declared twice, and test3 was not declared
        num average
    output "Enter score for test 1 "
        // Closing quote on prompt was missing
```

```
        input test1
output "Enter score for test 2 "
input test2
output "Enter score for test 3 "
input test3
average = (test1 + test2 + test3) / 3
    // parentheses are needed; otherwise only test3 is divided
by 3
    output "Average is ", average
        // variable name is average
end
```


DEBUG02-02

```
// This pseudocode segment is intended to compute and display
// the average grade of three tests for any number of students.
// The program executes until the user enters a negative value
// for the first test score.
start
    Declarations
        num test1
        num test2
        num test3
        num average
    housekeeping()
    while test1 >= 0
            mainLoop()
    endwhile
    endOfJob()
stop
housekeeping()
    output "Enter score for test 1 or a negative number to quit"
    input test1
        // A value for test1 must be input
return
mainLoop()
    output "Enter score for test 2"
    input test2
    output "Enter score for test 3"
    input test3
        // A value for test3 must be input
    average = (test1 + test2 + test3) / 3
    output "Average is ", average
    output "Enter score for test 1 or a negative number to quit"
    input test1
        // test1 was misspelled
return
endOfJob()
    output "End of program"
```

return

DEBUG02-03

```
// This pseudocode segment is intended to compute and display
// the cost of home ownership for any number of users
// The program ends when a user enters 0 for the mortgage payment
start
    Declarations
        num mortgagePayment
        num utilities
        num taxes
        num upkeep
        num total
    startUp()
        // Method name has uppercase U
    while mortgagePayment not equal to 0
        mainLoop()
            // Method name has lowercase m
    endwhile
    finishUp()
stop
startUp()
    output "Enter your mortgage payment or 0 to quit"
    input mortgagePayment
        // Variable name was misspelled
return
mainLoop()
    output "Enter utilities"
    input utilities
    output "Enter taxes"
    input taxes
    output "Enter amount for upkeep"
    input upkeep
    total = mortgagePayment + utilities + taxes + upkeep
    output "Total is ", total
    output "Enter your mortgage payment or 0 to quit"
    input mortgagePayment
        // The next mortgagePayment must be entered before the mainLoop()
ends
return
finishUp()
    output "End of program"
return
```

2. Your downloadable files for Chapter 2 include a file named DEBUG02-04.jpg that contains a flowchart with syntax and/or logical errors. Examine the flowchart and then find and correct all the bugs.

Answer:
// Program prompts users for names and quantities for a $\$ 2.00$ product and displays total for each user until "XXX" is entered

Game Zone

1. Create a flowchart or pseudocode that shows the logic for a program that generates a random number, then asks the user to think of a number between 1 and 10. Then display the randomly generated number so the user can see whether his or her guess was accurate. (In future chapters you will improve this game so that the user can enter a guess and the program can determine whether the user was correct.)

Answer: A sample solution is as follows:

Flowchart:

Pseudocode:

```
start
```

 Declarations
 num myRandomNumber
 num guess
 string PROMPT = "Enter a number between 1 and 10: "
 string END_LINE = "Thank you for playing"
 housekeeping()
 detail()
 endOfJob()
 stop
housekeeping()
myRandomNumber = random(10)
output PROMPT
input guess
return
detail()
output myRandomNumber
return
endOfJob ()
output END LINE
return

