2 [J LIMITS AND DERIVATIVES

21 The Tangent and Velocity Problems

1. (a) Using P(15, 250), we construct the following table:

t Q slope = mpg
5| (5,694) | 8280 — 24 — 444

10| (10,444) | 444=250 — _ 194 383

10—-15 5

20| (20,111) | 11=280 — 139 _ o973

20—-15 5

25| (25,28) | =20 — 22 — 999

30 | (30,0) 9280 — 230 — _16.6

30—15

(b) Using the values of ¢ that correspond to the points closest to P (t = 10 and ¢t = 20), we have

—38.84(-27.8)
3 = —-33.3
(c) From the graph, we can estimate the slope of the 2001
_ 6501 _~-—approximate
tangent line at P to be =22 = —33.3. 6004 graph of function
5507 approximate
- 5007 tangent line
£ 4501
T, 400
T 3501
3001
2501 30 \°
2001
1501 L
100
501 f—9—]
0 S0 15 20 25 10
t (minutes)
2. (a) (i) On the interval [0, 40], slope = %30438 =99.
. . 22 — 4
(ii) On the interval [10, 20], slope = 5622 — 4559 = 106.3.
20 — 10
(iii) On the interval [20, 30], slope = 7652’2 — 2222 =91.4.

The slopes represent the average number of steps per minute the student walked during the respective time intervals.

(b) Averaging the slopes of the secant lines corresponding to the intervals immediately before and after ¢ = 20, we have

106.3 +91.4
2

The student’s walking pace is approximately 99 steps per minute at 3:20 PM.

= 98.85
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3@y =, P2 1)

(b) The slope appears to be 1.

(c) Using m = 1, an equation of the tangent line to the

° Qz, 1/ ~ 2) mre curve at P(2, —1)isy — (—1) = 1(z — 2), or
G| 15 | @5-2 2
G | 1.9 | (1.9,-1.111111) | 1.111111 y=z-3
(i) | 1.99 (1.99,—-1.010101) 1.010101
(iv) | 1.999 | (1.999,—1.001001) | 1.001001
) | 2.5 (2.5, —0.666 667) 0.666 667
ovi) | 21 | (2.1,-0.909001) | 0.909091
(vii) | 2.01 (2.01,—-0.990099) 0.990099
(viii) | 2.001 | (2.001,—0.999001) | 0.999001
4. (a) y = cosmzx, P(0.5,0) (b) The slope appears to be —.
x Q mpo (©)y—0=—m(x—0.5) or y = —7x + 3.
(l) 0 0.1) -2 (d) < \__—tangent line
(i) | 04 (0.4,0.309017) —3.090170 1
(i) | 0.49 (0.49,0.031411) —3.141076
(iv) | 0.499 | (0.499,0.003142) —3.141587
™ |1 (1,-1) 2 0 b
(vi) | 0.6 (0.6, —0.309017) —3.090170 ;eia(f)l;ﬁgexail
(vii) | 0.51 (0.51,—0.031411) —3.141076
(viii) | 0.501 | (0.501,—0.003142) | —3.141587

5. (a) y = y(t) = 275 — 16t>. Att = 4,y = 275 — 16(4)* = 19. The average velocity between times 4 and 4 + h is
y(4+h) —y(4)  [275—16(4+h)’] =19  —128h — 16h>

(A+h)—4 h h
h=0.1, Vayg = —129.6 ft /s

Vavg = =—-128—16h ifh#0
(1) 0.1 seconds:

(ii) 0.05 seconds:  h = 0.05, vave = —128.8 ft/s
(iii) 0.01 seconds:  h = 0.01, vavg = —128.16 ft/s

(b) The instantaneous velocity when ¢ = 4 (h approaches 0) is —128 ft/s.

6. (a) y = y(t) = 10t — 1.86t%. Att =1,y = 10(1) — 1.86(1) = 8.14. The average velocity between times 1 and 1 + h is

y(1+h) —y(1)  [10(1+h) —1.86(1+h)’] —8.14  6.28h — 1.86h>
(1+h)—1 h N h

=6.28 — 1.86h, ifh # 0.

Vavg =

(1) [1,2): h =1, vavg = 4.42m/s (i) [1,1.5]: h = 0.5, Vavg = 5.35 m/s

(iii) [1,1.1]): o = 0.1, vayg = 6.094 m/s (iv) [1,1.01): h = 0.01, vayg = 6.2614 m/s
(v) [1,1.001]): h = 0.001, Vavg = 6.27814 m/s

(b) The instantaneous velocity when ¢t = 1 (h approaches 0) is 6.28 m/s.
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SECTION 2.1
7. (@) (i) On the interval [2, 4], Vavg = (‘2 ;( ) _ 192 o 206 _ 99 3 fi/s.
(ii) On the interval [3, 4] , Vavg = (‘2 2(3) 2 - 465 _ 307 fi/s,
. 124.8 — 79.2
(iil) On the interval [4, 5], vavg = (55)) Z( ) _ 81 ™2 _ 45.6 ft/s.
. . 176.7 — 79.2
(iv) On the interval [4, 6], vave = (625 Z( ) 176 72 792 _ 48.75 /s,
(b) Using the points (2, 16) and (5, 105) from the approximate 185
tangent line, the instantaneous velocity at ¢ = 3 is about [
1404
106—-16 89 i
——5 3 /2 29.7 ft /s. 00l
60 1
201

THE TANGENT AND VELOCITY PROBLEMS U

0 1 2 3 4 5 61

5(2) —s(1)

8. (a) (i) s = s(t) = 2sinnt + 3 cosnt. On the interval [1, 2], vavg = 51 = 1 =6cm/s
(ii) On the interval [1,1.1], vavg = s(1) = s(1) ~ —3471 — (=3) = —4.71 cm/s.
1.1-1 0.1
. _ s(1.01) —s(1) _ —3.0613—(=3) _
(iil) On the interval [1,1.01], vavg = o1~ 001 = —6.13 cm/s.
. . s(1.001) — s(1) _ —3.00627 — (—3)
h 1[1,1.001], vaye = ~ =—6.2 .
(iv) On the interval [1,1.001], vavg 1001 =1 0.001 6.27 cm/s
(b) The instantaneous velocity of the particle when ¢ = 1 appears to be about —6.3 cm/s.
9. (a) For the curve y = sin(107/x) and the point P(1,0):
x Q mpQ x Q mpQ
2 | (2,0 0 0.5 | (0.5,0) 0
1.5 | (1.5,0.8660) 1.7321 0.6 | (0.6,0.8660) —2.1651
1.4 | (1.4,-0.4339) | —1.0847 0.7 | (0.7,0.7818) —2.6061
1.3 | (1.3,-0.8230) | —2.7433 0.8 | (0.8,1) -5
1.2 | (1.2,0.8660) 4.3301 0.9 | (0.9,—0.3420) 3.4202
1.1 | (1.1,-0.2817) | —2.8173

(b)

As z approaches 1, the slopes do not appear to be approaching any particular value.

1

\“A
W\

0.5

-1

We see that problems with estimation are caused by the frequent

oscillations of the graph. The tangent is so steep at P that we need to

take x-values much closer to 1 in order to get accurate estimates of

its slope.
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(c) If we choose = 1.001, then the point @ is (1.001, —0.0314) and mpg =~ —31.3794. If z = 0.999, then Q is
(0.999,0.0314) and mpg = —31.4422. The average of these slopes is —31.4108. So we estimate that the slope of the

tangent line at P is about —31.4.

2.2 The Limit of a Function

1. As z approaches 2, f(x) approaches 5. [Or, the values of f(z) can be made as close to 5 as we like by taking x sufficiently
close to 2 (but = # 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) = 3.

2. As x approaches 1 from the left, f(z) approaches 3; and as x approaches 1 from the right, f(z) approaches 7. No, the limit

does not exist because the left- and right-hand limits are different.
3. (a) lim3 f(z) = co means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x

sufficiently close to —3 (but not equal to —3).

(b) lim+ f(z) = —oo means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to 4
x—4
through values larger than 4.

4. (a) As x approaches 2 from the left, the values of f(z) approach 3, s0 lim f(z) = 3.
Tx—2"

(b) As x approaches 2 from the right, the values of f(z) approach 1,s0 lim f(z)=1.

Lot
() lir% f(x) does not exist since the left-hand limit does not equal the right-hand limit.
(d) Whenz =2,y = 3,s0 f(2) = 3.

(e) As x approaches 4, the values of f(z) approach 4, so lirr}1 flx)=4.

(f) There is no value of f(z) when x = 4, so f(4) does not exist.

5. (a) As x approaches 1, the values of f(x) approach 2, so lim1 flx)=2.

(b) As x approaches 3 from the left, the values of f(z) approach 1, so lim f(z) = 1.

x—3~

(c) As x approaches 3 from the right, the values of f(x) approach 4, so lim+ f(z) =4.

r—3

(d) lirré f(z) does not exist since the left-hand limit does not equal the right-hand limit.

(e) Whenz = 3,y = 3,s0 f(3) = 3.

6. (a) h(x) approaches 4 as x approaches —3 from the left, so lim h(x) =4.

T——3"

(b) h(z) approaches 4 as x approaches —3 from the right, so  lim . h(z) = 4.

r——3
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(c) linil3 h(z) = 4 because the limits in part (a) and part (b) are equal.

(d) A(—3) is not defined, so it doesn’t exist.

(e) h(x) approaches 1 as x approaches 0 from the left, so lim h(z) = 1.

x—0—

(f) h(zx) approaches —1 as x approaches 0 from the right, so lim h(z) = —1.

z—0

(g lin(l) h(z) does not exist because the limits in part (e) and part (f) are not equal.

(h) h(0) = 1 since the point (0, 1) is on the graph of h.

(i) Since lim h(z) =2and lim h(z) = 2, we have lim h(z) = 2.
r—27

r—2+ T—
(j) h(2) is not defined, so it doesn’t exist.

(k) h(x) approaches 3 as z approaches 5 from the right, so lim+ h(z) = 3.
r—5

(1) h(x) does not approach any one number as x approaches 5 from the left, so lim h(z) does not exist.

r—5"

. (@ lim g(z) # lim+ g(z), so lin}l g(z) does not exist. However, there is a point on the graph representing g(4).
r—4— rz—4 z—

Thus, a = 4 satisfies the given description.

(b) lim g(z) = lim g(z),so lin}_) g(x) exists. However, g(5) is not defined. Thus, a = 5 satisfies the given description.
x—5" xT—

r—5
(c) From part (a), a = 4 satisfies the given description. Also, lim g(z) and lirn+ g(z) exist, but lim g(x) # lim+ g(x).
x—2" r—2 rx—2~ r—2

Thus, lir% g(z) does not exist, and a = 2 also satisfies the given description.
z—

(d) lim+ g(xz) = g(4),but lim g(x) # g(4). Thus, a = 4 satisfies the given description.
r—4 T—4—

. (a) Ilinj3 A(z) = 0 (b) xlg;lﬁ A(z) = —oc0
©) wligi A(z) = 00 (d) Ilirrjl A(z) = —o0
(e) The equations of the vertical asymptotes are x = —3,x = —1 and = = 2.
(@) lim_ f(z) = oo (b) lim_ f(z) = oo (© lim f(z) = oo
(@ lim f(x) = —oo (@ lim f(x) = oo
(f) The equations of the vertical asymptotes are x = —7,x = —3,x = 0, and x = 6.
lim f(t) = 150 mg and lim+ f(t) = 300 mg. These limits show that there is an abrupt change in the amount of drug in

t—12 t—12
the patient’s bloodstream at ¢ = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.
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13.

14.

15.

16.
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From the graph of f we see that lim f(z) = 1, but lim+ flz)=—-1,s0
z—0~ z—0

y
J
/ lim f(x) does not exist for a = 0. However, lim f(z) exists for all other

0 1 X T—a
- J( values of a. Thus, lim f(z) exists for all a in (—o0, 0) U (0, 00).
y

2+ r—a

(a) From the graph, lim f(x) = —1.
r—0~

(b) From the graph, lim+ flx)=1.
x—0

(c) Since lim f(z) # 1im+ f(z), lir% f(z) does not exist.
z—0— z—0 T—

(a) From the graph, lim f(z) = —2.
x—0—

(b) From the graph, lirn+ f(z)=1.
x—0

(c) Since lim f(z) # lim+ f(z), lir% f(z) does not exist.
r—0— x—0 r—

lim f(x) =3, linll+ fx)=0, f1)=2

x—1—
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From the graph of f we see that lim f(z) = 2, but lirn+ f(z)=1,s0

rx—2"

r—2

lim f(x) does not exist for a = 2. However, lim f(z) exists for all other
r—a

values of a. Thus, lim f(z) exists for all a in (—o0,2) U (2, 00).

T—a

=5
el/® —2
f(l‘) = el/7 41
y
3
2 o
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\

18. lim f(z)=3, lim f(z)=2, lim f(z)= -1, y
r——3— z——31 r—37 3
lim f(x) =2 f(—3) =2, f(3)=0 ’
z—3t

3 OJ(’

3
[y
2?2 — 3z
19. F = :
9. For f(z) — %
T f(z) T f(z)
3.1 0.508 197 2.9 0.491 525
3.05 0.504132 2.95 0.495798 22 —-3z 1
It appears that lim — =-.
3.01 0.500 832 2.99 0.499 165 e=3 z2—9 2
3.001 0.500083 2.999 0.499917
3.0001 | 0.500008 2.9999 | 0.499992
2?2 — 3z
20. F = :
0. For f(x) PR
z f() | f@)
-2.5 -5 -3.5 7
—2.9 —29 —-3.1 31
—2.95 —59 -3.05 61 It appears that lim+ f(z) = —oo and that
z——3
—2.99 —299 -3.01 301
2 J—
—2.999 —2999 —3.001 3001 lim f(z) = oo, so lim3 9;2 3936 does not exist.
r——3" T—— -
—2.9999 [ —29,999 —3.0001 | 30,001
5t 5 _
21. For f(t) = £ 7 1: 22, Forf(h):w#:
t f(t) t f(t) h f(h) h f(h)
0.5 22.364 988 -0.5 1.835830 0.5 131.312 500 -0.5 48.812 500
0.1 6.487213 —0.1 3.934693 0.1 88.410100 —-0.1 72.390100
0.01 5.127110 —0.01 4.877058 0.01 80.804 010 —0.01 79.203 990
0.001 5.012521 —0.001 4.987521 0.001 80.080 040 —0.001 79.920 040
0.0001 5.001 250 —0.0001 | 4.998 750 0.0001 80.008 000 —0.0001 | 79.992000
5t 5 _
It appears that }in% ¢ ! =5. It appears that }Lirr}) —(2 + hl?z 32 = 80.
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Inz —1In4
0.5
x f(z) z f()
3.9 0.253178 4.1 0.246 926 0.3
3.99 0.250313 4.01 0.249 688 0.2
3.999 0.250031 4.001 0.249969
3.9999 | 0.250003 4.0001 | 0.249997 0, 4 6

It appears that lirr}1 f(x) = 0.25. The graph confirms that result.

9
24. For f(p) = 11;:—515:
p f(p) p f(p) |
11 0.427397 0.9 0.771 405
~1.01 | 0.582008 —0.99 | 0.617992 0.6
~1.001 | 0.598200 ~0.999 | 0.601800
~1.0001 | 0.599820 —0.9999 | 0.600 180 . |

It appears that lim1 f(p) = 0.6. The graph confirms that result.
p——

sin 36
25. For f(0) = YL

2
0 £9) I hat 1i sin36 1 L5
+£0.1 1.457 847 tappears that g ¢ og — 15
+0.01 1.499575 The graph confirms that result.
+0.001 1.499996

£0.0001 | 1.500000

—0.5 0 0.5
t —
26. For f(t) = > 1:
t 2
t | 0 ! 70 4
0.1 1.746 189 -0.1 1.486 601
0.01 1.622459 —0.01 1.596 556
0.001 1.610734 —0.001 1.608 143
0.0001 | 1.609567 —0.0001 | 1.609308 1 ) |

It appears that tlirr(l) f(t) =~ 1.6094. The graph confirms that result.

27. For f(z) = z™:

x f(z)
0l 0.794 328 It appears that Ilir(r)lJr flx)=1.
0.01 0.954 993 The graph confirms that result. !
0.001 0.993116
0.0001 | 0.999079 0 :
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32,

33.

34,

35.

36.

37.

38.

39.

40.

41.
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For f(z) = «* Inx:

x f(x) 0.5
0.1 —0.023026 It appears that lim f(z) = 0.
0.01 —0.000461 The graph confirms that result. 0 1

0.001 —0.000007
0.0001 | —0.000000

—0.5
z+1 . . .. . S +
L 5= since the numerator is positive and the denominator approaches 0 from the positive side as z — 57.
rz—51T L —
. ox+1 . . . . L _
lim = —oo since the numerator is positive and the denominator approaches 0 from the negative side as z — 5.
z—5— L —
22
lim ——= = oo since the numerator is positive and the denominator approaches 0 through positive values as © — 2.

lim ﬁ = —oo since the numerator is positive and the denominator approaches 0 from the negative side as z — 37.
z—3~ (LT —

lim In(y/Z — 1) = —cosince /z — 1 — 0T asz — 11,
r—1
lim In(sinz) = —oo since sinz — 0 asz — 0.
z—0
1 1 N
lim = secx = —oo since — is positive and secz — —ocoasz — (7/2)7.
s (n/2)F T T

lim «cotxz = —oo since « is positive and cotx — —ocoasz — 7.
Tr—T
2 2
. z° 4+ 2z .42z . . o . ..
lim = oo since the numerator is positive and the denominator approaches 0 through positive

e—122 —2x+1 :aclﬂml(z—l)2

values as x — 1.

2 2
4 4 . . . .
lim ;ri = lim _wrAr —oo since the numerator is positive and the denominator approaches 0
e—3— 22 =2 —3 a3 (x—3)(x+1)

through negative values as x — 3.

lim(Inz? — 272) = —oo since Inx? — —ooand 272 — coas x — 0.
z—0

. 1 . 1
lim (= —Ilnz ) =ocosince = —» coandlnz — —coasz — 07,
z—0t \ T T

The denominator of f(x) = is equal to 0 when x = —2 (and the numerator is not), so x = —2 is the vertical

2¢ +4
asymptote of the function.
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. 2?4+ 1 2241 . 5
42. (a) The denominator of y = 35— 27 (3-22) is equal to zero when (b) U
r=0andx = % (and the numerator is not), so x = 0 and x = 1.5 are
-2 4
vertical asymptotes of the function. ™~
=5
1
43. () f(z) = ey
x f(x) x f(x)
0.5 —1.14 1.5 0.42
From these calculations, it seems that 0.9 —3.69 1.1 3.02
0.99 —33.7 1.01 33.0
li =— li = 00.
Jm f(@) = —ocoand lim f(z)= oo 0.999 | —333.7 1.001 | 333.0
0.9999 —3333.7 1.0001 3333.0
0.99999 | —33,333.7 1.00001 | 33,333.3

(b) If 2 is slightly smaller than 1, then 2* — 1 will be a negative number close to 0, and the reciprocal of x® — 1, that is, f(x),

will be a negative number with large absolute value. So lim f(z) = —oo.
r—1—

If x is slightly larger than 1, then 2 — 1 will be a small positive number, and its reciprocal, f(z), will be a large positive

number. So lim+ f(x) = o0. 10
r—1

e
(c) It appears from the graph of f that L w s

lim f(xz) = —ocoand lim+ f(z) = oc. \ J
rz—1" rx—1
\
-10
44. (a) From the graphs, it seems that 1111% w = —1.5. (b)
o v T f(x)
: ‘ £0.1 —1.493759
| +0.01 —1.499938
-6 1 > 6 0.5 | | 05
40.001 —1.499999
+0.0001 | —1.500000
-2 )
45. (a) Let h(z) = (14 z)"/". (b) 6
x h(z) \
—0.001 2.71964
—0.0001 | 2.71842 » .
—0.00001 2.71830 L J
—0.000001 | 2.71828 -2

0.000001 | 2.71828
0.00001 | 2.71827
0.0001 2.71815
0.001 2.71692 In Section 3.6 we will see that the value of the limit is exactly e.

It appears that lirn0 (14 z)"/* ~ 2.71828, which is approximately e.
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46. (a) 100 100

5 0 5

No, because the calculator-produced graph of f(z) = e” 4 In |z — 4| looks like an exponential function, but the graph of f
has an infinite discontinuity at x = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to

reveal the discontinuity at z = 4.

(b) There isn’t a single graph that shows all the features of f. Several graphs are needed since f looks like In |« — 4] for large

negative values of x and like e” for z > 5, but yet has the infinite discontiuity at z = 4.

6 60
| M ) M )
100 0 40

y

A hand-drawn graph, though distorted, might be better at revealing the main

features of this function. ‘A
X=

0 I X
47. For f(z) = z* — (2°/1000): .
b)
@ (
d f(z) r f(z)
1 0.998 000 0.04 0.000572
0.8 | 0.638259 0.02 | —0.000614
0.6 | 0.358484 0.01 | —0.000907
0.4 | 0.158680 0.005 | —0.000978
0.2 | 0.038851 0.003 | —0.000993
0.1 | 0.008928 0.001 | —0.001000

0.05 | 0.001465

It appears that lin}) f(z) = —0.001.
It appears that lir% flx)=0.

48 h _ tanx — 1z

. For h(z) = —Q

(@) b) It seems that lim h(z) = %.
- 0 (b) lim h(2) = §

1.0 0.55740773
0.5 0.37041992
0.1 0.33467209
0.05 0.333 66700
0.01 0.333346 67
0.005 | 0.33333667
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() Here the values will vary from one
x h(z)
0.001 0.33333350
0.0005 0.33333344
0.0001 0.33333000
0.00005 0.333336 00

0.00001 0.333 00000
0.000001 | 0.00000000

calculator to another. Every calculator will

eventually give false values.

(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

1 04
-1 1 —0. l X
0 0.1 0 0.1
0.4 0.4
-5x107¢ 5x107° -107¢ 107¢
0.2 0.2
6 There appear to be vertical asymptotes of the curve y = tan(2sin ) at z =~ +0.90
U and x ~ +2.24. To find the exact equations of these asymptotes, we note that the
. +  graph of the tangent function has vertical asymptotes at z = 3 + 7n. Thus, we
/\ must have 2sinz = 7 + 7n, or equivalently, sinx = 7 + Zn. Since
i —1 <sinx <1, wemusthave sinz = +7 andso x = +sin~! 7 (corresponding

to  ~ £0.90). Just as 150° is the reference angle for 30°, 7 — sin™* 7 is the reference angle for sin™? Z-So

T = :|:(7r —sin~! %) are also equations of vertical asymptotes (corresponding to x ~ £2.24).

o . 1 1 .
(a) For any positive integer n, if z = — then f(z) = tan - = tan(nm) = 0. (Remember that the tangent function has

period 7.)
(b) For any nonnegative number n, if z = m, then
_ 1 (dn+1)m dnm  w\ T\ T
f(;r)—tanz—tan 1 —tan< 1 +4>—tan(n7r+4)—tan4—l

(c) From part (a), f(z) = 0 infinitely often as z — 0. From part (b), f(x) = 1 infinitely often as z — 0. Thus, lir% tani

does not exist since f(x) does not get close to a fixed number as z — 0.

. . mo _
lim m= lim ————. Asv — ¢, /1 —v2/c2 — 0", and m — occ.

v~ v—e~ /1 — 1)2/62
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SECTION 2.3  CALCULATING LIMITS USING THE LIMITLAWS O 87
2.3 Calculating Limits Using the Limit Laws
1. (a) 1111% [f(z) 4+ 5g(z)] = lirré flx)+ 1111% [5g(x)] [LimitLaw 1]
= lim flx)+5 lim g(x)  [Limit Law 3]
=44+5(—-2)=-6
3
(b) lim [g(x)]° = [ limy g(x)] [Limit Law 6] (©) lim /F(z) = \/g% F(z) [Limit Law 7]
3f(x) _ lim [3f ()]
(d) h == [Limit Law 5] (e) Because the limit of the denominator is 0, we can’t use
=2 g(x) lim g(z)
3 lim /() Limit Law 5. The given limit, hm L5 ( )’ does not exist
T—2 ..
= ———  [Limit Law 3] . .
i% g(x) because the denominator approaches 0 while the
3(4) numerator approaches a nonzero number.
== = —6
lim [g(z) h(z)]
() lim 22 2o [Limit Law 5]
S O TYIC
lim g(z) - lim h(z)
e [Limit Law 4]
hr% f(z)
-2-0
=—0= 0

2. (@) lim [/(2) +g(2)] = lim f(2) + lim g(x) ~[Limit Law 1]
=142
=1
(b) ilir%) f(z) exists, but ilil}) g(x) does not exist, so we cannot apply Limit Law 2 to ilil}) [f(z) —g(z)].
The limit does not exist.

(© lim [f(z)g(z)] = lim f(z)- lim g(z) [LimitLaw 4]

=1-2
=2
()] lin}g’ f(x) =1, but lin}g’ g(z) = 0, so we cannot apply Limit Law 5 to lim3 % The limit does not exist.
Note: lim f@) _ oo since g(x) — 0T asz — 37 and lim f@) _ —oo since g(z) — 0 asx — 3.
r—3~ g(x) z—3+t g ‘T)
Therefore, the limit does not exist, even as an infinite limit.
(e) lim [2°f(z)] = lim z? . lim f(x) [Limit Law 4] ) f(—=1) + limlg(x) is undefined since f(—
=22 (-1) not defined.
=—4
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88 [l CHAPTER2 LIMITS AND DERIVATIVES

3. lim (42* — 5z) = lim (42?) — lim (5) [Limit Law 2]
=4limz? —5lim [3]
r—5 r—5
=4(5%) - 5(5) [10, 9]
=175
4. lim3(2x3 +62% —9) = lim3(2x3) + lim3(6x2) = lim 9 [Limits Laws 1 and 2]
=2 lim 23 +6 lim 22— lim 9 [3]
r——3 r——3 r——3
=2(-3)*+6(-3)> -9 (10, 8]
=-9
5. lin§(1)2 +20)(20% — 5) = lir%(v2 + 20) - lirré(Zv3 —5) [Limit Law 4]

= (lim 2 + lim 21)) (lim 20% — lim 5) [1 and 2]

v—2 v— v— v—

- (lim v? +2 lim v) (2 lim o® — lim 5) 3]

v—2 v— v—2 v—2
= [2° +2(2)] [2(2)® - 5] [10, 9, and 8]
= (8)(11) = 88
lim (3¢2 + 1)
N S o
6 m o i (2 — 5t + 2) [Limit Law 5]
lim 3t% + lim 1
= — i 1 and 2
Tmf? —mbi hmz L and2l
t—T t—T t—T
3lim ¢* 4+ lim 1
— t—7 t—7 [3]
lim¢2 —51lim ¢+ lim 2
t—T7 t—7 t—7
3(7%) +1
= 10,9, and 8
72 —5(7) + 2 [10,9, and 8]
_ s 37
T 16 4
7. lim2 V9 —ud +2u2 = lim2(9 —ud + 2u?) [Limit Law 7]

= /lim 9— lim u3+ lim 2u? [2 and 1]

u——2 u——2 u——2

= /lim 9— lim w3 +2 lim u? 3]

u——2 u——2 u——2
=4/9—(-2)3 +2(-2)2 [8 and 10]
=v25=5

(© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



8.

9.

10.

1.

12.

13.

14.

15.

16.

SECTION 2.3  CALCULATING LIMITS USING THE LIMITLAWS 0TI 89

lim, Vx5 (22% — 32) = lim, Jr+5- lim (22% — 3z) [Limit Law 4]
=3 lirr}n)(x +5) - lim (222 — 3z) [7]
— s/limz+ lim5- (lirn 222 — lim 3x) [1and 2]
r—3 r—3 r—3 r—3
:3limm+lim5-(2hmm2—3limm) [3]
r—3 r—3 r—3 r—3
= 3+5-[2(3%) —3(3)] [9, 8, and 10]
=2-(18—9)=18
(20—’ : .
t1—1>I£11 ( 5t2 +4 ) - (t—» 1512 4+4 ) [Limit Law 6]
lim 2t5 ) 3
_ t——1 [5]
hrn “lim (512 +4)
4\ 3
2t11m t°— thmlt
“\5 hm t2 4 hm 4 [3, 2, and 1]
= (2 _( 1) ) [10 and 8]
(a) The left-hand side of the equation is not defined for z = 2, but the right-hand side is.

(b) Since the equation holds for all = # 2, it follows that both sides of the equation approach the same limit as x — 2, just as

in Example 3. Remember that in finding lim f(x), we never consider = = a.
r—a

lim (3z—7) =3(-2)—7=-13

T——

lim (8 — 32) =8 — 4(6) =5

r—6 2

L tP—2—8 . (t—4)(t+2) . _ _

I T T o T imt+2) =4+2=6

lim a2’ + 3z oy FE@43) @ -3 3
e—3x2—x—12 o>3(x—4)(x+3) 2--31x—-4 -3—-4 7

2
. 5 4 .
hm2 % does not exist since z — 2 — 0, but 2% + 52 +4 — 18 as = — 2.
T— xr —

2
lim M = lim 2z +3) = lim . The last limit does not exist since lim

Sk S N A = - d
soa g2 —x—12 o4 (z—4)(x+3) 21z -—4 z—d— T — oo an

im
r—at T — 4
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7. lim 2 —z-6 i @=3@+2) . oz-3  -2-3 -5 _5
T 322 15 2 et 3z —1)(z +2) eote3z -1 3(-2) -1 -7 7
. 22° 49z -5 . (22 —1)(x+5) . 2r—1 2(-5)—-1 -—-11 11
18. lim == 2 — Jjm —— AT ) = =
w25 T 22— 95 o5 (x—B)(z+5) eo2s5z-5 —5-5  —10 10

19. Factoring > — 27 as the difference of two cubes, we have

. tP—21 .m(t—3)(t2+3t+9)_imt2+3t+9_32+3(3)+9_§
t—3 2 -9  t-3 (t—3)(t+3) = =3 t+3 3+3 6

20. Factoring u® + 1 as the sum of two cubes, we have

u+1 . u+1 1 1

1
lim — = = ] =1 = =
o B 1 e @t D —ut 1) wetiwZ—ut 1l (12— (—1)+1 3

_ a2 _ 2 _ _ 2 _ _
21. lim (h=3) 9:limh 6h +9 9zlimh 6h:limM:hm(h—&—O 6=—6
h—0 h h—0 h r—0  h h—0 h
. 99—z . 9-x 34+Vr (9—96)(3-!-\/_)
22. lim = lim ——=- = —_— lm 3+4Vz)=34+v9=6
2293 _\x 293 vz 3+Vz z~>9 9 — 9( )

i YOFR=3 _ . VOFRh-3 VOFR+3 _ (V9Fh) -3 I CEY R
" h—0 h h—0 h VOI+h+3 }Hoh(\/g_k +3) haoh(\/g+h+3)

—lim—— gim ! -t 1
h=0h(v9+h+3) r=0y9+h+3 3+3 6

. 2z . 22 Vit2+2 . (2-2)(Vz+2+2) . —(z—-2)(Vz+2+2)
24. lim = lim . = lim 5 = lim
2o 42-2 o-2VE42-2 Vrt2+42 o2 (Jz12) —4 2—2 T —2
_ilin[ (Vz+2+42)]=-(Vi+2)=—
1 1 1 1
73 ~ 73 3z 3—x —1 1
25, lim £—3 — lim £—3 . 2% — jim —— % _ — lijm — = =
23 -3 205 x—3 3z o b3z(z—3) o053z 9
L1 240
(=24m) 427t =22 o 20h-2) . 2+(h—2)
2. Jim, h R R = i h = %0 2n(h — 2)

= h —lm+ -1 1
h—02h(h—2)  h—02(h—2) 2(0-2) 4

i W VI o VI VITE VIV (VIEE) - (VB

27. =
e N t VITi+ VIt =0 t(VI+t+v1-1t)
1+ —(1-2) . 2t . 2
= lim = lim =lim ———
=0t (VI+t+v1I—t) =0t (V1+t+vV1—t) t=0/14+t+/1—1
__ 2 _2_
Vi+v1oo2
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29.

30.
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32,

33.

34.

35.
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. 1 1 . 1 1 t+1-1 . 1 1
im(-——)=lmn|({-—-—— | =lm—————=lim—=——=1
t—=0\t 1241 t—o\t t(t+1) t—0 t(t+1) t—ot+1 041

4-VE _ L (- VEE+VE) 16 —

I - -
o106 163 — 2% =16 (162 — 22)(4 + &)  o—16 2(16 — 2)(4 + /)
1 1 1

1
= lim -
=16 (4 ++/2) 16 (4++V16) 16(8) 128

lim —— 2T~ —detd lim —(:1372)2 = lim (x —2)°
eo2xt —322 — 4 252 (22 —4)(224+1) =52 (z+2)(x —2)(z2 + 1)

—im 22 0
Tes2 (x4 2) (22 4+ 1) 4.5
1im( ! —1) —im VA (- VIFD)(1+VT+T) = lim —t
=0 \ty/THt t) =0 t/T+t =0 tE+1(1+V1+1) =0 ty/T+t(14+v1+1)
-1 _ -1 _ 1
=0T+t (1+vVI+t) VI+0(1++1+0) 2
i YEEH9-5 (VaZ+9-5) (Va2 +9+5) i (2? +9) — 25
e—-4  x+4 e—=4  (z+4)(Va2+9+5) e——4 (z+4) (Va2 +9+5)
. z? — 16 . (z+4)(xz —4)
= lim = lim
e=-4 (z+4)(Va2+9+5) -4 (z+4)(VaZ+9+5)
~ lim x—4 . —4-4 -8 4
T ea-a/z21945 I6+9+5 5+5 5
. (z+h)?—2a? . (2® +322h 4 3zh® + h3) — 2° . 3x%h 4+ 3xzh® + h?
lim = lim = lim
h—0 h h—0 h h—0 h
2 2
i PO ABTRANT) (302 4 30k 1 h2) = 342
h—0 h h—0
1 1 2? — (z + h)?
2 2 2.2 2 _ (g2 2 —
lim (x + h) a2 (z+ h)2x — Jim & (z —|—2xh+h):hm h(2z + h)
h—0 h h—0 h h—0 ha?(z + h)? h—0 hz?(z + h)?
_ lim —(2z+h) 22z 2
h—0z2(x +h)2 w222 a3
(@) 15 (b)
z f=z)
—0.001 0.666 166 3
/ —0.0001 0.666616 7 5
1 1 —0.00001 0.666661 7 The limit appears to be 3
L J —0.000001 | 0.666666 2
-05 0.000001 | 0.666667 2
lim x 2 0.00001 | 0.6666717
2—=04/14+3zx—-1 3 0.0001 0.666 716 7
0.001 0.667166 3
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92 O CHAPTER2 LIMITS AND DERIVATIVES
. z VI+3z+1 z(V1+3z+1) . z(V/T+3z+1)
(c) lim . =lim —— =lim ———*~
e—=0\/14+3z—-1 /14+3z+1 a—0 (143z)—-1 @0 3z
= é lim (vI+3z+1) [Limit Law 3]
_1 lim (1 4 3z) + lim 1
~3|Va20 YT
1 . -
:—( /11m1—|—3hmx+l> [1, 3, and 8]
3 x—0 x—0
= %(\/1+3.0+1)
1 2
s+ =3
36. (a) 0.5 (b)
T f(z)
—0.001 0.288699 2
—0.0001 0.2886775
—0.00001 | 0.2886754
| —0.000001 | 0.2886752
0 : 0.000001 | 0.2886751
0.00001 | 0.2886749
i V3FE V3 o 0.0001 | 0.2886727
@=0 z 0.001 0.288651 1
The limit appears to be approximately 0.2887.
(© 1im(v3+x7\/§~v3+m+\/§)—lim Gta)-3 !
20 x V3tz+v3) 0z (V3¥z+V3) =03¥z+43
lir% 1
= I Limit Laws 5 and 1
111%\/3+:E+limox/§ [ ]
= L [7 and 8]
[lim (3 +2) +V3
S S [1,8,and 9]
V3+0++3 o
1
23
37. Let f(x) = —2?, g(z) = 2° cos 207z and h(x) = z*. Then !

—1<cos20mz <1 = —z2<z?cos20mz <z
So since lin}) flz) = lin}) h(z) = 0, by the Squeeze Theorem we have

lirr(l) g(z) =0.
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1

Let f(z) = —va3 + 22, g(x) = Va3 + 22 sin(n/z), and h(z) = V23 + x2. Then

—1<sin(r/z) <1 = —V23+22 <23 +a2sin(n/z) < Va3 +22 = P
-1 1

f(z) < g(z) < h(z). So since ;13%) flz) = ;13}) h(z) = 0, by the Squeeze Theorem

we have lin}) g(z) =0.
P —1

We have lim (42 —9) = 4(4) — 9 = 7 and lini(x2—4x—|—7) =4% —4(4)+7="7. Sincedr —9 < f(z) <2® — 4z + 7

forz >0, lirril f(z) = 7 by the Squeeze Theorem.

We have liml(2x) =2(1) =2and liml(x4 —2?+2)=1* - 1242 = 2. Since 2z < g(z) < 2* — 2? + 2 forall z,
T— T—

lim1 g(z) = 2 by the Squeeze Theorem.

—1<cos(2/z) <1 = —a* <a*cos(2/x) < x*. Since lir% (—z*) = 0 and lim z* = 0, we have
z—

Tr—

lim [* cos(2/z)] = 0 by the Squeeze Theorem.

—1<sin(r/z) <1 = e !l<em™) <l = r/e < Jzem/® < /Te. Since lim+ (v/z/e) = 0and
z—0

lim (y/ze) =0, we have lim [\/5 esm("/x)} = 0 by the Squeeze Theorem.

z—0t x—0

—(x+4) ifz+4<0 | —(z+4) ifaz<—4

z+4 ifx+4>0 r+4 if > —4
o+ 4] =
Thus, lim (jz+4|—2z)= lim (r4+4—-22)= lim (—x+4)=4+4=28and
r——4+t r——4+t z——4+
lim (Jz+4|—-2z)= lim (—(z+4)—2z)= lim (-3z-4)=12—-4=38.
r——4- r——4— PR

The left and right limits are equal, so lim4 (Jz + 4| — 2x) = 8.

| 4 T+ 4 if x4+4>0 x+4 if x> —4
T+ = =
—(z+4+4) ifz+4<0 —(z+4) fz<—4
. |z + 4] . z+4 . z+4 . 1 1
Th 1 — =1 = — =1 — ==and
O 2218 o iv 2018 et 2@t d) a2 2
lim |z +4] im —(z4+4) —(z+4) I -1 1
r——4— 2x + 8 o r——4— 2x + 8 o r——4— 2((E +4) o r——4— 2 o 2
P . .|z +4] .
The left and right limits are different, so lim ——— does not exist.
r——4 21‘—‘,—8
|20° — 2?| = |2°(2z — 1)| = [2?| - |22 — 1| = 2® |22 — 1
2z —1 if 20 —1>0 20 —1 if x>0.5
|2z — 1| = ) = .
—(2z—-1) if2z-1<0 —(2z—-1) ifxz<0.5

So [22° — 2®| = 2®[—(2¢ — 1)] forz < 0.5.

Thus, lim o jm 22l gy, 2o L1
205 223 — 22| T emo05- 22[—(2z —1)]  z—0s- 22 (0.5)2 025
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46. Since |z| = —x for z < 0, we have lim 2~ |z = lim 2-(=2) = lim 2+ _ lim 1=
z——2 242 z——2 24 z——22+ T z——2
. . 1 1 . 1 1 .2 . L
47. Since |z| = —z forz < 0, wehave lim (= —-— ) = lim (= — — ) = lim =, which does not exist since the
z—0- \z |z z—0- \& —& z—0— T
denominator approaches 0 and the numerator does not.
. . 1 1 . 1 1 .
48. Since |z| =z forz > 0,wehave lim (——— )= lim (= — =)= lim 0=0.
z—0+ \ x|z s—0t \Z T w—0+
49. (a) Y (b) (i) Sincesgnz =1forz >0, lim sgnz = lim 1=1.
! z—07+ r—0
(i1) Sincesgnz = —1forz < 0, lim sgn x = lim —1 = —1.

z—0— r—0—
0 x e . . . . .
(iii) Since lim sgnz # lim sgnz, lim sgn z does not exist.
z—0— z—0+ z—0

(iv) Since |sgnz| = 1 for z # 0, lir% |sgnz| = lin})l =1.

—1if sinz <0
50. (a) g(z) = sgn(sinz) = ¢ 0 if sinz =0
1 if sinz >0

(i) lirn+ g(z) = lim+ sgn(sinz) = 1 since sin z is positive for small positive values of z.
z—0 z—0

(i) lim g(z) = lim sgn(sinz) = —1 since sin x is negative for small negative values of x.
z—0— z—0—

(iii) lim g(x) does not exist since lim g(z) # lim g(z).
z—0 z—0Tt r—0~

(@iv) lim+ g(z) = lim sgn(sinz) = —1 since sin z is negative for values of x slightly greater than 7.

T—T T—T

(v) lim g(z) = lim sgn(sinz) = 1 since sin z is positive for values of x slightly less than 7.

T—T T—T

(vi) lim g(z) does not exist since lim+ g(z) # lim g(z).

xr—T
(b) The sine function changes sign at every integer multiple of 7, so the
signum function equals 1 on one side and —1 on the other side of n,

n an integer. Thus, lim g(x) does not exist for a = nm, n an integer.
T—a

- . 2’+z-6 . (z4+3)(x—2)
@Ol )= b T T T e
~ gim EFIE =D e n 25 0ifr — 24
r—2+ xr—2
= lim (z+3)=5
r—2

(ii) The solution is similar to the solution in part (i), but now |z — 2| =2 —z sincex — 2 < 0 ifz — 27.

Thus, lim g(z) = lim —(z + 3) = —5.

r—27 rz—2"
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(b) Since the right-hand and left-hand limits of g at z = 2 () Y /

are not equal, lim g(z) does not exist. 2.5
T—2 \ 2,5)
_'3\ 0 x
3

2241 if z <1
52. (a) f(fv)—{

(x—2)* ifzx>1

lim f(z)= lim (2*4+1)=1>+1=2, lim f(z)= lim (z—2)?=(-1)*=1
rz—1— z—1"

rz—1+ z—1+
(b) Since the right-hand and left-hand limits of f atz =1 () Y
are not equal, lim1 f(z) does not exist. ) \/
0 ‘ ; X

53. For the lim B(t) to exist, the one-sided limits at £ = 2 must be equal. lim B(t) = lim (4—3t)=4—-1=3 and
— t—2— t—2—

lim+B(t): lim+\/t+c:\/2+c. Now3d=+v2+c = 9=2+4c¢c & c=T.
t—2

t—2

54. (a) (i) lir{lﬁ g(z)= lim z=1

r—1—

(ii) lim+ g(z) = lim (2 —2?) =2 —1% = 1. Since lim g(z) = 1 and lim+ g(xz) =1, we have lirn1 g(z) =1.
rx—1 rx—1 T —

z—1t z—1—

Note that the fact g(1) = 3 does not affect the value of the limit.
(iil) When z = 1, g(z) = 3,s0 g(1) = 3.

(v) lim g(z)= lim 2—-2?)=2-22=2—-4= -2
r—2" r—2"

(v) lim g(z)= lim (z—3)=2-3=-1
r—2+ T—2

(vi) lim2 g(x) does not exist since lim g(x) # lim+ g(x).
x— T—27

rx—2
(b) T ifx<l1
3 ifez=1
2—2? fl<z<?2
x—3 if £ >2

g(x) =

55. (a) (i) [z] = —2for—2 <z < —1,s0 lim+[[xﬂ = lim (-2)=-2
T——2

r——2+

(i) [z] = -8for-3 < ax < —2,s0 lim [z] = lim (-3)=-3.

r——2" r——2"

The right and left limits are different, so 111112 [z] does not exist.

(iii) ] = =3 for —3 <z < —2,s0 lirr% . [z] = lirr% . (—3)=-3.
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) (z]=n—1forn—1<z<mn,so lim [z] = lim (n—1)=n—-1.

T—n— T—n—

(i) [z] =nforn <z <n+1,s0 lim+[[a:]]: lim n=n.

r—n r—n

(c) lim [z] exists < a isnot an integer.
r—a

56. (a) See the graph of y = cosx. y
Since —1 < cosz < 0 on [—7, —7/2), we have y = f(x) = [cosz] = —1 ‘ ]’ ‘
on [—1, —7/2). - _% o
Since 0 < cosz < 1 on[—7/2,0) U (0,7 /2], we have f(z) =0
on [—m/2,0) U (0,7/2]. Y
Since —1 < cosz < 0 on (7/2, 7], we have f(x) = —1 on (7/2, 7]. } 4 }
Note that £(0) = 1. - _WL —

(b) () lim f(z)=0and lim f(z)=0,s0 lim f(x)=0.
z—0~ z—0t z—0

(i) Asz — (7/2)7, f(x) — 0, s0 1(11512)7 f(x)=0.

(iii) As z — (7/2)%, f(z) — —1, 50 mﬂl(i,rr?zyr f(z) = —1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim/ ) f(x) does not exist.
(c) lim f(z) exists for all @ in the open interval (—m, 7) except a = —n/2 and a = 7/2.
57. The graph of f(x) = [z] + [—=«] is the same as the graph of g(z) = —1 with holes at each integer, since f(a) = 0 for any
integer a. Thus, lim f(z) = —1 and lim+ f(z)=-1,s0 lir% f(z) = —1. However,
T—27 r—2 r—

f@2) =[]+ [-2] =2+ (=2) = 0,50 lim f(z) # f(2).

v—cT

2
58. lim (Lm /1 — 2—2 > = Lov/1 — 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since L is not defined for v > c.
59. Since p(x) is a polynomial, p(x) = ao + a1z + azx® + - - - 4 a,z™. Thus, by the Limit Laws,
lim p(z) = lim (a0+a1x+a2x2+---+anx”) =agp+ a1 lim x + a2 lim 22 + - - + a,, lim 2"

:a0+a1a+a2a2+"'+avzan :p(a)

Thus, for any polynomial p, lim p(z) = p(a).

60. Letr(z) = p(@) where p(z) and ¢(z) are any polynomials, and suppose that g(a) # 0. Then

q(x)
li — Jim 28 _ 22 PLO) Limit Law 5] = 29 [Exercise 59] —
lim r(z) = lim @) " Ime(® [Limit Law 5] = @ [Exercise 59] = r(a).

r—a
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61. lim [f(x) - 8] = lim F@ =8 ] 2 im IP =8 i@ -1 =10-0=0.

z—1 x—1 z—1 x—1 z—1

Thus,ierllf(m) :il_{nl{[f(x) —8]+38} :illnl[f(x) — 8] +ii_)n118:0+8:8.

Note: The value of lim1 JC(L;B does not affect the answer since it’s multiplied by 0. What’s important is that
T— xTr —

lim f@)—8 exists.

r—1 €T — ]_

62. (a)i%f(m):i%[%-ﬁ] :limLf)-lima:ZZE)-O:O

z—0 T z—0

(b)iiﬂ%@:g% [%x] zlimLf)-iiB%x:UO:O
63. Observe that 0 < f(x) < 2 for all , and iil%o =0= ili% z2. So, by the Squeeze Theorem, ill)T}) flx)=0.
64. Let f(x) = [z] and g(z) = —[x]. Then il_r% f(z) and i{% g(x) do not exist [Example 10]
but lim [£(z) + g(2)] = lim ([o] — [2]) = lim 0 = 0.
65. Let f(x) = H(x) and g(z) = 1 — H(z), where H is the Heaviside function defined in Exercise 1.3.63.

Thus, either f or g is 0 for any value of z. Then lir% f(x) and lir% g(z) do not exist, but lir% [f(z)g(z)] = 1irr})0 =0.

66 lim YO =2 _

\/67x72.\/67x+2'\/37x+1
IHZM—]_ _zﬁ2

V3i—z—1 6—z+2 /3—z+1

(V6= z) -2 Ba+1 (6—1’—4 \/S—x—l—l)
= lim 5 . = lim .

=2 (Foz) 12 VB-a+2| +2\3-ao-1 \B-uz+2
i GOVt VEmedl 1

22—y (Voz+2) 2 oozt2 2

67. Since the denominator approaches 0 as * — —2, the limit will exist only if the numerator also approaches

0 as x — —2. In order for this to happen, we need linilz (3932 +ar+a-+ 3) =0 <

3(-2)>+a(-2)+a+3=0 < 12—-2a+a+3=0 < a=15 Witha = 15, the limit becomes

2 _
g 3152418 L 3@ +(@+3) | 3@+3) _ 3(=2+3) _ 3

A
r——2 72 +x — 2 r——2 (CB — 1)(1’ + 2) z——-2 x—1 —2-1 -3

68. Solution 1: First, we find the coordinates of P and () as functions of . Then we can find the equation of the line determined

by these two points, and thus find the z-intercept (the point R), and take the limit as » — 0. The coordinates of P are (0, ).
The point Q is the point of intersection of the two circles > + y* = 72 and (z — 1)® 4 * = 1. Eliminating y from these

equations,we getr’ —2> =1—(z—-1)? & r’=14+22-1 & z= %rQ. Substituting back into the equation of the
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shrinking circle to find the y-coordinate, we get (%rz)z +yP=r" & y¥=r’1-3r") & y=ry1-13ir2

(the positive y-value). So the coordinates of () are (%TZ, ry/1— irz ) The equation of the line joining P and @ is thus

ry/1—3r2 —r
y—r= W(xfO).We set y = 0 in order to find the z-intercept, and get
1.2 —lTZ(,/l—lrz—l—l)
r=-r 2" -2 ‘ 22(,/1—%“2—&-1)

I
T(/lf%ﬁfl) 1—4r2-1

Now we take the limitas r — 07: lim z = lim 2(,/1—%7"2—&—1): lim 2(\/I+1) =4,

r—0t+ r—0 r—0

So the limiting position of R is the point (4, 0).

Solution 2: We add a few lines to the diagram, as shown. Note that
ZPQS = 90° (subtended by diameter PS). So ZSQR = 90° = LZ0QT
(subtended by diameter OT). It follows that ZOQS = ZTQR. Also

/PSQ =90° — ZSPQ = ZORP. Since AQOS is isosceles, so is T R x
AQTR, implying that QT = T R. As the circle C5 shrinks, the point Q)

plainly approaches the origin, so the point R must approach a point twice

as far from the origin as 7', that is, the point (4, 0), as above.

2.4 The Precise Definition of a Limit

1 If|f(x) — 1] < 0.2,then —0.2 < f(z) —1< 0.2 = 0.8 < f(x) < 1.2. From the graph, we see that the last inequality is

true if 0.7 < z < 1.1, so we can choose 6 = min{1 —0.7,1.1 — 1} = min {0.3,0.1} = 0.1 (or any smaller positive

number).

L If | f(z) — 2| < 0.5,then —0.5 < f(z) —2< 0.5 = 1.5< f(z) < 2.5. From the graph, we see that the last inequality is

true if 2.6 < = < 3.8, so we can take § = min {3 — 2.6,3.8 — 3} = min {0.4,0.8} = 0.4 (or any smaller positive number).
Note that z # 3.

. The leftmost question mark is the solution of /= = 1.6 and the rightmost, v/ = 2.4. So the values are 1.6> = 2.56 and

2.4% = 5.76. On the left side, we need |z — 4| < |2.56 — 4| = 1.44. On the right side, we need |z — 4| < |5.76 — 4| = 1.76.
To satisfy both conditions, we need the more restrictive condition to hold —namely, |z — 4| < 1.44. Thus, we can choose

& = 1.44, or any smaller positive number.

. The leftmost question mark is the positive solution of 2> = %, that is, x = %, and the rightmost question mark is the positive

solution of 22 = %, that is, z = \/g On the left side, we need |z — 1| < ‘% — 1‘ = 0.292 (rounding down to be safe). On

the right side, we need |z — 1| < ‘\/g — 1‘ =2 0.224. The more restrictive of these two conditions must apply, so we choose

6§ = 0.224 (or any smaller positive number).
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5. i From the graph, we find that y = v/22 + 5 = 2.7 [3 — 0.3] when x ~ 1.513, so
3.3 2—-01~1513 = ;1 ~2—1.513 =0.487. Also,
3 y= \/xz +5
2; y=+vx2+5=23.3[3+0.3] when z =~ 2.426,50 2 + J2 ~ 2.426 =
‘ 02 & 2.426 — 2 = 0.426. Thus, we choose & = 0.426 (or any smaller positive
o~ 5 number) since this is the smaller of §; and J2.
2-8, 2 2+6,
6. ! From the graph, we find that y = cos®z = 0.85 [0.75 + 0.10] when z ~ 0.398,
0.85
0.75 so g — 61~ 0398 = 41~ F —0.398~0.126. Also,
0.65 y = cos’*x 5
y = cos”x = 0.65 [0.75 — 0.10] when = ~ 0.633, s0 § + J2 ~ 0.633 =
02 ~ 0.633 — § ~ 0.109. Thus, we choose 6 = 0.109 (or any smaller positive
0~ z 1 3 number) since this is the smaller of §; and J2.
26 £+o
1. 7, From the graph with ¢ = 0.2, we find that y = 2® — 3z + 4 = 5.8 [6 — €] when
y=x'—3x+4
x = 1.9774,502 — 51 = 1.9774 = J1 = 0.0226. Also,
6.2
6 y=a>—3x+4=06.2[6+¢c] whenz ~ 2.022,50 2 + 2 ~ 2.0219 =
5.8
02 ~ 0.0219. Thus, we choose § = 0.0219 (or any smaller positive number)
1.8 ; 275, ,2+0, 22 since this is the smaller of 1 and 5.
Fore = 0.1, we get ;1 = 0.0112 and d> =~ 0.0110, so we choose § = 0.011
(or any smaller positive number).
8. 3 From the graph with ¢ = 0.5, we find that y = (e** — 1) /2 = 1.5 [2 — ] when
y=("-1/k
2.5 x =~ —0.303, 50 61 =~ 0.303. Also, y = (¢** — 1)/x = 2.5 [2 4 £] when
2 x = 0.215, so d2 = 0.215. Thus, we choose 6 = 0.215 (or any smaller positive
L5 number) since this is the smaller of §; and J2.
05 f -3, 0 5, 03 Fore = 0.1, we get §1 ~ 0.052 and J2 = 0.048, so we choose § = 0.048 (or
any smaller positive number).
9. (@ 0 ~ 110
N S
Yo G-
1 (111 ESSRNNN————
YT ImG-D
—1 p— 4
L J 90 I
-50 2 2.01 2.02
The first graph of y = ﬁ shows a vertical asymptote at + = 2. The second graph shows that y = 100 when
n(x —

x &~ 2.01 (more accurately, 2.01005). Thus, we choose 6 = 0.01 (or any smaller positive number).

(b) From part (a), we see that as x gets closer to 2 from the right, y increases without bound. In symbols,

lim —— = o0.
Y In(z — 1) o
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1.

12.

13.

14.

15.

O CHAPTER2 LIMITS AND DERIVATIVES
We graph iy = csc®z and y = 500. The graphs intersect at = /= 3.186, so 1500~
we choose § = 3.186 — 7 & 0.044. Thus, if 0 < |z — 7| < 0.044, then 1000
cscz > 500. Similarly, for M = 1000, we get § = 3.173 — 7 ~ 0.031. 300
0
s T 37
2 2

™

(@ A=mr’and A =1000cm* = mr?=1000 = r* =100 = ,=,/100 (r>() =17.8412cm.

(b) |JA—-1000] <5 = —5<mr?—-1000<5 = 1000—5<7r?<1000+5 =
VB <r < /2B = 17.7966 < r < 17.8858. /1900 — /998 ~(.04466 and /1925 — /2090 ~ 0.04455. So
if the machinist gets the radius within 0.0445 cm of 17.8412, the area will be within 5 cm? of 1000.

(c) x is the radius, f(x) is the area, a is the target radius given in part (a), L is the target area (1000 cm?), ¢ is the magnitude

of the error tolerance in the area (5 cm?), and 4 is the tolerance in the radius given in part (b).

202 (°C)
_ 2 _ - N
(a) T =0.1w” +2.155w+20and 7' = 200 = =01 /
0.1w? + 2155w +20 = 200 = [by the quadratic formula or r—0 /
from the graph] w ~ 33.0 watts (w > 0) T=1% /
32.5\ / L /335
(b) From the graph, 199 <7 <201 = 32.89 < w < 33.11. 198 (watts)

(c) x is the input power, f(z) is the temperature, a is the target input power given in part (a), L is the target temperature (200),

¢ is the tolerance in the temperature (1), and ¢ is the tolerance in the power input in watts indicated in part (b) (0.11 watts).

1 1
(@) 4z — 8| = 4|e —2| < 0.1 < |x72\<0—,so5:0T:0.025.

4
0.01 0.01
(b) [47 — 8] =4[z —2[ <001 & |o—2| <= =508 =~ = 0.0025.
|(bx —7) — 3| = |5z — 10| = |5(z — 2)| = 5|z — 2|. Wemust have |f(z) — L| < e, s05|z —2| <e &
| — 2] < /5. Thus, choose § = /5. Fore = 0.1, § = 0.02; for e = 0.05, = 0.01; for e = 0.01, § = 0.002.
Given e > 0, we need 6 > 0 such that if 0 < |x — 4] < 4, then Y y=lio
1+e :
(32 —1)—1] <e.But|(3z-1) -1/ <e & [fz-2|<e & 8
l1—¢

|3/l —4] <e < |z —4| < 2e Soif wechoose § = 2, then

0 454 4+5 X
0<lz—4[<d = [(z—1)—1] <e Thus, lim (32 -1) =1

by the definition of a limit.
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16. Givene > 0, we need § > O such that if 0 < |x — 2| < ¢, then Y
[(2—3z) — (—4)]| <e. But|(2—-3z) - (—4)|<e &
6—3z|<e & |-3|lz—2/<e & |z—2|< ic. Soifwe 2‘5\%/2”
0 X
choose § = e, then0 < |z —2| <§ = [(2—3z)— (—4)| < &. Thus,
lim (2 — 3z) = —4 by the definition of a limit.
rz—2 —4+¢e
_44k777
—4-e y=2-3x
17. Givene > 0, we need § > O such that if 0 < |x — (—2)| < 4, then 7
5+
(—2z4+1)— 5| <eBut|(~2c+1)— 5| <e _157°
S5—e
| -2z —4]<e & |-2[lz—(-2)<e & |z—(-2)|<3e
So if we choose § = 1, then0 < |z — (=2)| <& = y=-2x+1
|(=2z 4+ 1) — 5| < . Thus, lim (—2z + 1) = 5 by the definition of a / 2\ 0 x
r——2 278 o4
limit.
18. Given ¢ > 0, we need 6 > 0 such thatif 0 < |« — 1] < J, then Y y=2x—35
[(2z —5) — (=3)| <e.But|(2z —5) — (-3)|<e & 1-611+5
0 ' X
20 —-2(<e & [2/lz—1<e < |z—1|< ie Soifwechoose
§=1e,then0<|z—1/<d = |[(2z—5)— (—3)| <e. Thus,
lim (22 — 5) = —3 by the definition of a limit.
z—1 —3+e
73 S
—3—-e

19. Given e > 0, we need § > 0 such that if 0 < |z — 9] < 4, then | (1 — 22) — (—=2)| <e. But[(1—3z) — (-2)| <e &

3—3iz|<e & |-3|lz—9/<e & |z—9| <3e Soifwechoosed =3¢, then0 < [z —9] <5 =

(1= 32) = (=2)| <e. Thus, lim (1 — o) = —2 by the definition of a limit.

20. Givene > 0, we need § > 0 such that if 0 < |z — 5| < &, then |(3x — 3) — 7| <e. But|(3z—3) -7 <e &
|2z -2|<e & |3|lz—5/<e © |r—5|<2e Soifwechoose§ = 2¢,then0 < [z — 5| <6 =

|(4z — 3) — 7| < e. Thus, lim (22 — 3) = 7 by the definition of a limit.
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22— 2z —8

21. Given e > 0, we need 6 > 0 such that if 0 < |z — 4| < J, then — —6‘<€ <
W—6‘<6 & |z+2-6]<e [x#4] < |z—4| <e.Sochoosed =e. Then
-4 2
O<lz—4|<d = |z—4<e = |z+2-6/<e = %—6‘<5 [z #£4] =
2 _ o _ 2 _ oo _
2722078 6l - - By the definition of a limit, lim ©—— 22 —5 _¢,
z—4 z—4 x—4
9 — 4a®

22. Given e > 0, we need 6 > 0 such that if 0 < |z 4 1.5 < ¢, then

31 2z _6'<5 <

‘ (3+2z)(3 —22)

3422 —6‘<a & 3-2zx—6]<e [z#£-15] & |2z-3|<e & |2z+15<e &

|z +1.5] < e/2. Sochoose  =¢/2. Then0 < [z +1.5|<d = |r+15]<e/2 = |-2||z+15]<e =

(3 +2x)(3 —2z) 9 — 4a?
—2x—3 = [3—-2z-6 = |———"—=—6 -15] = |m=——=— -6 .
| -2z - 3| <e | r—6| <e ' 3120 <e [z# ] 3720 <e
42
By the definition of a limit, lim 9 da” = 6.
z——15 34+ 2z

23. Given e > 0, we need 6 > 0 such that if 0 < |z — a| < 0, then |2 — a| < e. So § = € will work.

24. Given e > 0, weneed & > O such that if 0 < |x — a| < 4§, then |¢ — ¢| < €. But |¢ — ¢| = 0, so this will be true no matter
what § we pick.
25. Given e > 0, weneed § > O such that if 0 < |z — 0] < §,then |2® — 0| <& & 2’ <e & |z < e Taked =&

Then0 < |z —0/ <& = [+ —0| <e. Thus, lim 2* = 0 by the definition of a limit.

26. Given £ > 0, weneed § > 0 such that if 0 < |z — 0] < 4, then [2® — 0| < ¢ < 2> <e & |z| < ¥ Taked = JE.

Then0 < |z — 0/ <d = [z —0| < 4§ =e. Thus, lim 2* = 0 by the definition of a limit.

27. Givene > 0, we need § > 0 such that if 0 < |z — 0| < 4, then ||| — 0| < e. But ||x|| = |z|. So this is true if we pick 6 = €.

Thus, lir% |z| = 0 by the definition of a limit.

28. Given e > 0, we need > O such thatif 0 < z — (—6) < J, then |\8/6—|—:c—0{ < €. But ’\8/6+x—0| <e &
Votrz<e & 6+x<e® & x—(—6)<e Soifwechoosed =%, then0 <z — (—6)<d§ =
|6+ — 0| < e. Thus, 1im+ V6 + x = 0 by the definition of a right-hand limit.

r——6

29. Givene > 0, we need § > 0 such that if 0 < [z — 2| < 6, then |(2® —4dz +5) —1| <e & [¢°—4dz+4[<e &
|(x—2)?| <e. Sotake§ = /2. Then0 < [z —2| <8 & [r—-2| <y & |(x—2)°| <e. Thus,
lim (m2 74:1:+5) = 1 by the definition of a limit.

T—
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30. Givene > 0, weneed § > O such that if 0 < |z — 2| < &, then [(z® + 22 —7) — 1| <e.But [z + 22 —7) - 1| <e &
|:1:2 + 2z — 8| <e & |z+4||zr— 2| <e. Thus our goal is to make |x — 2| small enough so that its product with |z + 4]
is less than . Suppose we first require that [t — 2| < 1. Then—1<z—-2<1 = 1<z<3 = 5<z+4<7 =
|z + 4] < 7,and this givesus 7|z — 2| <e = |z —2| <¢/T7. Choose § = min{1,¢/7}. Thenif 0 < |z — 2| < J, we
have |z — 2| <e/Tand [z +4] < 7,50 |(z? + 22 —7) = 1| = [(x + 4)(z — 2)| = |z + 4| [z — 2| < 7(¢/7) = ¢, as

desired. Thus, liné (2® + 22 — 7) = 1 by the definition of a limit.

31. Given e > 0, we need § > 0 such that if 0 < |z — (—2)| < 6, then | (2* — 1) — 3| < & or upon simplifying we need
|z® — 4| < e whenever 0 < |z + 2| < 6. Notice that if |z + 2| < L,then -1 <z +2<1 = —-5<z-2<-3 =
|z — 2| < 5. Sotake 6 = min{e/5,1}. Then0 < [z +2| < = |z —2|<b5and|z+2| <e/5,s0

|(z® — 1) = 3| = [(z +2)(z — 2)| = |z + 2| |z — 2| < (¢/5)(5) = &. Thus, by the definition of a limit, lim (z* —1) = 3.

T——

32. Given e > 0, we need § > 0 such that if 0 < |z — 2| < 4, then [z* — 8| < . Now |2® — 8| = |(z — 2)(2* 4 2z + 4)|.
If |z — 2| < 1,thatis, 1 <z < 3,then2® + 2z +4 < 32 +2(3)+4=19and so
|a® — 8| = |z — 2| (2® + 22+ 4) < 19|z —2|. Soif we take § = min {1, 5}, then 0 < [z —2| <5 =

|27 — 8] = |z — 2| (¢” + 22+ 4) < {5 - 19 = &. Thus, by the definition of a limit, lim 2* = 8.
Tr—

33. Givene > 0,weletd =min {2,£}. If0 < [z —3| <4, then |z — 3| <2 = —-2<z-3<2 =

4<z+3<8 = |r+3[<8 Alsol|r—3|<%,s0|e? -9 =|z+3||lx—3 <8 & =c. Thus, lim x> =9.

T—

34. From the figure, our choices for § are 61 = 3 — /9 — € and Y
9+

02 = /9 4 € — 3. The largest possible choice for § is the minimum 0 S

—&

value of {01, 02}; thatis, 6 = min{d1,02} = d2 =9+ — 3.

y=x
0 /3\ x
V-¢ PO+e
35. (a) The points of intersection in the graph are (x1,2.6) and (z2, 3.4) P 4 7 N
3
with z; &~ 0.891 and x> =~ 1.093. Thus, we can take § to be the //
smaller of 1 — ;3 and z2 — 1. So § = 2 — 1 = 0.093.
. // : 5
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(b) Solving 23 + = + 1 = 3 + £ with a CAS gives us two nonreal complex solutions and one real solution, which is

216 + 108¢ + 121/336 + 324 + 812 ) /* — 12
sz( + 1082 + 12/336 4 324 + 81=7) . Thus, § = z(e) — 1.

6(216 + 108¢ + 121/336 + 324¢ + 8122 ) /°

(c) Ife = 0.4, then z(g) ~ 1.093272 342 and § = x(e) — 1 ~ 0.093, which agrees with our answer in part (a).

1. Guessing a value for § Let e > 0 be given. We have to find a number é > 0 such that

1 1 ’
— — =| < & whenever
x 2

1 2 - -2 .. 1
0<|z—2]<d.But|=—=|= ) lz =2 < e. We find a positive constant C' such that — < C' =
z 2 2x |2| |2|
|$‘27|2‘ < C'|z — 2| and we can make C' |z — 2| < ¢ by taking |z — 2| < % = J. We restrict z to lie in the interval
x
1 1 1 1 1 1 1 1. .
lz—2/<1 = 1<m<3sol>;>§ = 5<5;<3 = w<5.SOC:51ssu1tab1e.Thus,Weshould

choose § = min {1, 2¢}.
2. Showing that 6 works ~ Givene > Oweletd = min{1,2¢}. If0 < |z — 2| < d,then|z - 2| <1 = 1<z<3 =

1 1 .
22l <3 (as in part 1). Also |z — 2| < 2¢, so

N =

= <

. % = i i 1
%] 2e = . This shows that i%(l/x) 3

T

1‘_ |z — 2|

1. Guessing a value for 5  Given e > 0, we must find 6 > 0 such that |\/z — y/a|] < € whenever 0 < |z — a| < 4. But

vz — a| = % < & (from the hint). Now if we can find a positive constant C' such that \/z 4+ v/a > C then
z a
| — al | — al . - . .
< < ¢, and we take |z — a| < Ce. We can find this number by restricting x to lie in some interval

VT ++/a c

centeredata. If |x —a| < 3a,then —3a <z —a<3a = za<z<3a = x4+ a>,/3a++/a andso
C = \/4a+ V/a s a suitable choice for the constant. So [z — a| < (\/; + \/C_L) e. This suggests that we let

§= min{éa7 (\/;—i— \/5)5}.

2. Showing that 6 works ~ Givene > 0, we let § = min {%a, (\/g—i— \/E)a}. If0 < |z —a| < 4, then

|t —a| < ia = a++a>,/2a+al(asinpartl). Also |z —a| < (\/;—i—\/ﬁ)a,so

o—a__ (VP2 +V)e

Ix/_*x/c_tlzﬁJ”/a (\/er\/a)

= ¢. Therefore, lim /z = 1/a by the definition of a limit.

Suppose that 7yr% H(t) = L. Given e = 3, there exists § > Osuchthat 0 < [¢| <d = [|H(t)—L| <3 &
L-—1<H{t)<L+4% For0<t<§ HEt)=1sol<L+3i = L>LiFor—6<t<0 H(t) =0,

soL— 2 <0 = L < 1. This contradicts L > 5. Therefore, }ilr(l) H(t) does not exist.

Suppose that lir% f(xz) = L. Given e = 3, there exists § > O such that0 < |[z| <§ = |f(z) — L| < 1. Take any rational
number 7 with 0 < |r| < &. Then f(r) = 0,s0 |0 — L| < 3,s0 L < |L| < 4. Now take any irrational number s with
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0 < |s| < 8. Then f(s) =1,s0|1 — L| < 3. Hence, 1 — L < 3,s0 L > . This contradicts L < 3, so lim f(z) does not
exist.
First suppose that lim f(x) = L. Then, given € > 0 there exists 6 > Osothat0 < |z —a| <d = |f(z)—L|<e.

Thena—d<z<a = 0<|r—al]<dsol|f(z)—L|<e. Thus, lim f(z)=L. Alsoa<z<a+d =

r—a~—

0<|z—al <dso|f(x)— L] <e.Hence, lim+ f(z) =L.

T—a

Now suppose lim f(z) =L = hm+ f(z). Lete > 0be given. Since lim f(z) = L, there exists 1 > 0 so that

r—a— r—a—

a—6h <zx<a = |f(x)—L|<e. Since lim f(x)= L,thereexists do > O0sothata <z <a+d =

|f(z) — L| < e. Let & be the smaller of 61 and d2. Then0 < [x —a| <dJ = a—di <z <aora<z < a+d2s0

|f(z) — L| < e. Hence, lim f(z) = L. So we have proved that lim f(z) =L < lim f(z)=L= 1im+ ().

1 1 1 1
—— > 10,000 < —— 3 — — (-3 —
Grayp 0000 e @) <pons @ Sl <mes o - (Bl<g
Given M > 0, weneed > Osuchthat0 < |z +3| < = 1/(x+3)4>M.Nowﬁ>M &
(gz:+3)4<i & |x+3\<L.Sotake5: 1 .Then0 < |z + 3| <d = 1 = 1 > M, so
M VM vM VM (z+3)4

A Gy T
Given M < 0 we need § > 0 so that Inz < M whenever 0 < z < §; that is, z = €™ < e™ whenever 0 < z < §. This

suggests that we take § = e . If0 < = < ™ then Inz < Ine™ = M. By the definition of a limit, lim Inz = —occ.

z—0

(a) Let M be given. Since lim f(z) = oo, there exists §; > Osuchthat0 < |z —a| <1 = f(z) > M + 1 — c. Since

T—a

lim g(x) = ¢, there exists 2 > Osuchthat0 < |x —a| < d2 = |g(z) —¢| <1 = g(x) > c— 1. Letd bethe

r—a

smaller of 1 and 2. Then0 < |z —a| < = f(z)+g(z) > (M +1—c)+ (¢c—1)= M. Thus,
tim /() + g(@)] = co.

(b) Let M > 0 be given. Since lim g(x) = ¢ > 0, there exists 61 > Osuchthat0 < |z —a| < §:1 =

lg(z) —c| <c¢/2 = g(zx) > c/2. Since lim f(x) = oo, there exists d2 > O such that 0 < [z —a| < d2 =
) 2M ¢ .
f(z) >2M/c. Let = min{01,d2}. Then0 < |z —a| <6 = f(m)g(r)>T§ZM,so lim f(z) g(x) = .

(c) Let N < 0 be given. Since lim g(z) = ¢ < 0, there exists §1 > Osuchthat0 < |z —a| < §1 =

r—a

lg(z) —c| < —¢/2 = g(z) < c/2. Since lim f(z) = oo, there exists 62 > Osuch that 0 < [z —a| <J2 =

f(z) >2N/c. (Notethatc < 0and N <0 = 2N/c>0.) Letd =min{d1,d2}. Then0 < |z —a|<d =

flz)>2N/c = f(z)g(z) < % - N, so lim f(z)g(z) = —o0.

2 T—a
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2.5 Continuity

1.

2.

3.

From Definition 1, 1inf}1 f(z) = f(4).

The graph of f has no hole, jump, or vertical asymptote.
(a) f is discontinuous at —4 since f(—4) is not defined and at —2, 2, and 4 since the limit does not exist (the left and right
limits are not the same).

(b) f is continuous from the left at —2 since lim f(z) = f(—2). f is continuous from the right at 2 and 4 since

r——27

lim+ f(z) = f(2) and lim+ f(z) = f(4). The function is not continuous from either side at —4 since f(—4) is
z—2 x—4

undefined.

. ¢ is not continuous at —2 since g(—2) is not defined. g is not continuous at a = —1 since the limit does not exist (the left and

right limits are —o0). g is not continuous at @ = 0 and a = 1 since the limit does not exist (the left and right limits are not

equal).

. (a) From the graph we see that lim f(x) does not exist at a = 1 since the left and right limits are not the same.

r—a

(b) f is not continuous at a = 1 since lim1 f(x) does not exist by part (a). Also, f is not continuous at a = 3 since
xr—

lim f(x) # £(3).

r—3

(¢) From the graph we see that lirr‘}3 f(z) = 3, but f(3) = 2. Since the limit is not equal to f(3), f is not continuous at a = 3.

. (a) From the graph we see that lim f(x) does not exist at a = 1 since the function increases without bound from the left and
xr—a

from the right. Also, lim f(z) does not exist at a = 5 since the left and right limits are not the same.
r—a

(b) f is not continuous at a = 1 and at a = 5 since the limits do not exist by part (a). Also, f is not continuous at a = 3 since
lim f(z) # /(3).
(c) From the graph we see that lirré f(z) exists, but the limit is not equal to f(3), so f is not continuous at a = 3.
r—
Y The graph of y = f(x) must have a removable discontinuity (a hole) at

x = —2 and an infinite discontinuity (a vertical asymptote) at x = 2.

) 0 2 \x

The graph of y = f(x) must have a jump discontinuity at z = —3 and a

removable discontinuity (a hole) at z = 4.
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The graph of y = f(z) must have discontinuities at z = 0 and z = 3. It

\ must show that ‘li%1+ f(z) = £(0) and lirgli f(z) = £(3).

Y The graph of y = f(z) must have a discontinuity at z = —1 with
~ * lim f(z)= f(—1)and lim+ f(z) # f(—1). The graph must also
r——1— rz——1

AP ; > show that lim f(z) # f(3)and lim f(z) # f(3).
r—3" z—3t1

(a) The toll is $5 except between 7:00 AM and 10:00 AM and between 4:00 PM and T
7:00 PM, when the toll is $7. ;f ==
(b) The function 7" has jump discontinuities at t = 7, 10, 16, and 19. Their 0 — ——t
710 1619 24 1

significance to someone who uses the road is that, because of the sudden jumps in
the toll, they may want to avoid the higher rates between ¢ = 7 and ¢ = 10 and
between ¢t = 16 and ¢ = 19 if feasible.

(a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps
from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,
without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one

height to another without going through all of the intermediate values—at a cliff, for example.
(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value,

without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.

lim f(z)= lim [32% + (z +2)°] = lim 32>+ lim (z + 2)°=3 lim1x2 + lim (z+ 2)°

rz——1 T—— r—— r—— T——
=3(-1)? +(-1+2)" =4 = f(-1)

By the definition of continuity, f is continuous at a = —1.
3 2 . 2 .

t2+5t_hm(t + 5t) }Egt +5}er%t_22+5(2)_14

lim g(¢) = lim =2 =57 - = =—=9(2).
{52 t—2 2t+1 }m%(Qt +1) 2 thrr%t + }m% 1 2(2)+1 5

By the definition of continuity, g is continuous at a = 2.
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15. 1irrip(v) = lirri 2V3v2+1=2 lin% V32 +1= 2\/lirri(3v2 +1)= 2\/3 lirri v2? + lirn1 1
=2/3(1)2+1=2V4=4=p(1)

By the definition of continuity, p is continuous at a = 1.

16. lim f(r)= lim_ Var? —2r +7=3 lim (412 —2r +7) = Y422 —2(-2)+7=V2T=3= f(-2)

r——2

By the definition of continuity, f is continuous at a = —2.

17. For a > 4, we have
lim f(z) = lim(z + vz —4) = lim z + lim v/z — 4 [Limit Law 1]

=a+ , /limx — lim 4 [8, 11, and 2]
=a++a—4 [8 and 7]
= f(a)

So f is continuous at zz = a for every a in (4, 00). Also, 1im+ f(z) =4 = f(4),so f is continuous from the right at 4.
r—4

Thus, f is continuous on [4, 00).

18. For a < —2, we have

r—1 lim(m—l)
li = li — r—a Limit Lavw 5
zlir}zg(x) i 3z +6 lim (3 + 6) [Limit Law 5]
limz — lim 1
~ Blima+ lim 6 [2,1, and 3]
a—1
- 8and 7
3a+6 [8 and 7]

Thus, g is continuous at z = a for every a in (—oo, —2); that is, ¢ is continuous on (—oo, —2).

19. f(z) = - i 3 is discontinuous at a = —2 because f(—2) is undefined. Y |
y_x+2
\
0 X
\ x=-2
if ©# -2
2. f(x) = z+2 7 y X
1 if ©=-2 Y=117
Here f(—2) = 1,but lim f(z) = —ooand lim+ f(z) = o0, =2,1)
r——2" r——2 I ——
0 X
SO linj2 f(z) does not exist and f is discontinuous at —2. \
x=-2
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r+3 ifx<-—1 y
2@ =99 ires_1

lim f(z)= lim (z+3)=-14+3=2and

r——1" r——1"

y=2

lim f(z) = lim 2" =2"" = 1. Since the left-hand and the
z——11 z——17F

right-hand limits of f at —1 are not equal, liml f(z) does not exist, and

f is discontinuous at —1.

1‘2—1'
if 1 Y
2 fa)=d P=1 TTF
1 if x=1 y=1

2 -z z(zx—1) x 1 0 x
li =li = lim ——~~ 2 — j _ =
but f(1) =1, so f is discontinous at 1. r=-l
cosx if £ <0
23 f(x)=<0 ifx=0 Y
1-2° ifz>0
_'77
lin% f(z) = 1,but f(0) =0 # 1, so f is discontinuous at 0.
2 — —
2z° — 5 — 3 if oz #£3 ,
4. f(z) = -3 84
6 if =3 61
. o2 —bz—-3 . (2z+1)(x—-3) .
lim (@) = Jimy ———5— = I —— =5 = lm(22+ 1) =7,
but f(3) = 6, so f is discontinuous at 3. / 5 ;
3 X
25. (a) f(z) = r=3 _ r—3 _ for x # 3. f(3) is undefined, so f is discontinuous at z = 3. Further.
22-9 (z—3)(z+3) x+3 ’ ’
lin}g’ flx) = 3—Jlr3 = % Since f is discontinuous at x = 3, but lir% f(x) exists, f has a removable discontinuity
atx = 3.
(b) If f is redefined to be % atz = 3, then f will be equivalent to the function g (z) = 713 which is continuous at x = 3.

2? — Tz +12 _ (=34

26. (a) f (z) = ——3 ——3 =z —4forxz # 3. f(3) is undefined, so f is discontinuous at z = 3.
Further, 1111% f(z) =3 —4 = —1. Since f is discontinuous at z = 3, but lin% f(z) exists, f has a removable discontinuity
atr = 3.
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(b) If f is redefined to be —1 at = = 3, then f will be equivalent to the function g(x) = = — 4, which is continuous

everywhere (and is thus continuous at z = 3).

1’2

The domain of f(x) = ——
fe) = =

is (—o0, 00) since the denominator is never 0. By Theorem 5(a), the polynomial z? is
continuous everywhere. By Theorems 5(a), 7, and 9, /2# + 2 is continuous everywhere. Finally, by part 5 of Theorem 4,
f () is continuous everywhere.

3v—1 . 3v—1
v2+20—15  (v+5)(v—3)

g(v) = is a rational function, so it is continuous on its domain,
(=00, =5) U (—5,3) U (3,00), by Theorem 5(b).

cos(t?)
1—et

The domain of h(t) = must exclude any value of ¢ for which1 —e* =0. 1—e'=0 = e'=1 =

In(e’) =Iln1 = t =0, so the domain of h(t) is (—o0,0) U (0, 00). By Theorems 7 and 9, cos(t?) is continuous on R.
By Theorems 5 and 7 and part 2 of Theorem 4, 1 — € is continuous everywhere. Finally, by part 5 of Theorem 4, h(t) is

continuous on its domain.

B(u) = v3u — 2 + {/2u — 3is defined when3u —2>0 = 3u>2 = u> % (Note that ¥/2u — 3 is defined

everywhere.) So B has domain[%, oo) By Theorems 7 and 9, v/3u — 2 and </2u — 3 are each continuous on their domain
because each is the composite of a root function and a polynomial function. B is the sum of these two functions, so it is

continuous at every number in its domain by part 1 of Theorem 4.

L(v) =vIn(l —v®)isdefinedwhen1 —v> >0 & v* <1 & |v|<1 & —1<wv <Ll Thus, L has domain
(—1,1). Now v and the composite function In(1 — v?) are continuous on their domains by Theorems 7 and 9. Thus, by part 4

of Theorem 4, L(v) is continuous on its domain.

fit) = et In(1 + #?) has domain (—oo, co) since 1+ #* > 0. By Theorems 7 and 9, e~ and In(1 + ?) are continuous

everywhere. Finally, by part 4 of Theorem 4, f(t) is continuous everywhere.

M(m):,/l—l—%:Mml—lisdeﬁnedwhenxl_l20 = xz+1>0andx >0orxz+1<0andzx <0 = x>0

orz < —1,s0 M has domain (—oo, —1] U (0, 00). M is the composite of a root function and a rational function, so it is

continuous at every number in its domain by Theorems 7 and 9.

The function g(t) = cos™* (e’ — 1) is defined for -1 <e' —1<1 = 0<e'<2 = In(e’) <In2 [since e is
always positive] =t < In2, so the domain of g is (—o0, In 2]. The function e’ — 1 is the difference of an exponential and
a constant (polynomial) function, so it is continuous on its domain by Theorem 7 and part 2 of Theorem 4. The inverse

trigonometric function cos ™! ¢ is continuous on its domain by Theorem 7. The function g is then the composite of continuous

functions, so by Theorem 9 it is continuous on its domain.
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Because « is continuous on R and +/20 — z2 is continuous on its domain, —v/20 < z < /20, the product
f(z) = /20 — 22 is continuous on —v/20 < x < 1/20. The number 2 is in that domain, so f is continuous at 2, and

lim f(z) = f(2) = 2v/16 = 8.

r—2

The function f(6) = sin(tan(cos @)) is the composite of trigonometric functions, so it is continuous throughout its domain.
Now the domain of cos 6 is R, —1 < cos < 1, the domain of tan # includes [—1, 1], and the domain of sin @ is R, so the

domain of f is R. Thus f is continuous at £, and lim sin(tan(cos®)) = sin(tan(cos %)) = sin(tan(0)) = sin(0) = 0.

—m/

5— 2
1+

The function f(x) = ln( ) is continuous throughout its domain because it is the composite of a logarithm function

2

and a rational function. For the domain of f, we must have

> 0, so the numerator and denominator must have the

same sign, that is, the domain is (—co, —+/5] U (=1, /5. The number 1 is in that domain, so f is continuous at 1, and

5

lim f(z) = /(1) = ln% —n2.

The function f(x) = 3V #?=22-4 i5 continuous throughout its domain because it is the composite of an exponential function,

a root function, and a polynomial. Its domain is
{x\x2—2x—420}= {x|1’2—2x—|—125}:{w\(x—l)225}

:{x|\x—1|2\/5}:(—00,1—\/5]U[1+\/5,oo)

The number 4 is in that domain, so f is continuous at 4, and lin}1 flz) = f(4) =3vVI68-1 =32 =9

The function f(z) = \/ﬁ is discontinuous wherever 3
l—sine=0 = sinx=1 = =z =7 + 2nm, wheren is any s
integer. The graph shows the discontinuities for n = —1, 0, and 1.
_Sm ! ! ! im
2 37 (3 S 2
2 2 2
The function y = arctan(1/x) is discontinuous only where 1/z is 2
undefined. Thus y = arctan(1/z) is discontinuous at z = 0. (From the "
graph, note also that the left- and right-hand limits at x = 0 are different.) 2
N

-2
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1—22 ifz<1
f(:r)—{

Inz ifx>1
By Theorem 5, since f(z) equals the polynomial 1 — 2% on (—o0, 1], f is continuous on (—oo, 1].
By Theorem 7, since f(x) equals the logarithm function In z on (1, co), f is continuous on (1, co).

Atz=1, lim f(z)= lim (1-2?)=1-1>=0 and lim f(z)= lim Inz =In1=0. Thus, lim f () exists and
r—1— z—

rz—1— z—1t z—1+

equals 0. Also, f(1) = 1 — 1% = 0. Thus, f is continuous at # = 1. We conclude that f is continuous on (—oo, o).

sine if x<w/4
f(l")—{ /

cosz if x>m/4

By Theorem 7, the trigonometric functions are continuous. Since f(x) = sinz on (—oo, 7w/4) and f(x) = cosx on

(m/4,00), f is continuous on (—oo, 7/4) U (7/4,00). lim f(z)= lim sinz =sinZ = 1/4/2 since the sine
z—(w/4)~ z—(m/4)~
function is continuous at 7 /4. Similarly, lim N flz)=lim L cosz = 1/+/2 by continuity of the cosine function
x— (7 /4) z—(7/4)

at 7 /4. Thus, h(m/ » f(z) exists and equals 1/+/2, which agrees with the value f(7/4). Therefore, f is continuous at 7/4,
r— (7
so f is continuous on (—00, 00).

z? if z<—1
flz)=<X=z if —1<z<1

1/z ifx>1

f is continuous on (—oco, —1), (—1,1), and (1, co), where it is a polynomial, w1

a polynomial, and a rational function, respectively. L1

Now lim f(z)= lim 2> =1and lim f(z)= lim z= -1, -1,-1) 0 !

r——1" r——1" z——11 z——11
so f is discontinuous at —1. Since f(—1) = —1, f is continuous from the right at —1. Also, lim f(z) = lim z =1 and
rz—1" r—1—
lim f(z)= lim — =1= f(1), so f is continuous at 1.

z—1t z—1t T

27 if <1 y
L fz)=¢3—2z ifl<z<4 1,2) (4:2)/
VT if x >4
. . o, . /
f is continuous on (—oo, 1), (1,4), and (4, co), where it is an exponential, 5 \ >
a polynomial, and a root function, respectively. 4,-1)

Now lim f(z) = lim 2° =2 and lim f(x) = lim (3 —z) = 2. Since f(1) = 2 we have continuity at 1. Also,
r—1— r—1—

z—1+ z—1+

lim f(z)= lim 3—2)=—1= f(4) and lim+ flx) = lim+ vz = 2, s0 f is discontinuous at 4, but it is continuous
r—4= r—4= r—4

r—4

from the left at 4.
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z+2 ifz<0 g
(e
flz)y=(¢€" ifo<z<1 (0,2)/
_ i (1,1)
2—2 ifax>1 0.1) c\
f is continuous on (—oo, 0) and (1, co) since on each of these intervals 0 x
it is a polynomial; it is continuous on (0, 1) since it is an exponential.

Now lim f(z)= lim (z+2)=2and lim f(z) = lim e” =1, so f is discontinuous at 0. Since f(0) = 1, f is

z—0~ z—0" z—0t z—0t

continuous from the right at 0. Also lim f(z) = lim e®* =eand lim f(z) = 1im+(2 —z) = 1, s0 f is discontinuous
rz—1— z—1—

z—1 z—1

at 1. Since f(1) = e, f is continuous from the left at 1.

By Theorem 5, each piece of F' is continuous on its domain. We need to check for continuity at r = R.

. . GMr GM . . GM GM . GM . GM
Jm Fr)= T g =T ond g, PO = T, =5 = >0 fim F(r) = Tz Sinee () = T

F' is continuous at R. Therefore, F' is a continuous function of r.

3

cx?+2x ifax<?2
f(@) = .
z° —cx if x> 2

[ is continuous on (—00,2) and (2,00). Now lim f(z) = lim (cz® + 2z) = 4c+ 4 and
r—2"

r—27"

lim+ flz) = lim+ (2® — cac) =8—2c.So fiscontinuous < 4c+4=8-2c & 6c=4 & c= % Thus, for f
x—2

r—2
to be continuous on (—o0, 00), ¢ = 2.
2
z°—4 .
if ©<2
z—2

F@ =93 —bw+3 if 2<z2<3
2r—a+b if >3

2 p— J—
Atz = lim f(z)= lim o4 lim w: lim (z4+2)=2+2=4
T—27 rz—2— XL — T—27 xr — 2 T—27
lim f(z) = lim (az® —bx +3) =4a —2b+3
z—2+ z—2+

We must have 4a —2b+ 3 =4,orda — 2b =1 (1).

Atz =3: lim f(z) = lim (a2® —bx +3)=9a—3b+3

r—3" r—3"

lim f(z)= lim 2z —a+b)=6—a—+b

z—3t z—37+

We must have 9a —3b+3 =6 —-a+b,0or10a — 4b =3 (2).

Now solve the system of equations by adding —2 times equation (1) to equation (2).

—8a+4b= -2
10a —4b= 3
2a = 1
Soa = % Substituting % for a in (1) gives us —2b = —1,s0b = % as well. Thus, for f to be continuous on (—o0, c0),

—p=1
a=b=3.
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49.

50.

51.

52.

53.

54.

585.

If f and g are continuous and g(2) = 6, then lin%[?)f(m) + f(x)g(x)] =36 =

3lim f(2) + lim f(2) - lim g(x) =36 = B3f(2)+f(2)-6=36 = 9/(2)=36 = [(2)=4.

1 1
@ f() = T and g(z) = =50 (f 0 9)(x) = flg(e)) = F(1/a?) =1/(1/a?) = a*.
(b) The domain of f o g is the set of numbers z in the domain of g (all nonzero reals) such that g(z) is in the domain of f (also

all nonzero reals). Thus, the domain is {x

1 . .
z # 0 and e ;AO} ={x |z #0}or(—o0,0) U (0,00). Since f o gis
the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except = 0.

:x4—1 _ @@+ D)1 @P+D@+1)(z-1)

@) f(z) — — = — =@+ 1)(x+1) [orz®+2®+2+1]
for  # 1. The discontinuity is removable and g(z) = 2 + 2 4+ = + 1 agrees with f for z # 1 and is continuous on R.
3_ .2 2 _ _
®) f(z) = v o2 ze’—z-2) = pe—2@+1) =a(x+1) [orz® +2] forx # 2. The discontinuity
r—2 r—2 r—2
is removable and g(z) = 2* + x agrees with f for 2 # 2 and is continuous on R.
(¢) lim f(z) = lim [sinz] = lim 0=0and lim+ (z) = lim+ [sinz] = lim (—1) = —1,s0 lim f(z) does not
exist. The discontinuity at z = 7 is a jump discontinuity.
y y
3 /
oy N=2
1 '\o_/
o o2 1 x of 025 1%
f does not satisfy the conclusion of the f does satisfy the conclusion of
Intermediate Value Theorem. the Intermediate Value Theorem.
f(x) = 2 4 10sin x is continuous on the interval [31, 32], f(31) ~ 957, and f(32) ~ 1030. Since 957 < 1000 < 1030,

there is a number c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: There is also a number ¢ in

(=32, —31) such that f(c) = 1000.

Suppose that f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2, 3],
the fact that f(2) = 8 > 6 and f(3) < 6 implies that there is a number c in (2, 3) such that f(c) = 6. This contradicts the fact
that the only solutions of the equation f(z) = 6 are x = 1 and « = 4. Hence, our supposition that f(3) < 6 was incorrect. It

follows that f(3) > 6. But f(3) # 6 because the only solutions of f(z) = 6 are x = 1 and x = 4. Therefore, f(3) > 6.

f(z) = —2® + 42 + 1 is continuous on the interval [—1,0], f(—1) = —2, and f(0) = 1. Since —2 < 0 < 1, there is a
number c¢ in (—1, 0) such that f(c¢) = 0 by the Intermediate Value Theorem. Thus, there is a solution of the equation

—2% + 42 + 1 = 0 in the interval (—1,0).
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The equation Inz = = — 1/ is equivalent to the equation Inz — xz + 1/ = 0. f(z) = Inxz — = + /T is continuous on the
interval [2,3], f(2) =In2 — 2 +v/2 ~ 0.107, and f(3) = In3 — 3 + v/3 = —0.169. Since f(2) > 0 > f(3), there is a
number ¢ in (2, 3) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a solution of the equation

Inx —z ++/z =0, 0rlnz = z — /x, in the interval (2, 3).

The equation e® = 3 — 2z is equivalent to the equation e” + 2z — 3 = 0. f(z) = €® 4 2z — 3 is continuous on the interval
[0,1], f(0) = —2,and f(1) = e — 1 &= 1.72. Since —2 < 0 < e — 1, there is a number c in (0, 1) such that f(c) = 0 by the

Intermediate Value Theorem. Thus, there is a solution of the equation ” + 2z — 3 = 0, or e” = 3 — 2z, in the interval (0, 1).

% —  is equivalent to the equation sinz — 2? + & = 0. f(z) = sinz — 22 4 x is continuous on the

The equation sinz = x
interval [1,2], f(1) = sin1 &~ 0.84, and f(2) =sin2 — 2 ~ —1.09. Since sin1 > 0 > sin 2 — 2, there is a number ¢ in
(1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a solution of the equation sinaz — x4+ = 0, or

2

sinz =z — x, in the interval (1, 2).

() f(z) = cosx — x> is continuous on the interval [0, 1], f(0) = 1 > 0, and f(1) = cos1 — 1 =~ —0.46 < 0. Since
1> 0 > —0.46, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a

solution of the equation cosz — 2® = 0, or cos x = 2®, in the interval (0, 1).

(b) f(0.86) ~ 0.016 > 0 and f(0.87) ~ —0.014 < 0, so there is a solution between 0.86 and 0.87, that is, in the interval

(0.86,0.87).

(@) f(z) = lnx — 3 4 2z is continuous on the interval [1,2], f(1) = —1 < 0,and f(2) =In2+ 1 ~ 1.7 > 0. Since
—1 < 0 < 1.7, there is a number ¢ in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a

solution of the equation Inz — 3 + 2z = 0, or Inz = 3 — 2z, in the interval (1, 2).

(b) f(1.34) = —0.03 < 0 and f(1.35) & 0.0001 > 0, so there is a solution between 1.34 and 1.35, that is, in the

interval (1.34,1.35).

(a) Let f(z) = 100e~2/1%° — 0.0122. Then f(0) = 100 > 0 and

£(100) = 100! — 100 ~ —63.2 < 0. So by the Intermediate 200

Value Theorem, there is a number c in (0, 100) such that f(c) = 0. \\

This implies that 100e~%/1%° = 0.01¢2.

(b) Using the intersect feature of the graphing device, we find that the

—100 - - 100

solution of the equation is z = 70.347, correct to three decimal

places.
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62. (a) Let f(z) = arctanx + « — 1. Then f(0) = —1 < 0 and

f(1) = & > 0. So by the Intermediate Value Theorem, there is a
y=1-0\] ¥=arctanx
number c in (0, 1) such that f(c) = 0. This implies that
—4.5 4.5

arctanc=1—c.

(b) Using the intersect feature of the graphing device, we find that the

solution of the equation is x = 0.520, correct to three decimal
places.
63. Let f(x) = sinx>. Then f is continuous on [1, 2] since f is the composite of the sine function and the cubing function, both

of which are continuous on R. The zeros of the sine are at n, sowenote that 0 < 1 < 7 < %’/T < 21 < 8 < 3, and that the
pertinent cube roots are related by 1 < ¢ %77 [call this value A] < 2. [By observation, we might notice that z = /7 and

x = /27 are zeros of f.]
Now f(1) =sin1 >0, f(A) =sin3m = —1 < 0, and f(2) = sin8 > 0. Applying the Intermediate Value Theorem on

[1, A] and then on [A, 2], we see there are numbers ¢ and d in (1, A) and (A, 2) such that f(c) = f(d) = 0. Thus, f has at

least two x-intercepts in (1, 2).

64. Let f(x) = 2® — 3 4+ 1/2. Then f is continuous on (0, 2] since f is a rational function whose domain is (0, 00). By
inspection, we see that f (i) = }—g >0, f(1)=—-1<0,and f(2) = % > 0. Appling the Intermediate Value Theorem on
[,1] and then on [1, 2], we see there are numbers c and d in (%, 1) and (1, 2) such that f(c) = f(d) = 0. Thus, f has at

least two z-intercepts in (0, 2).

65. (=) If f is continuous at a, then by Theorem 8 with g(h) = a + h, we have
lim f(a+h) = f(Jim (a+h)) = f(a).
(<) Lete > 0. Since }Lirr}) f(a+h) = f(a), there exists 6 > O such that 0 < |h| < § =

|f(a+h)— fla)] <e. Soif0 < |z —a|] <d,then|f(x)— f(a)|=]|f(a+ (x —a))— fla)| <e.

Thus, lim f(z) = f(a) and so f is continuous at a.

66. lim sin(a + h) = }llir% (sinacosh + cosasinh) = lim (sinacosh) + }lLinB (cosasinh)

h— h—

= (lim sin a) (}113}) cos h) + (Aim cos a) (%Lmo sin h) = (sina)(1) + (cosa)(0) = sina

h—0 —0

67. As in the previous exercise, we must show that lim cos(a + h) = cos a to prove that the cosine function is continuous.

—0

lim cos(a + h) = lim (cosacosh — sinasinh) = }llir% (cosacosh) — }llin}) (sinasinh)

h—0 h—

= (%im cos a) (}llim cos h) — (lim sin a) (%im sin h) = (cosa)(1) — (sina)(0) = cosa

—0 —0 h—0 —0
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(a) Since f is continuous at a, lim f(z) = f(a). Thus, using the Constant Multiple Law of Limits, we have

lim (cf )(z) = lim cf(x)=c lim f(z) = cf(a) = (cf )(a). Therefore, cf is continuous at a.

r—a

(b) Since f and g are continuous at a, lim f(z) = f(a) and lim g(x) = g(a). Since g(a) # 0, we can use the Quotient Law

S A VI L:c)_iii%f@_f(a)_(i) I s conti
of Limits: ilir}l (g)(x) = ilir}l o) 79%15119(3&) =@~ \y (a). Thus, p is continuous at a.

Proof of Law 6: Let n be a positive integer. By Theorem 8 with f(x) = =", we have

lim [g(a)]" = lim f(9()) = f (tim g(x)) = [lim g(x)]"

r—a r—a

Proof of Law 7: Let n be a positive integer. By Theorem 8 with f(z) = {/z, we have

lim 3/g(@) = lim f(g(x)) = f (lim g(x)) = 1 /Tim g(a)

T—a T—a (zﬂa Tr—a

If there is such a number, it satisfies the equation 2® +1 =2 < 2® —x+ 1 = 0. Let the left-hand side of this equation be
called f(z). Now f(—2) = =5 < 0,and f(—1) = 1 > 0. Note also that f(z) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number ¢ between —2 and —1 such that f(c) = 0, so that ¢ = ¢® + 1.

is continuous nowhere. For, given any number a and any 6 > 0, the interval (a — 0, a + 9)

fz) =

0 if x is rational
1 if x is irrational
contains both infinitely many rational and infinitely many irrational numbers. Since f(a) = 0 or 1, there are infinitely many

numbers « with 0 < |z — a| < § and |f(z) — f(a)| = 1. Thus, lim f(x) # f(a). [In fact, lim f(z) does not even exist.]

is continuous at 0. To see why, note that — |z| < g(z) < |z|, so by the Squeeze Theorem

0 if x is rational
g(z) =

x if x is irrational

lin}) g(x) = 0 = g(0). But g is continuous nowhere else. For if a # 0 and > 0, the interval (a — 8, a + &) contains both

infinitely many rational and infinitely many irrational numbers. Since g(a) = 0 or a, there are infinitely many numbers x with

0 < |z —a| <dand|g(x) — g(a)| > |a| /2. Thus, lim g(x) # g(a).

f(z) = z*sin(1/z) is continuous on (—oco, 0) U (0, oo) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since —1 < sin(1/z) < 1, we have —z* < 2?sin(1/z) < z*. Because

lim (—2*) = 0 and lim 2* = 0, the Squeeze Theorem gives us lirr%)(:c4 sin(1/x)) = 0, which equals f(0). Thus, f is

z—0 r—

continuous at 0 and, hence, on (—o0, 00).

a i b
3 +222 -1 a3 +x—2

=0 = a(z®+x—2)+b(x®+22% — 1) = 0. Let p(x) denote the left side of the last

equation. Since p is continuous on [—1, 1], p(—1) = —4a < 0, and p(1) = 2b > 0, there exists a ¢ in (—1, 1) such that
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p(c) = 0 by the Intermediate Value Theorem. Note that the only solution of either denominator that is in (—1,1) is

(—=1++5)/2 =r,butp(r) = (3v/5 — 9)a/2 # 0. Thus, c is not a solution of either denominator, so p(c) =0 =

x = cis a solution of the given equation.

75. Define u(t) to be the monk’s distance from the monastery, as a function of time ¢ (in hours), on the first day, and define d(t)
to be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to
the top of the mountain. From the given information we know that (0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now
consider the function u — d, which is clearly continuous. We calculate that (u — d)(0) = —D and (u — d)(12) = D.

So by the Intermediate Value Theorem, there must be some time ¢o between 0 and 12 such that (v — d)(t0) =0 <

u(to) = d(to). So at time ¢ after 7:00 AM, the monk will be at the same place on both days.

76. (a) 1im+ F(z) =0and lim F(z)=0,so lir% F(z) = 0, which is F'(0), and hence F is continuous at z = a if a = 0.
z—0 T

z—0~

Fora > 0, lim F(z) = lim ¢ = a = F(a). Fora < 0, lim F(z) = lim(—z) = —a = F(a). Thus, F is continuous at

Tr—a r—a r—a r—a

x = a; that is, continuous everywhere.

(b) Assume that f is continuous on the interval I. Then for @ € I, lim |f(z)| = ‘ lim f(:n)‘ = |f(a)| by Theorem 8. (If a is

an endpoint of I, use the appropriate one-sided limit.) So | f| is continuous on I.

1 ifz>0
(¢) No, the converse is false. For example, the function f(z) = { L it 0 is not continuous at z = 0, but | f(z)| = 1 is
- i x<
continuous on R.
2.6 Limits at Infinity; Horizontal Asymptotes
1. (a) As z becomes large, the values of f(x) approach 5.
(b) As x becomes large negative, the values of f(z) approach 3.

2. (a) The graph of a function can intersect a The graph of a function can intersect a horizontal asymptote.
vertical asymptote in the sense that it can It can even intersect its horizontal asymptote an infinite
meet but not cross it. number of times.

y y
y
/\ ~
0 X
0 / X \/
_/ x
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(b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown.
y y y
X Y X X
)
No horizontal asymptote One horizontal asymptote Two horizontal asymptotes
3. (a) lim f(z)=-2 (b) lim f(z) =2 (©) lirn1 flz) =00
()] lin}g flx) = - (e) Vertical: z = 1, x = 3; horizontal: y = —2,y = 2
4. (a) lim g(z) =2 (b) lim g(z)=-1 (©) lir% g(z) = —oc0
(d) lim g(z) =—oc0 (e) lim+ g(x) =00 (f) Vertical: x = 0, x = 2;
r—2" r—2
horizontal: y = —1,y = 2
5 f(2)=4, f(-2)=-4, lim f(z)=0, 6. f(0)=0, lim f(z)= oo, lirn+ f(z) = —o0,
T— —00 rx—1— r—1
lim f(z)=2 lim f(zx)=-2, lim f(z)= -2
" lix=1
-2 0 é X 0 X
y=—2
—44
7. lir% f(x) =00, lim f(z)= —o0, 8 lim f(z)=-o00, lim f(z)= o0,
r— r—3— T — —00 r——2"
lim f(z) =00, lim f(z)=1, lim f(z)=—o0, lim f(x)= oo,
r—3t r——00 r——2+ r—2
xlirrgo flz)=-1 lim f(z) =00
y x=3 y
..................... .1
y=1
0 3 X 5
—1 \ \¥ !
\ .
x=2
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9. f(0) =0, lLrlll f(z) = —o0, lim flz) = —o0,

fisodd

10. lim f(z)=-1, lim f(z)= oo,

z—0—

lim f(r) = —co, lim f(x)=1, f(3)=4,
z—07T r—37
lim f(z) =4, lim f(z)=1
z—3T1 T—00
y

1. If f(z) = 2%/2%, then a calculator gives £(0) = 0, f(1) = 0.5, £(2) = 1, f(3) = 1.125, f(4) = 1, f(5) = 0.78125,

£(6) = 0.5625, £(7) = 0.3828125, £(8) = 0.25, f(9) = 0.158203125, f(10) = 0.09765625, f(20) ~ 0.00038147,

f(50) ~ 2.2204 x 102, f(100) ~ 7.8886 x 10~". It appears that lim (2°/2%) = 0.

12. (a) From a graph of f(z) = (1 — 2/z)” in a window of [0, 10,000] by [0, 0.2], we estimate that lim f(z) = 0.14

(to two decimal places).
(b) From the table, we estimate that lim f(z) = 0.1353 (to four decimal places).
: /@) o

10,000 | 0.135308

100,000 | 0.135333

1,000,000 | 0.135335

22— 7 (222 —7)/a? [Divide both the numerator and denominator by 2>

13. lim —— = lim

500 b2+ —3  zooo (Br2+x —3)/x?
lim (2 — 7/z?)

" lim (5+ 1/x — 3/x2)

lim 2 — lim (7/2?)

€T — 00 ZT— 00

lim 5+ lim (1/z) — lim (3/22)
2 —7 lim (1/27)
~ 5+ lim (1/z) — 3 lim (1/22)

. 2-17(0)
~ 540+ 3(0)
2

~5

(the highest power of x that appears in the denominator)]

[Limit Law 5]

[Limit Laws 1 and 2]

[Limit Laws 8 and 3]

[Theorem 5]
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, 9x3—|—8x—4_\/. 92° + 8z — 4 .
. 9+8/2* —4/2® . 3
=/ lim =22 /7 D
\/Iirilo 3/a3 —5/22 + 1 [Divide by 27
lim (9 +8/2% — 4/2%)
= Tom (3/2% —5/22 7 1) [Limit Law 5]
lim 9 + lim (8/2%) — lim (4/2%)
Tim (3/2%) — Tim (5/2%) + Tm 1 (LimitLaws land2]
948 lim (1/2%) —4 lim (1/2%)
3 lim (1/2%) — 5 lim (1/27) + 1 [Limit Laws 8 and 3]
9 + 8(0) — 4(0)
= Th
30) - 5(0) + 1 [Theorem 5]
1
o g 3 (eed)/e L oagse B ATISIMUT) 4450) 4
"e—oobr—1  w—oo bz —1)/x  e—eb—1/z  lim 5— lim (1/z)  5-0 5
. . —2/x . =2/ 2 lim (1/2) 0
16. lim = lim ——— = lim = — - = =0
s5003x+7 w00 Bx+T)/x 250347/ lim 3+7 lim (1/2) 340
2 2 3 2
7 G St o BP0/ 3/t 1)t
to—oo 13 —4t+1  t——oo (83 —4t+1)/t3 t—-00l—4/t2+1/83
. . 2
im 1—4 Tim (1/2) + lim (1/t) T 1-4(0)+0
. 62 +t—5 . (6t> +t—5)/t . 64+1/t—5/t* 6+0-0
18. lim ———— = lim ~——— 2 — ] - = _
P W TR IS TE) Y Rl L Wy FEp 0-2 3
_ .3 _ .3 3 2 _
19, lim = g OV gy, L1 021 ]
roo0 2 —1243r8  r—oo (2—1243r3)/r3  ro02/r3—-1/r+3 0-0+43 3
3 _ 3 3 _ 2 3 _
20. Tim 31 —8r+2 _ lim (3z° =8z +2)/x ~ lim 3—-8/z°+2/x _3-0+40_3
w00 43 — 52 — 2  wooo (4ad —Bx2 —2)/x®  w—oo 4—5/x—2/28 4-0-0 4
2 lim VE gy GoVEVE g AYEoL 01
x—>0<>2+\/5 x—>00(2+\/§)/\/§ x—>002/\/5+1 0+1
2 1 2 2 1 2 1 2 2 1 4 2 1 2 2 2 1 2
22. lim (v’ )(u2 ): lim [ u2 ) /u = lim IC +4)/u LK - 4)/u]
U— — 00 (u2+2) U— — 00 (u2+2) /u4 U— — 00 (u +4U +4)/u
— lim (1+1/w*) (2-1/u*) _ (140)(2—0) —9
Tus—oco (14+4/u2+4/ut) T 1+04+0
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2. 1i v+ 3z2 I VvV +3z%/x }er,lo (x + 322) /a? . J f 0
Catoe 4z —1  aee (4 —1)/z lim (4 —1/z) [since & = viz® for > 0]
By 1/;5.1_ hm (1/x) +m1Lr£103 \/0+—3_£
"~ lim 4— lim (1/x) 4-0 4 4
o (t+3)/t . 143/t ‘
24, lim ——— = lim = lim ——— [smcet: V12 fort > 0]
o0 \/2 21 e 22 1)t oo /2 1/2
I LN S N Y W S
Jlim /2= 1/ \/tlim 2— lim(1/2) V2-0 277 2
25, qim Y24 VIt as/a® _ V(L Aet)/ab ince 2 — /a8 fi
Catbe 2—a8 anee (2—a9)/z8 | lim (2/2° — 1) [since & = Va5 fora > ]
lim +/1/26 +4 \/hm (1/25) —l—yhm 4
~ lim (2/23) — lm 1 0—1
—1 -1
) /1_1_41,6 ) /1+4.T6/$3 zll};noo_ (1+4(E6)/1‘6 . , _
26. zkznoo W:IE@W 2= 29)/23 = Tim (2/2% — 1) [smcea: =—Vz form<0]
lim —/1/26 44 — mli]gloo(l/zﬁ)+xlirjloo4
T2 lim (1/z%) — lm 1 2(0) — 1
0+4 —2
= =2
1 -1
205 — ¢ (22° — z) /a* 2¢ —1/2°
27. 1 — =1l ~ /7 — ] oy 7

= —oo since 22 — 1/2®> — —ocoand 1+ 3/2* — lasz — —oo

- 5 46g—4) /¢ —4/q?
28. lim —q +6q = lim —(q + ¢ )/q = lim —q+6/q 4/
qﬂoo4q —3¢+3 qoo(4¢2—3¢+3) /> a—4—3/q+3/q?

= oo since ¢ +6/q —4/¢* — coand4 —3/q+3/q+3/q*> — das q — oo
\/25t2+2+5t) . (25t2 +2) — (5t)°
29. hm V2562 + 2 — 5t) = hm V25t2 +2 - 5t)| —/—/—— | = lim —~———
( ) ( )(x/25t2+2+5t t—oo  /25t2 + 2 + 5t
2/t

2
= lim —————
t—oo \I5IZ 121 5 = (V2512 + 2+ 5t) /t

Q/t [since t = V2 fort > 0]
\/25+ 2/t2+5
— O —
Vv25+0+5

(© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part



30.

31.

33.

34,

35.

36.

37.

38.

39.
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(42® + 3z) — (2x)?

. . V4ax? —|—3x—2x] .
1 422 +3x+2z) = 1 422 4+ 3x + 2 _— | = 1]
im  (vV4z T+ 2x) im (Viz T+ 21) [ o lim_

T— — 00 T — — 00 \/m—QI
. 3z . 3z/x
= lim —— = lim
z—=oo \/Adx? + 3z — 2 w——o0 (\/41’2 + 3z — 21‘) /x
= lim -3 [since r=—vVa2forz < 0}
z——oo — /4 4+ 3/x—2
_ 3 __3
A+ 0-2 4

V2 + ar — V22 +b;z’) (\/ac2 + ax + V22 —I—b:c)

lim (\/x2+ax—\/x2+b:(:) = lim (

z—o0 V12 + ax + V22 + bx
. (2% 4 ax) — (2* + bx) . [(a —b)zx]/z
= lim = lim
z—oo /22 4+ ax + V2 + br T (\/x2+ax+\/x2+bm)/\/ﬂc_2
a—>b a—>b a—>b

e \/T+afz+/T+b/z  VI+0+VI+0 2

T i . ? — \/52 . 22—z . z® —zx)/z
zlggo (x—\/E)zzlLrgo (w—\/;;) [%] = lim ( ) = lim \/_: lim #

= lim z—1

— =0 sincex—1—ooand1+1/vVz — 1 asz — oo

T — — 00 T— — 00

1
lim (2®+22") = lim 27 <F + 2) [factor out the largest power of ] = —oo because 27 — —oo and

1/2° +2 — 2asx — —oc0.

Or: lilzl (12 + 2:L'7) = lir_n z? (1 + 215) = —00.

lim (e™* + 2 cos 3z) does not exist. lim e™® = 0, but lim (2 cos3x) does not exist because the values of 2 cos 3z

r—00 Tr— 00 €Tr— 00
oscillate between the values of —2 and 2 infinitely often, so the given limit does not exist.

Since —1 < cosz < 1and e™>® > 0, we have —e 2% < e ** cosz < e 2%, We know that lim (—e 2*) = 0 and

Tr—00

lim (e”?*) = 0, so by the Squeeze Theorem, lim (e >* cosz) = 0.

T —00 T —00

sin’ x 1

Since 0 < sin® z < 1, we have 0 < <
241~ 22+1

. We know that lim 0 =0and lim %-&-1 = 0, so by the Squeeze
xr— 00 r—00 U

sin® x

Theorem, lim =0.
xr— 00 $2+1
lim 1—e" _ ‘m (1—e")/e ~ lim /e —1 _0-1_ 1

w00 1+ 267 amoo (L +2e%)/e®  wmoo1/e*+2 042 2

631 _ 6731 1— 6761 1—0
Divide numerator and denominator by ¢*: lim 5y = lim ——— =
z—o00 e°7 + e—3w z—oo 1 + e—6z 1+0

lim e%°* = 0sincesecz — —ocoasx — (m/2)*.

z—(mw/2)t
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40. Lett =Inz. Asz — 0%, ¢t — —oco. lim tan '(Inz) = lim tan~'t= —Z by (4).

z—0t t——o0

T— 00

: . 1+4° . 1+a? ozt . o
2y _ = = = | =
4. Tlin;o n(l+2°) —In(l1+2)] = lim In Tt 2 In ( lim e ) In ( lim i 00, since the limit in

parentheses is oo.

42. lim [In(2+2) —In(1+2z)] = lim In (3130) = lim In <M) :ln1 =Inl=

- I n B +
43. (a) (1) zlir(r)l+ flx) = Ilir(n)l+ e Osincex — 0" andlnx — —occasz — 0.
(i) lim f(z) = lim —— = —oosincex — landlnz — 0~ asz — 1~
o—1— z—1— Inx
(iii) lim f(z) = lim L — osincez — landlnz — 0" asz — 1+,
x—1+ z—1+ Inx
(b) © ’
z f(x)
10,000 1085.7
100,000 8685.9 .
It appears that lim f(z) = oo.
1,000,000 72,382.4 ree

4. (@) (i) lim f(z)= lim (2—L> :0since%—>0andﬁ—>035x—>oo.

r—oo \ T Inx

(i) lim f(z) = lim 27—) :oosinceg HooandL —0asxz — 0F.
x—0F : z Inx

nr

(D, J) = B

(i) lim f(z) = lim ( - i) =00 since% — 2and li — —ooasx — 1.
r—1— T—

. 2 1
——) = —oosince = — 2and — — ocoasx — 1T,
T Inz

(b) ‘U

54

0 2 [
YEY Ty
45. (a) —~100 0 (b)
T f(z)

—10,000 | —0.4999625

—100,000 | —0.499996 2

—1,000,000 | —0.499999 6

-1
F the table, timate the limit to be —0.5.
From the graph of f(z) = V2 +x+ 1+ z, we rom the table, we estimate te fimit to be

estimate the value of lim f(x) to be —0.5.
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> _ 2 2
© lim (VETTTT40) = lim (VP TeFl4)|Yotetloe) g (o tedl) o

z——00 vi4+zrz+1l—x zo—00 (24 +1—z
N R VI V2 M L+ (1)
om0 (VaZtx+1—x)(1/x) 2—-o —\/1+ (1/z) + (1/22) — 1
_ 1+0 _ 1
—/14+04+0-1 2
Note that for < 0, we have vz2 = |z| = —z, so when we divide the radical by z, with x < 0, we get
1 1
E\/:ﬁ +x+1= 7—2\/:1:2 +z+1=—y/1+ (1/z)+ (1/22).
vz
46. (a) L5 (b)
x f(x)
10,000 | 1.44339
100,000 | 1.44338
1,000,000 | 1.44338
Ol 1 100
’ From the table, we estimate (to four decimal
From the graph of

places) the limit to be 1.4434.

f(z) = /322 + 8z + 6 — /322 + 3z + 1, we estimate

(to one decimal place) the value of lim f(z) to be 1.4.

. . (VB2 +8z+6— 322 +3x+1) (V322 +82+6+ V322 +3x+1)
(¢) lim f(z) = lim
200 200 V322 +8x 46+ /322 + 3z + 1

i (32° +82+6) — (32" +3x+1) _ i (5z +5)(1/x)

e=o0 /322 +8x +6+v322 +3x+1 2—oo (V322 +8x+6+ 322 + 3z +1)(1/x)

= lim b+5/ 5 5 _5VB ) ussre
voo /34 8/x+6/22+\/3+3/x+1/22 V3++3 2V3 6
o, tim 2HA gy, OHA)/e o Bwad 044 10
= 4 is a horizontal asymptot —f(a:)—5+4x lim f(xz) = —o0 —
y = 4 is a horizo symptote. y = = x—|—3’50$—>_3+ = 10 "
since 5+ 4z — —Tandz + 3 — 0" asz — —37T. Thus, z = —3 is a vertical /
asymptote. The graph confirms our work. -10
, 227 +1 . (222 +1)/2? 5
48. 1 == 1
vokoo 302 22 — 1 wioo (322 + 2z — 1)/22
. 24 1/2? 2
= lim ———— ===
x~>:t<><>3+2/1'71/$2 3 =5 5
2 2
soy = ; is a horizontal asymptote. y = f(z) = 337222; 2—;17 s G ixl)—(i—ler o [
=5
The denominator is zero when x = % and —1, but the numerator is nonzero, so x = % and x = —1 are vertical asymptotes.

The graph confirms our work.
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49.

50.

51.

52.

0  CHAPTER2 LIMITS AND DERIVATIVES
2
) 20" +x—1 ol 1 gim (241- L
. 2" 4a—1 . 22 . z g2 w—Eoo x a2
hm —_— = hm = 4 = hm =
22 x  x? e + z a2
lim 2+ lim 1_ lim L
x—+o0 r—+oo I r—+oo .T2 2 -+ 0—-0 . .
= 1 =7 T 0-2(0) =2, soy = 2is a horizontal asymptote.
lim 1+ lim ——2 lim —
r—+oo r—+oco I r—too I
7
222+ -1 (2z—-1)(z+1) : 1
= = = 1 = 4
v=I0 = e T e P S@) = I
li =—0o0, li = —o0, and li = oo. Thus, z = —2 1
i, J(e) = oo, lim (a) = —o0rnd li, f(a) = co. Thus, o . |
and z = 1 are vertical asymptotes. The graph confirms our work. [ / T \\ J
-3
1+ z* 1 : 1 . 1 .
lim = lim —=*—F = lim = =
vodoo 22 — gt a—doeo 2 — = 1 li ! 1 lim 1_ lim 1
x4 2 zirinoo F - z—+oo 2 r—Foo
1 . .
= % = —1, soy = —1is a horizontal asymptote.
10
14 2* 142! 14z . : I
y=f(z) = p i 21 =9 = pETTRn TR The denominator is
zero when x = 0, —1, and 1, but the numerator is nonzero, so x = 0, x = —1, and
-3 t t t t 3
x = 1 are vertical asymptotes. Notice that as + — 0, the numerator and |—\ I /—‘I
-3

denominator are both positive, so lir% f(x) = oo. The graph confirms our work.
z—

e _ x(z? — 1) _ z(z+1)(z—1) _ z(z+1)
22—6x+5 (z—1)(x—05) (x —1)(x—5) x—5

y=flz)= = g(x) forxz # 1.

The graph of g is the same as the graph of f with the exception of a hole in the 40

2
. 30 \/
graph of f at x = 1. By long division, g(z) = rAr_ z+6+ ——.
z—5 z—5
As x — +o0, g(x) — £oo, so there is no horizontal asymptote. The denominator —20 40
of giszerowhenz = 5. lim g(z) = —oo and lim+ g(z) =oc0,s0x =5isa L ’
r—5— r—5
—20
vertical asymptote. The graph confirms our work.
2e” 2e” 1/e* 2 2 . .

zlg{)lo s e_ F= zlgrolo = e_ 5 I?ZI = IILH;O T=(5/c") =1-0°= 2, so y = 2 is a horizontal asymptote.

. e’ 2(0) . . . . .

lim — E=0-5" 0, so y = 0 is a horizontal asymptote. The denominator is zero (and the numerator isn’t)
r——00 ¥ — —

whene® —-5=0 = e =5 = zx=Inb.

[continued]
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5
T

. 2e . .
lim i =™ since the numerator approaches 10 and the denominator L
z—(ln5)+ €% —

approaches 0 through positive values as x — (In 5)*. Similarly,

-4 7
lim 2e = —oo. Thus, z = In 5 is a vertical asymptote. The graph
z—(In5)— €% — B )
confirms our work.
53. From the graph, it appears y = 1 is a horizontal asymptote.
3z® + 5002°
. 323 4 50022 . - 5
lim = lim — 5
z—+oo 3 4+ 50022 + 100x 4+ 2000  s—+oo z* + 5002° + 100z + 2000
3
~ lim 34 (500/x)
" w—=£oo 14 (500/x) 4 (100/x2) + (2000/x3)
= % =3, soy = 3 is a horizontal asymptote.
2
The discrepancy can be explained by the choice of the viewing window. Try
[—100,000, 100,000] by [—1, 4] to get a graph that lends credibility to our
calculation that y = 3 is a horizontal asymptote.
-10 10
0
54, (a) 10 1
| A e ‘ A
-10 10 -100 100
{ w
J .
—-10

-1
From the graph, it appears at first that there is only one horizontal asymptote, at y ~ 0, and a vertical asymptote at

x =~ 1.7. However, if we graph the function with a wider and shorter viewing rectangle, we see that in fact there seem to be

two horizontal asymptotes: one at y = 0.5 and one at y =~ —0.5. So we estimate that

2 2
lim %}’%;1 ~05 and lim Y22l o5
Tr—00 xr —

z——oco 3xr —5H

/572
(b) £(1000) = 0.4722 and f(10,000) = 0.4715, so we estimate that lim v2eit1

T —00 $75

~ 0.47.

/322
f(—=1000) =~ —0.4706 and f(—10,000) ~ —0.4713, so we estimate that lim v2eit1

~ —0.47.
z——co 3T —9
/972 /9 +1/22
(¢) lim V2ritl = lim +7/x [since Va2 = x forx > 0] = Q ~ 0.471404.
For z < 0, we have V22 = |z| = —z, so when we divide the numerator by z, with z < 0, we
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get §\/2x2 +1= —\/L_Z V22?2 +1 = —/2 4 1/22. Therefore,
T

lim 72x2+1_ lim 77~2+1/x2_ V2
T3

= ~ —0.471404.

55. Divide the numerator and the denominator by the highest power of z in Q(z).

(a) If deg P < deg @, then the numerator — 0 but the denominator doesn’t. So lim [P(z)/Q(z)] = 0.

(b) If deg P > deg @, then the numerator — oo but the denominator doesn’t, so lim [P(z)/Q(x)] = £o0

Lo
Al

(depending on the ratio of the leading coefficients of P and Q).

==
(N

X

Hn=0 @ii))n >0 (nodd) (iii)n > 0 (neven) (iv)n <0 (nodd) (v)n <0 (neven)
From these sketches we see that
1 ifn=0
1 ifn=0
) 0 ifn>0
(@ lim 2" =<0 ifn>0 (b) lim 2" = )
20+ z—0— —oo if n<0, nodd
oo ifn<0
oo if n <0, neven
1 ifn=0
1 ifn=0
) —oo if n >0, nodd
(¢) lim " =<0 ifn>0 (d) lim z" = .
T—00 T——00 oo if n >0, neven
0 ifn<O )
0 ifn<O
57. Let’s look for a rational function.
1) lirin f(z) =0 = degree of numerator < degree of denominator
2) lir% f(z) = —0co = there s a factor of 2* in the denominator (not just z, since that would produce a sign
change at z = 0), and the function is negative near x = 0.
(3) lim f(z) =occand lim+ f(x) = —oco = vertical asymptote at z = 3; there is a factor of (z — 3) in the
r—3~ r—3

denominator.

(4) f(2)=0 = 2isan z-intercept; there is at least one factor of (z — 2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us

2 —

f(l"):xQ(T

3 as one possibility.

58. Since the function has vertical asymptotes x = 1 and « = 3, the denominator of the rational function we are looking for must

have factors (z — 1) and (z — 3). Because the horizontal asymptote is y = 1, the degree of the numerator must equal the

1:2

degree of the denominator, and the ratio of the leading coefficients must be 1. One possibility is f(z) = m
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59. (a) We must first find the function f. Since f has a vertical asymptote x = 4 and z-intercept x = 1, x — 4 is a factor of the

denominator and = — 1 is a factor of the numerator. There is a removable discontinuity at z = —1,s0z — (—1) =z + 1is
. . . -1 1 L

a factor of both the numerator and denominator. Thus, f now looks like this: f(z) = a((;T)((mx—i—_'_l))’ where a is still to
a(r: D@+1) . alz—1) a(-1-1) 2% gaz?,and

be determined. Then x1—1>n;11 flx) = x1—1>n;11 @

Dat+l) o z-42  (—1-2) 52%5

5(z — 1)(z + 1)

a = 5. Thus f(z) = (z —4)(z+1)

is a ratio of quadratic functions satisfying all the given conditions and

T e SR @) -(fe?)  _ 1-0 _
®) Ilin;of(x) o 5z152o x2 -3z —4 5115& (22/2?) — (3z/22) — (4/22) 51 -0-0

60. y = f(x) = 22> —2* = 2%(2 — x). The y-intercept is £(0) = 0. The

z-intercepts are 0 and 2. There are sign changes at 0 and 2 (odd exponents on x

and 2 — ). As 2 — oo, f(x) — —oo because z*> — coand 2 — 2 — —oo0. As

x — —o00, f(x) — —oo because z° — —oo and 2 — 2 — oo. Note that the graph

of f near z = 0 flattens out (looks like y = z).

61. y = f(z) =2* — 2% = 2*(1 —2?) = 2*(1 + 2)(1 — 2). The y-intercept is Y

f(0) = 0. The z-intercepts are 0, —1, and 1 [found by solving f(z) = 0 for z]. 0 N x
Since x* > 0 for z # 0, f doesn’t change sign at 2 = 0. The function does change
signatz = —landz = 1. As x — 400, f(2) = 2*(1 — 2?) approaches —co
because z* — oo and (1 — z?) — —oo.

62. y = f(z) = 23(x +2)?(x — 1). The y-intercept is f(0) = 0. The x-intercepts Y
are 0, —2, and 1. There are sign changes at 0 and 1 (odd exponents on x and

2 — 1). There is no sign change at —2. Also, f(z) — oo as z — oo because all

three factors are large. And f(z) — oo as & — —oo because 2> — —oo,

(z +2)® — oo, and (x — 1) — —oo. Note that the graph of f at 2 = 0 flattens out
(looks like y = —).

63. y = f(x) = (3—2)(1+2)>(1 —x)*. The y-intercept is £(0) = 3(1)*(1)* = 3. Y
The z-intercepts are 3, —1, and 1. There is a sign change at 3, but not at —1 and 1.
When z is large positive, 3 — x is negative and the other factors are positive, so

lim f(z) = —oco. When z is large negative, 3 — x is positive, so
Tr—00
3

lim f(x)=oo. 0 1 x

T — — 00
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64.

65.

66.

67.

68.
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y=f(z) =2*@® - 1)*(z+2) =2+ 1)z —1)*(x +2). The 4
y-intercept is f(0) = 0. The z-intercepts are 0, —1, 1, and —2. There is a sign
change at —2, but not at 0, —1, and 1. When « is large positive, all the factors are
positive, so lim f(z) = co. When x is large negative, only x + 2 is negative, so o 1 *
lim f(z) = —oo.
. . 1 _sinz 1
(a) Since —1 < sinz < 1forallz, —— < —= < —forz > 0. Asz — oo, —1/x — 0 and 1/x — 0, so by the Squeeze
x x x
Theorem, (sinx)/xz — 0. Thus, lim 20T .
xr— 00 xr
1
(b) From part (a), the horizontal asymptote is y = 0. The function
y = (sinz)/x crosses the horizontal asymptote whenever sinz = 0;
that is, at = 7n for every integer n. Thus, the graph crosses the —-25 25
asymptote an infinite number of times.
—0.5
(a) In both viewing rectangles, 2 10,000
ol |p ofp
lim P(z) = lim Q(z) = oo and
lim P(z) = lim Q(z) = —oo. -2 : : 2 -1 10
o P P
In the larger viewing rectangle, P and Q) Q Y
.- . -2 —10,000
become less distinguishable.
. P . 32°—5"+20 5 1 2 1\ . 2
® Jim om =i T = m(lmg m )T 3030=1 =
P and @ have the same end behavior.
lim bV '1/\/5: lim > = o = 5and
e—oox—1 1/\/x  e—ee/T—(1/z) 1-0
. 10e” —21 1/e® . 10— (21/e") 10—0 . 10e” —21 57
1 . =1 = =5.8 —_—
Jim o = Jim —— > ince —er— <J@ < 7=

we have lim f(x) = 5 by the Squeeze Theorem.

T — 00

(a) After ¢ minutes, 25t liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains
(5000 + 25t) liters of water and 25¢ - 30 = 750t grams of salt. Therefore, the salt concentration at time ¢ will be

7501 30t g

t) = = =5
C®) = 5000+ 250 ~ 200+ 7 L

g 800 304/t 30
15002004+t too0 200/t +t/t  0+1

(b) tlim C(t) = 30. So the salt concentration approaches that of the brine

being pumped into the tank.
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(a) tlim v(t) = tlim v* (1 - efgt/”*) =v"(1-0)=0" 2
(b) We graph v(t) = 1 — e °-%" and v(t) = 0.99v*, or in this case,

v(t) = 0.99. Using an intersect feature or zooming in on the point of

intersection, we find that ¢ ~ 0.47 s. .

0

(@) y = e~*/1% and y = 0.1 intersect at 1 ~ 23.03. 1 .

If 2 > 21, then e~ /1% < 0.1.
b)e /% <01 = —z/10<In0.1 =

> —10ln 7 =-10In10"" = 101n 10 ~ 23.03

OL J/ 30
322+ 1
L =L - — |g(x) — 1.5|. Note th 0.10
et g(z) Gy p—— and f(z) = |g(x) 5|. Note that
lim g(x) = 2 and lim f(z) = 0. We are interested in finding the y=0.05
z-value at which f(z) < 0.05. From the graph, we find that z ~ 14.804,
so we choose N = 15 (or any larger number). 0 20
1-— .
We want to find a value of N suchthatx > N = 2—3_1?1 — (—3)| < &, or equivalently,
x
1-— 1-—-

—-3—e< 13z < —3+4¢e. Whene = 0.1, we graph y = f(z) = Sz y = —3.1,and y = —2.9. From the graph,

Va2 +1 V2 17
we find that f(z) = —2.9 at about = 11.283, so we choose N = 12 (or any larger number). Similarly for € = 0.05, we find
that f(x) = —2.95 at about z = 21.379, so we choose N = 22 (or any larger number).

N 10 20 N 10 20 30
y=-29
y=-2.95
-3 -3}
) =—3.05
y=-31 -
-32 -3.2
We want a value of N such that x < N = ‘ﬂ —3' < g, or equivalently, 3 — e < 13 <3+¢e. Whene =0.1
m bl q y’ \/m - - At
we graphy = f(z) = 1;—?:61, y = 3.1, and y = 2.9. From the graph, we find that f(x) = 3.1 at about x = —8.092, so we
T

choose N = —9 (or any lesser number). Similarly for € = 0.05, we find that f(z) = 3.05 at about x = —18.338, so we

choose N = —19 (or any lesser number).
3.2 3.2
y=3.1 N\
y=3.05
13 y=2.95 13
y=2.9
‘ \ 2.8 s s 2.8
-20 -10 0 -30 -20 -10 0
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Ll CHAPTER2 LIMITS AND DERIVATIVES
We want to find a value of N suchthatz > N = +/zInz > 100. 150
We graph y = f() = vz Inz and y = 100. From the graph, we find =0
that f(x) = 100 at about x = 1382.773, so we choose N = 1383 (or
any larger number). ‘
0 1000 2000

(@) 1/2° < 0.0001 < > >1/0.0001 =10000 < z>100 (z>0)

(b) Ife > Ois given, then 1/2° < ¢ & 2> 1/e < x> 1,4/ Let N =1/\/E

i—0‘:l2<s,so lim l:O.
x T— 00

1
Thenz >N = z>-— = 5 >
T T

Ve
(@) 1/4/7 < 0.0001 < /z>1/0.0001 =10 < z>10°

(b)Ifs>Oisgiven,then1/\/5<s = \/E>1/5 & z>1/e% Let N =1/¢°

Th >N = > = — —0=—F< lim — =0.
enx x ' ’ 7 g, SOILIEO\/_
Forz <0,|1/z —0] = —1/x.Ife > Oisgiven, then —1/x <e¢ < z< —1/e.

Take N = —1/e. Thenz <N = z<-1l/e = |[(1/z)—0[=-1/z<esso lim (1/z)=0.

Given M > 0,weneed N > Osuchthatz > N = 2°> M. Nowz®>>M < 2> M, sotake N = +/M. Then

e>N=VM = 2*>M,so lim z° = .
Tr— 00

Given M > 0,weneed N > Osuchthatz > N = e > M.Nowe® > M < x> InM,sotake
N = max(1,In M). (This ensures that N > 0.) Then z > N = max(1,InM) = € > max(e,M)> M,

so lim e® = oo.
Tr— 00

Definition Let f be a function defined on some interval (—oo, a). Then lim f(z) = —oo means that for every negative

r——00
number M there is a corresponding negative number N such that f(z) < M whenever z < N.

Now we use the definition to prove that lim (1 + x3) = —oo. Given a negative number M, we need a negative number
Nsuchthatz <N = 1+2° <M. Nowl+a®<M & 2°<M-1 & z< /M- 1. Thus, we take

= /M —T1andfindthatz < N = 1+2° < M. This proves that lim (1+2°) = —oo.
(a) Suppose that lim f(z) = L. Then for every € > 0 there is a corresponding positive number N such that |f(z) — L| < e

whenever ¢ > N.Ift = 1/z,thenz >N < 0<1/z<1/N <& 0<t<1/N. Thus, forevery

€ > 0 there is a corresponding § > 0 (namely 1/N) such that | f(1/t) — L| < e whenever 0 < ¢ < §. This proves that
lim f(1/t) =L = lim f(x).

t—0t T — 00

Now suppose that lim f(z) = L. Then for every € > 0 there is a corresponding negative number N such that

|f(z) — L] < ewheneverz < N.Ift =1/z,thenz < N < 1/N<1l/x<0 <& 1/N <t <O0. Thus, forevery
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€ > 0 there is a corresponding > 0 (namely —1/N) such that | f(1/¢) — L| < e whenever —6 < ¢t < 0. This proves that

lirgli f/t)y=L= xEIPOO f(x).

(b) lim xsin 1 = lim ¢sin 1 [let x = t]
z—0t T  t—0t

= lim 1 siny [part (a) with y = 1/¢]

y—oo Y
— lim 22 [lety = x]
T — 00 xT
=0 [by Exercise 65]

2.7 Derivatives and Rates of Change

1)~ 1)

1. (a) This is just the slope of the line through two points: mpg = A_Z = po—

(b) This is the limit of the slope of the secant line PQ as () approaches P: m = lin% %g(?))

2. The curve looks more like a line as the viewing rectangle gets smaller.

1.5

-1 1 —0.5 0.5 —0.1

3. () (i) Using Definition 1 with f(2) = 2® + 3z and P(—1, —2), the slope of the tangent line is
_ 2 o 2
f(@) = fla) _ lim (@ 4+38z)—(=2) . +3x+2 lim (z+2)(x+1)

=1 =
m a:lB}z T —a z——1 x—(—l) z——1 x+1 z——1 rx+1

= lim (z+2)=-1+2=1

z——1

(ii) Using Equation 2 with f(x) = 2 + 3z and P(—1, —2), the slope of the tangent line is

— 2 J— — J—
me lim L@P = f@) o FEIR) = fED (IR 3 )] - (22)
h—0 h h—0 h h—0 h
_ 2 _ 2
R R St BN SRS s SUNG TURSS ) BT
h—0 h =0 h h—0 h h—0

(b) An equation of the tangent lineisy — f(a) = f'(a)(x —a) = y— f(-1)=f'(-1)(z—(-1)) =
y—(-2)=1z+1) = y+2=z+1l,ory=z-—1.

(c) 1 The graph of y = x — 1 is tangent to the graph of y = x? + 3z at the point

L A,

(=1, —2). Now zoom in toward the point (—1, —2) until the parabola and

the tangent line are indistinguishable.
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4. (a) (i) Using Definition 1 with f(x) = x4 1 and P(1, 2), the slope of the tangent line is
3 . (z—=1) (2P +z+1)

— 3 J— —
f(@) = f(a) = lim @+1)=2 im == L_ lim
z—1 x —1 z—1 r—1

m = lim
r—a Tr—a r—1 rx—1

=lm (2*+2+1) =1 +1+1=3

(ii) Using Equation 2 with f(z) = 2 + 1 and P(1, 2), the slope of the tangent line is

flath) —fl@) _ O+ —f@) _ (A0 1] -2
h

m= }Lli)r%) h h—0 h—0 h
. 14+3h+3h*+h*+1-2  K*+3h*+3h . h(h®+3h+3)
= lim = lim = lim
h—0 h h—0 h h—0 h

:}Lir%(h2+3h+3) =3

(b) An equation of the tangent line is y — f(a) = f'(a)(x —a) = y—f()=f()(z-1) = y—2=3(x—-1),

ory =3x — 1.
The graph of y = 3z — 1 is tangent to the graph of y = 2® + 1 at the

©

point (1,2). Now zoom in toward the point (1, 2) until the cubic and the

tangent line appear to coincide.

-3 I /_ 4
| / )
-1
5. Using (1) with f(z) = 22? — 52 4+ 1 and P(3,4) [we could also use Equation (2)], the slope of the tangent line is
m— lim f(z) = f(a) ~ lim (22° —bz+1)—4 — lim 20" —5x -3 _ lim (2z4+1)(z — 3)
r—a T —a x—3 x—3 z—3 x—3 z—3 -3

= lim(20+1) =2(3)+1=7

Tangentline: y—4=7(z—-3) & y—4=Tx-21 & y=T7z—17

6. Using (2) with f(z) = 2* — 22 and P(1, —1), the slope of the tangent line is
2 _ 31 _ (_
flath) = fa) _ o JO+R)=J@) o (A1) 20+ )7 — (1)

m= ;PL% h—0 h h—0 h
. 14+2h+h*—2—6h—6h>—2h+1 . —2h®—5h*—4h . —h(2h® +5h +4)
= lim = lim =lim —————~
h—0 h h—0 h h—0 h

= lim [~(2h® + 5h + 4)] = —4

Tangent line: y — (1) =—4(z—1) & y+1l=—-4dr+4 & y=—-4z+3

7. Using (1) with f(z) = Tt § and P(2, —4), the slope of the tangent line is
T

x+2_(_4) z+244(x —3)
m=lim 2B = @) 23 fim—%=3 o100
r—a xr—a x—2 r—2 x—2 x—2 r—2 (.T—Z)(J)—E))
5(x —2) 5 b -5

— lim 22y =
2 (z—2)(x—3) arz—3 2-3

Tangent line: y — (—4) = -5(z —2) & y+4=-5z+10 & y=-5x+6
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8. Using (1) with f(z) = /1 — 3z and P (—1, 2), the slope of the tangent line is

m= 1ij: lim 7”_?H: lim (\/1_313_2)(\/1_31"‘2) — lim (1—-3z)—4
z—a xr—a z——-1 I — (71) z——1 (.T—l— 1)(m—|—2) z——1 (.T+ 1)(M+2)

—3z-3 . —-3(x+1)

-3 3
= i 1
M} @+1)(VI—3z+2) P (z+1)(VT=3z+2)

-3
li = =_2
o1 T —3512 242 4

Tangentline: y —2=-3[z—(-1)] & y-2=-3z-2 & y=-3z4

9
NI

9. (a) Using (2) with y = f(z) = 3 + 422 — 22®, the slope of the tangent line is

fla+h)— f(a) ~ lim 3+4(a+h)? —2(a+h)® — (3+4a® — 2a°)

i 3 4(a® + 2ah + h?) — 2(a® + 3a*h + 3ah® + h?) — 3 — 4a® + 24°
o h—0 h

 im 3 +4a® + 8ah + 4h® — 2a® — 6a°h — 6ah® — 2h® — 3 — 4a® + 2a°
o h—0 h

. 8ah +4h* — 6a*h — 6ah® —2h® . h(8a + 4h — 6a® — 6ah — 2h?)
= lim = lim
h—0 h h—0 h

= lim (8a + 4h — 6a® — 6ah — 2h%) = 8a — 60>

(b) At (1,5): m = 8(1) — 6(1)% = 2, so an equation of the tangent line (c) 10
isy—5=2x—-1) & y=2z+3.
At (2,3): m = 8(2) — 6(2)% = —8, 50 an equation of the tangent
lineisy —3=-8(z—2) & y=-8z+19. -2 \ |4
-3

10. (a) Using (1) with f(x) = 2v/z and P(a7 2\/5), the slope of the tangent line is

m= lim 2Vz—2va = lim (2\/5_2\/a>(2\/;+2\/5) = lim Az —da
e wma s o) (avatova) " (o —a) (2 +2Va)

4(x —a) 4

4 1
lim = =
2\/;+2\/;) e=a2v/z +2vVa  2Va+2Va 4

= or ~— [a > 0]

BR

= lim

B

S

/

(b) At (1,2): m = % = 1, so an equation of the tangent line is (©

y—2=1xz—-1) & y=z+1

1 1
At (9,6): m = — = —, so an equation of the tangent line is
(9,6) 73 q g
9)

& y:§x+3.

11. (a) We have d (t) = 16t>. The diver will hit the water when d (t) = 100 < 16t> =100 < *=2 <&

t= g (t > 0). The diver will hit the water after 2.5 seconds.
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(b) By Definition 3, the instantaneous velocity of an object with position function d(t) at time ¢t = 2.5 is

(2.5) = lim d(2.5+4 h) — d(2.5) — lim 16(2.5+ h) 100 ~ lim 100 + 80h + 16h 100
h—0 h h—0 h h—0 h
2
— lim SORFI60T ) RBOFI6R) i) (80 4+ 168) = 80
h—0 h h—0 h—0

The diver will hit the water with a velocity of 80 ft/s.

12. (a) Let H(t) = 10t — 1.86t>.

o HA+h) —H) [10(1+ k) — 1.86(1 + h)?] — (10 — 1.86)

= 1nm

v(l)=1

h—0 h—0 h
. 104 10hA — 1.86(1+2h+h2) — 10+ 1.86 . 10+ 10h — 1.86 — 3.72h — 1.86h% — 10 + 1.86
= lim = lim
h—0 h h—0 h
_ 2
— lim O:28A L8Ry (6.28 — 1.86h) = 6.28
h—0 h h—0

The velocity of the rock after one second is 6.28 m/s.

o Hlath) - H(a) _ . [10(a + h) — 1.86(a + h)*] — (10a — 1.86a%)

R z
. 10a + 10h — 1.86(a® + 2ah + h?) — 10a + 1.86a>
= lim
h—0 h
. 10a + 10h — 1.86a% — 3.72ah — 1.86h% — 10a + 1.864> . 10h — 3.72ah — 1.86h°
= lim = lim
h—0 h h—0 h
~ i A0 =3T2a =186 _ 5 40— 5794 — 1.86k) = 10 — 3.72a
h—0 h h—0

The velocity of the rock when ¢t = a is (10 — 3.72a) m/s.

(c) The rock will hit the surface when H =0 < 10t —1.86t* =0 < (10 —1.86t)=0 < t=0or1.86t= 10.

The rock hits the surface when ¢t = 10/1.86 ~ 5.4 s.

(d) The velocity of the rock when it hits the surface is v( g5 ) = 10 — 3.72($g5) = 10 — 20 = —10 m/s.

1.86
1 1 a® — (a+ h)?
_ 2 2 2 2
13. v(a) = lim slath) = s(a) = lim (a+h) 2 — lim _@lath)?
h—0 h h—0 h h—0 h
. a®—(a® +2ah + Rh?) . —(2ah+h?
= lim = lim ———=
h=0 ha?(a + h)? h—0 ha2(a + h)?
_ lim —h(2a+h) im —(2a+h)  —2a —_—2m/s
T ho0ha2(a+h)2 h—0a2(a+h)2 a?-a? a3
-2 -2 1 -2 2
Sowv(l) = SE —2m/s,v(2) = 55 = —Zm/s, and v(3) = 5 = o m/s.
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14. (a) The average velocity between times ¢ and ¢ + h is

s(t+h) —s(t)  5(t+h)*—6(t+h)+23— (5t° — 6t +23)

(t+h)—t h
A +th+ 2h® — 61— 6h +23 — 11 + 6t — 23
B h
th+ih*>—6h h(t+3h—6

(i) [4,8]: t = 4, h = 8 — 4 = 4, so the average velocity is 4 + 3 (4) — 6 = 0 ft/s.
(i) [6,8]: t = 6, h = 8 — 6 = 2, so the average velocity is 6 + 5 (2) — 6 = 1 ft/s.
(iii) [8,10]: t = 8, h = 10 — 8 = 2, so the average velocity is 8 + $(2) — 6 = 3 ft/s.

(iv) [8,12]: t = 8, h = 12 — 8 = 4, so the average velocity is 8 + 2 (4) — 6 = 4 ft/s.

(b) v(t):}lﬂw:}{%(wéh—@ ()
=t—6, sov(8)=2 ft/s.
20 1

I N B
15. (a) The particle is moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to

the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when s is constant; that is, on the

intervals (1,2) and (3,4).

vA (m/s)
(b) The velocity of the particle is equal to the slope of the tangent line of the L

graph. Note that there is no slope at the corner points on the graph. On the |

1+ o o
interval (0, 1), the slope is T : 0= 3. On the interval (2, 3), the slope is o ; A

r (seconds)

1-3 . . 3-1 T —
33 = —2. On the interval (4, 6), the slope is 64 1. 1

16. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.

(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two

graphs—this appears to be somewhere between 9 and 10 seconds.

(¢) The runners had the same velocity when the slopes of their respective position functions are equal—this also appears to be
at about 9.5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity

for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.
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17. ¢’(0) is the only negative value. The slope at z = 4 is smaller than the slope at z = 2 and both are smaller than the slope

atz = —2. Thus, ¢'(0) < 0 < ¢'(4) < ¢'(2) < ¢'(-2).

f(60) — f(20) _ 700 —300 _ 400 _
60—20 40 T40 T

18. (a) On [20, 60]: 10

(b) Pick any interval that has the same y-value at both endpoints. [10, 50] is such an interval since f(10) = 400 and
£(50) = 400.

£(40) — f(10) _ 200 —400 _ —200 _ 20
0-10 30 30 3

(©)
This value represents the slope of the line segment from (10, £(10)) to (40, f(40)).
(d) The tangent line at z = 50 appears to pass through the points (40, 200) and (60, 700), so
700 —200 500

’ ~ ——_— —_ = — =
1'(50) ~ 60 — 40 20 25.

(e) The tangent line at x = 10 is steeper than the tangent line at x = 30, so it is larger in magnitude, but less in numerical

value, that is, f(10) < f'(30).
(f) The slope of the tangent line at z = 60, f'(60), is greater than the slope of the line through (40, f(40)) and (80, f(80)).

So yes, f'(60) > W

19. Using Definition 4 with f(z) = v/4z + 1and a = 6,

£(6) = tim LOEM IO _ pyp, VHOTITLD oy, V2O LI

h—0 h—0 h h—0
i (V25 +4h—5)(V25+4h+5) L (254 —25 4h
~ h—0 h(v/25 +4h +5) ~ h=0h(v25+4h+5)  h—0 h(\/25+ 4h + 5)

4 2

4
h—0 /25 +4h + 5 5+5 5

20. Using Definition 4 with f(z) = 5z* and a = —1,

_ _ _ _ 4 _ _ 2 3 4\
f’(—l):limf( L+h) —f(=1) _ 5(=1+m)*—5 . 5(1—4h+6h”—4h>+h")—5
h—0 h h—0 h h—0 h
. —20h + 30h* — 20R® + 5h* —h(20 — 30h + 20h* — 5h°)
= lim = lim
h—0 h h—0 h

= lim [—(20 — 30h + 20h*> — 5h°)] = —20
h—0

2

21. Using Equation 5 with f(z) = xi 5 anda = 3,
x? _ 2? — (z+6)
B L = B e
(x +2)(x—3) r+2 3+2 5

=1 = 1i _— = = —
i3 (@ +6)(z—3) a3z+6 B3+6 0
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1
22. Using Equation 5 with f(z) = ——=anda =1,
V2 + 2

1 1 2—+2x+2

F1) = tim 2O =)y VI T2 2. 22 . 22wt

z—>1 -1 z—1 z—1 z—1 z—1 e—122x+2(x—1)
i (2-V22+2)(24+V2z+2) i 4—(2z+2)
S eo12y22+2(x—1)(2+ V22 +2)  =—12y20+2(z—1)(2+ 22 +2)
—2x+2 _ —2(zx—1)
BN 2(z—1)(2+ 2z + 2 )—ﬁl 2v2z +2(z —1)(2+ 22+ 2)
= lim —1 = —1 2—1

+=1 2z +2(2+vV22+2) VA(2+V4) 8

23. Using Definition 4 with f(x) = 22 — 5x + 3,
fla+h) = f(a) [2(a + h)* —5(a+ h) + 3] — (2a° — 5a + 3)

b L
J'(a) = Jim, 7 = Jimy h
. 2a®’+4ah+2h* —5a—5h+3—2a2+5a—3 . 4dah+2h% —5h
= lim = lim ——M—
h—0 h h—0 h
i PAOH2R0) o a2k —B) = da— 5
h—0 h h—0

24. Using Definition 4 with f(t) = t* — 3t,
fla+h)—fa) _ lim [(a+ h)® —3(a+ h)] — (a® — 3a)

feN s
f (a) o flbli}%) h h—0 h
. a®+3a®h +3ah® +h® —3a—3h—a®+3a . 3a®h+3ah® +h® —3h
= lim = lim
h—0 h h—0 h
2 2 _
i PO AR =) (302 4 Sah 4 B2 —3) = 3a2 — 3
h—0 h h—0
. . . 1
25. Using Definition 4 with f(t) = TR
1 1 (a*+1) — [(a+h)* +1]
2 2 2 2
) g LN @) TR @t et @D
h—0 h h—0 h h—0 h
1 (> +1) = (a®+2ah+h*+1) —(2ah + h?) _ —h(2a + h)
TS0 Allath2+1@+1)  rsoh[@th)2+ 1@ +1) oo hl(a+ )2+ 1(a + 1)
— lim —(2a+h) _ —2a __ 2a
S n=o0[(a+h)2+1)(a2+1)  (a2+1D(a2+1) (a2 +1)2
26. Use Definition 4 with f(2) = = o
a+h a (a+h)(1—4a)—a[l —4(a+ h)]
f/(a) = lim fla+h)— f(a) ~ Jim 1—4(a+h) 1—4a ~ Jim [1—4(a+ h)](1—4a)
h—0 h—0 h h—0 h
_lima—4a2+h—4ah—a+4a2+4ah lim h
T RS0 h[1 —4(a+ h)](1 — 4a) h=0 h[1 — 4(a + h)](1 — 4a)
1 1 1

S i (—d0) A —da)(—da) {1 —4a)?
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140 U CHAPTER2 LIMITS AND DERIVATIVES

27. Since B(6) = 0, the point (6, 0) is on the graph of B. Since B’(6) = —1, the slope of the tangent line at z = 6 is —3.

Using the point-slope form of a line givesus y — 0 = —1 (z — 6), ory = —32 + 3.

28. Since g(5) = —3, the point (5, —3) is on the graph of g. Since ¢'(5) = 4, the slope of the tangent line at z = 5 is 4.

Using the point-slope form of a line gives us y — (—3) = 4(x — 5), or y = 4a — 23.

29. Using Definition 4 with f(z) = 32> — 2® anda = 1,

vin o fAER) = FA) . [B14+h)—(1+h)%]—2
FO=m= = g
. (34+6h+3h*) —(1+3h+3r2+h*)—2  3h—h*  h(3—h?)
= lim = lim = lim
h—0 h h—0 h h—0 h
=1lim(3-h*)=3-0=3
h—0
Tangentline: y —2=3(zx—1) & y—2=3z-3 < y=3z-1
30. Using Equation 5 with g(z) = 2* —2anda = 1,
iy e 9@ =) (@t -2) (=) ozt -1 (@ 1)@ 1)
g'(1) = lim =—"—"= = lim z—1 i z—1
2 —
= lim @+ 1) +11)(m D _ lim [(® + 1) (¢ + 1)] = 2(2) = 4
T— xTr — T—

Tangentline: y — (=1) =4(z—-1) & y+1l=42r—-4 & y=4x—-5

31. (a) Using Definition 4 with F'(x) = 5x/(1 + 2?) and the point (2, 2), we have (b) 4
52+h) 9
— 2
F'(2) = lim F(2+h) — F(2) — lim 14+(2+h)
h—0 h h—0 h -1 6
5h+10 5h 4 10 — 2(h? + 4h + 5)
— lim h?+4h+5 — lim h?+4h+5 -2
h—0 h h—0 h
—2h? — 3h . h(-2h-3) . —2h-—3 -3

= R r 4Rt 5) neo R+ 4h+5 5

o0 h(R2 + 4h +5) oo A(h® + 4h + 5)

So an equation of the tangent line at (2,2) isy —2 = —2(z —2) or y = -2z + 2.

32. (a) Using Definition 4 with G(z) = 4z — x>, we have

i [0 ) = (0t 1))~ (40— a?)
h—0 h

vy _ . Gla+h)—Gl(a)
) = oy A=

4a® + 8ah + 4h* — (a® + 3a*h + 3ah® + h?) — 4a® + a®

= lim

h—0 h,
. 8ah+4h* —3a*h —3ah® —h® . h(8a -+ 4h — 3a® — 3ah — h?)
= hm = hm
h—0 h h—0 h

= Ain})(Ba + 4h — 3a* — 3ah — h?) = 8a — 3a?
[continued]
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33.

34.

35.

36.

37.

38.

SECTION 2.7  DERIVATIVES AND RATES OF CHANGE

At the point (2,8), G'(2) = 16 — 12 = 4, and an equation of the (b) 12

O

tangent line is y — 8 = 4(x — 2), or y = 4x. At the point (3,9),
G’'(3) = 24 — 27 = —3, and an equation of the tangent line is
y—9=-3(x—3),ory=—3z+18.

_2l \

| 7

-2

For the tangent line y = 4z — 5: when z = 2, y = 4(2) — 5 = 3 and its slope is 4 (the coefficient of z). At the point of

tangency, these values are shared with the curve y = f(z); thatis, f(2) = 3 and f'(2) = 4.
Since (4,3) isony = f(z), f(4) = 3. The slope of the tangent line between (0, 2) and (4,3) is 1, so f'(4) = 1.

f(44h) — f(4) [80(4 + h) — 6(4 + h)*] — [80(4) — 6(4)]

) =S4 = Jim =y = Jim h
(320 + 80h — 96 — 48h — 6h?) — (320 —96) .. 32h — 6h>
= lim = lim ———
h—0 h h—0 h
— lim PB2=6R) (32— 6h) = 32 m0s
h—0 h—0

The speed when ¢t = 4 is [32] = 32 m/s.

45 45 45
10+ ——— ) - (10+— — -9
i fA+R)—f4) . ( 4—|—h+1> ( 4—|—1>7 . 54+h
WSSO T T n T
45 —9(5+ h) —9h . -9 9
B0 R(B+R) hbOh(Bth) ko5 +h 5 °
The speed when t = 4is |—2| = 2 m/s.
The sketch shows the graph for a room temperature of 72° and a refrigerator Temperature
(in °F)
72
temperature of 38°. The initial rate of change is greater in magnitude than the
rate of change after an hour. i
0 1 % Time
(in hours)
The slope of the tangent (that is, the rate of change of temperature with respect T(°F)
to time) at ¢ = 1 h seems to be about 75— 168 —0.7 °F/min. 2001
132 - 0 P
1001

(© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

o 30 60 90 120 150 180
(min

)

141



142 0O CHAPTER2 LIMITS AND DERIVATIVES

39. We begin by drawing a curve through the origin with a y y

slope of 3 to satisfy f(0) = 0 and f'(0) = 3. Since I+ / 1

f'(1) = 0, we will round off our figure so that there is

a horizontal tangent directly over x = 1. Last, we

make sure that the curve has a slope of —1 as we pass

over x = 2. Two of the many possibilities are shown.

40. We begin by drawing a curve through the origin with a slope of 1 to satisfy

g(0) = 0 and ¢'(0) = 1. We round off our figure at z = 1 to satisfy g’ (1) = 0, 14

and then pass through (2, 0) with slope —1 to satisfy g(2) = 0 and ¢'(2) = —1. 5

5]
¢
N

We round the figure at x = 3 to satisfy g’(3) = 0, and then pass through (4, 0) —lt

with slope 1 to satisfy g(4) = 0 and g’(4) = 1. Finally we extend the curve on

both ends to satisfy lim g(z) = cocand lim g(z) = —oc.

T— 00 T ——00

41, We begin by drawing a curve through (0, 1) with a slope of 1 to satisfy g(0) = 1

and ¢’ (0) = 1. We round off our figure at x = —2 to satisfy g’(—2) = 0. As

x — =51, y — 00, so we draw a vertical asymptote at z = —5. Asx — 57, 1
y — 3, so we draw a dot at (5, 3) [the dot could be open or closed]. &Z/O =
r=-5
42. We begin by drawing an odd function (symmetric with respect to the origin) 7]
through the origin with slope —2 to satisfy f'(0) = —2. Now draw a curve starting
at x = 1 and increasing without bound as x — 27 since xlir; f(z) = oo. Lastly, .
. —p | -

reflect the last curve through the origin (rotate 180°) since f is an odd function.

vV9+h—-3

43. By Definition 4, }lLinB = f'(9), where f(z) = v/ and a = 9.

h
e 2th _ o2
44. By Definition 4, }lLin}) - = f'(—2), where f(z) = e” and a = —2.
6
. . —64 , 6
45. By Equation 5, hrré o = f'(2), where f(z) = 2° and a = 2.
L 4
46. By Equation 5, lim z 1/ (4), where f(z) = 1 and a = 1
. 5 ey . 1 5 = 4
4
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48.

49.

50.

51.

52,

53.

54,

SECTION 2.7  DERIVATIVES AND RATES OF CHANGE U1 143

tan(%—i—h)—l ﬂ x
1ti i _ = = = = —
By Definition 4, %11% W f (4),where f(z) =tanx and a 1
By Equation 5, li Sin6'*%—10’ %), where f(6) = sin¢ and a = =
y Equation ,9}7{1/6 ST (6 , where =sinfanda = .

AC _ C(105) — C(100) _ 6601.25 — 6500
N 105 — 100 N 5

(@ () = $20.25 /unit.

AC  C(101) — C(100) _ 6520.05 — 6500

Az 101 — 100 1 = $20.05/unit.

(i)

®) C(100 + h) — C(100) _ [5000 + 10(100 + h) + 0.05(100 + h)*] — 6500  20h + 0.05h>
h - h - h
=20+ 0.05h, h #0

C(100 + h) — C(100)
h

So the instantaneous rate of change is %in}) = %imo (20 4 0.05h) = $20/unit.

(a) H'(58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is

58 °F. The units are dollars/ °F.

(b) If the outside temperature increases, the building should require less heating, so we would expect H’ (58) to be negative.

(a) f'(x) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are
dollars per ounce.

(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost

of producing the 800th (or 801st) ounce is about $17.

(¢) In the short term, the values of f’(x) will decrease because more efficient use is made of start-up costs as z increases. But
eventually f(x) might increase due to large-scale operations.

(a) f(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.
The units for f(8) are pounds/(dollars/pound).

(b) f'(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally

less willing to buy a product when its price increases.

(a) S'(T) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg/L)/°C.

(b) For T = 16°C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). So

g 2_713 = —% = —0.25 (mg/L)/°C. This means that as the temperature increases past 16°C, the oxygen

S'(16) ~
solubility is decreasing at a rate of 0.25 (mg/L)/°C.

(a) S'(T) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units

are (cm/s)/°C.

(© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



144 U CHAPTER2 LIMITS AND DERIVATIVES

(b) For T' = 15°C, it appears the tangent line to the curve goes through the points (10, 25) and (20, 32). So

32 —-25
20-10

S'(15) = = 0.7 (cm/s)/°C. This tells us that at 7" = 15°C, the maximum sustainable speed of Coho salmon is

changing at a rate of 0.7 (cm/s)/°C. In a similar fashion for 7' = 25°C, we can use the points (20, 35) and (25, 25) to

obtain S’(25) ~ 25735 _

N or—on = —2 (cm/s)/°C. As it gets warmer than 20°C, the maximum sustainable speed decreases

rapidly.

55. (a) (i) [1.0,2.0]: 0(22) : f’(l) _ 0.018 I 0.033 — 0015 g/%

. C0(2)—C(15) 00180024 —0.006 g/dL
(i) [15,2.0): =5 = = = o2 — —0.012 85
(i) (20,25 C25) =C() _ 00120018 _ 0006 _ _, .\, g/dL

RN 25-2 0.5 05 T h
(iv) [2.0,3.0]: 0(3?)’ - 20(2) _ 0.007 . 0.018 _ 4011 %

(b) We estimate the instantaneous rate of change at t = 2 by averaging the average rates of change for [1.5, 2.0] and [2.0, 2.5]:

—0.012 +2(_O'012) = —0.012 g/% After two hours, the BAC is decreasing at a rate of 0.012 g/%
. N(2010) — N (2008 16,858 — 16,680 178 .
56. (a) (i) [2008,2010]: ( 2013 — 20(08 ) = 3 = = 89 locations/year.
3 N(2012) — N(201 18,066 — 16, 12 ,
(ii) [2010, 2012]: ( ;)012) — 20(100 0) _ 18,066 5 6,858 _ 208 = 604 locations/year.
The rate of growth increased over the period 2008 to 2012.
(b) Averaging the values from parts (i) and (ii) of (a), we have w = % = 346.5 locations/year.
(c) We plot the function N and estimate the slope of the tangent line at N
25,000
2 = 2010. The tangent segment has endpoints (2008, 16,250) and
(2012,17,500). An estimate of the instantaneous rate of growth in 20,000 y
. 17,500 — 16,250 1250 . 15.000 4 -
20101is 2012 —2008 — 4 - 312.5 locations/year.
10,000 +
5,000 +
2008 1 2002 1 016

57. Since f(z) = xsin(1l/z) when z # 0 and f(0) = 0, we have

£1(0) = ,llli% f(0O+h) — f(0) _ ,lllg}) hsin(l}{h) -0

= }lLinB sin(1/h). This limit does not exist since sin(1/h) takes the

values —1 and 1 on any interval containing 0. (Compare with Example 2.2.5.)
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58. Since f(x) = 2?sin(1/z) when 2 # 0 and f(0) = 0, we have

, . f(04+h)—fO) . hZsin(l/h) -0 . . . !
£'(0) }Llr% h flbli% 5 ,lllir%)hsm(l/h) Since —1 < sin 5 < 1, we have
—|h| < |h] sin% <|h = =< hsin% < |h|. Because %in}) (—1h]) =0and }llimo |h| = 0, we know that

1
}Lirr%) (h sin E) = 0 by the Squeeze Theorem. Thus, f'(0) = 0.

59. (a) The slope at the origin appears to be 1.

=27 2
-4
(b) The slope at the origin still appears to be 1. 0.25
—0.4 0.4
-0.25
(c) Yes, the slope at the origin now appears to be 0. 0.005
—0.008 / 0.008
-0.005

60. (a) The symmetric difference quotient on [2004, 2012] is (with @ = 2008 and d = 4)

f(2008 +4) — f(2008 —4)  f(2012) — £(2004)

2(4) 8

16,4327 — 7596.1
- 8

= 1104.575 = 1105 billion dollars per year

This result agrees with the estimate for D’(2008) computed in the example.

(b) Averaging the average rates of change of f over the intervals [a — d, a] and [a, a + d] gives

fla+d) — f(a)
d

flo) —fla—d)  flatd)—f(a)  f(a)— fla—d)
a—(a—d) (atd)—a _ d +
2 2
_ Ja+d)— fa—d)

2d

which is the symmeric difference quotient.
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(c) For f(z) = 2® — 20® +2,a = 1, and d = 0.4, we have Y1
Py~ TAH0 —F1-04) _ f(14) - £(06) 15}
2(0.4) 0.8 1
0.824 — 1.496
= 08 =—-0.84

On the graph, (i)—(v) correspond to:
(i) f(z) =2 —22% +2

(i1) secant line corresponding to average rate of change

over [1 —0.4,1] = [0.6,1] 05
(iii) secant line corresponding to average rate of change over [1,1 + 0.4] = [1,1.4]
(iv) secant line corresponding to average rate of change over [1 — 0.4,1 + 0.4] = [0.6, 1.4]
(v) tangentlineatx =1

The secant line corresponding to the average rate of change over [0.6, 1.4] —that is, graph (iv) — appears to have slope

closest to that of the tangent line at z = 1.

2.8 The Derivative as a Function

1. We estimate the slopes of tangent lines on the graph of f to
determine the derivative approximations that follow.

Your answers may vary depending on your estimates.

@ f'(0) =3 (b) f(1)=0
© f(2) ~ -1 @ f'(3) =~ -3
(@ f'(4) =~ -1 () f'(5) = 0
(® f'(6) =1 () f(7) ~ 1

2. We estimate the slopes of tangent lines on the graph of f to
determine the derivative approximations that follow. Your

answers may vary depending on your estimates.

@ f(-3)= -1 () f'(=2)~0
© f'(-1) =3 (d) f'(0)~ %
(e) f'(1)=3 ) f'(2)=0

(@ f'(3)=~ -3

3. (a) = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b) = 1V, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.
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(c) =1, since the slopes of the tangents to graph (c) are negative for x < 0 and positive for z > 0, as are the function values of
graph [.

(d)' = 11, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 4 —11: First plot z-intercepts on the graph of f” for any horizontal tangents on the graph of f. Look for any corners on the graph
of f—there will be a discontinuity on the graph of f. On any interval where f has a tangent with positive (or negative) slope, the graph of f’ will be
positive (or negative). If the graph of the function is linear, the graph of f’ will be a horizontal line.

4. Y ; 5, Y 6. f Y
a i/
0 i 0 X
\ / ! Ny
L - r
\O X ! X
7 y 8. Y 9 )
TN TN\ /N
0 X ya — :

IR

0 ' X 0 %
£
0 X
i
10. 1. Y
_\\
U
0 X
y
0
[
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12.

13.

14.

15.

16.

U CHAPTER2 LIMITS AND DERIVATIVES

The slopes of the tangent lines on the graph of y = P(t) are always
positive, so the y-values of y = P'(t) are always positive. These values start
out relatively small and keep increasing, reaching a maximum at about

t = 6. Then the y-values of y = P'(¢) decrease and get close to zero. The
graph of P’ tells us that the yeast culture grows most rapidly after 6 hours

and then the growth rate declines.

(a) C'(t) is the instantaneous rate of change of percentage
of full capacity with respect to elapsed time in hours.

(b) The graph of C” (%) tells us that the rate of change of
percentage of full capacity is decreasing and

approaching 0.

(a) F'(v) is the instantaneous rate of change of fuel

economy with respect to speed.

(b) Graphs will vary depending on estimates of I, but

will change from positive to negative at about v = 50.

(c) To save on gas, drive at the speed where F'is a

maximum and F” is 0, which is about 50 mi/ h.

It appears that there are horizontal tangents on the graph of f for ¢t = 2
and for ¢ = 7.5. Thus, there are zeros for those values of ¢ on the graph
of f'. The derivative is negative for values of ¢ between 0 and 2 and for
values of ¢ between approximately 7.5 and 12. The value of f'(t)

appears to be largest at ¢t =~ 5.25.

~

y

1001

50T

y
40+

20+

1020 30 40 SNO v

T3 vﬂ )
2
g =)
! X

(© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 2.8 THE DERIVATIVEASAFUNCTION L1 149

17.
The slope at 0 appears to be 1 and the slope at 1 appears
to be 2.7. As x decreases, the slope gets closer to 0. Since
the graphs are so similar, we might guess that f'(z) = e”.
18. Y
I /
0 g + + + %
As z increases toward 1, f’(z) decreases from very large
y=fw) =lnx numbers to 1. As = becomes large, f'(z) gets closer to 0.
Asaguess, f'(z) = 1/2? or f'(x) = 1/x makes sense.
y
1+
0 1 X
19. (a) By zooming in, we estimate that f'(0) =0, f'(3) =1, f'(1) = 2, 2.5 .
and f'(2) = 4.

(b) By symmetry, f'(—z) = —f'(z). So f'(—3) = -1, f'(-1) = -2,
and f'(—2) = —4.

(c) Tt appears that f'(z) is twice the value of z, so we guess that f'(x) = 2z.

0 7 2.5
oy o SR = f@) (@4 h)® —a?
@F @ == =i
2 2h hZ .2 2
i 2R ) 0t Ghed B M2+ h) i (20 4 ) = 20
h—0 h h—0 h h—0 h h—0

20. (a) By zooming in, we estimate that f'(0) = 0, f'(3) ~ 0.75, f'(1) = 3, f'(2) ~ 12, and f'(3) ~ 2T.

(b) By symmetry, f'(—z) = f'(z). So f'(—3) = 0.75, f'(—1) = 3, f'(—2) ~ 12, and f'(—3) ~ 27.
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(©) Y (d) Since f'(0) = 0, it appears that f' may have the form f(z) = ax?.
Using f'(1) = 3, we have a = 3, so f'(z) = 32°.

_ 3_ .3 3 2 2, 13y _ 3
f(x—i—h’)L f(x):lirn (z+h)° —z ~ Jim (z° +3z*h + 3zh* + h°) —x

boN
(©) f'(x) = %1—>mo h—0 h h—0 h

2 2 3 2 2
i TR ESTRT AR PG A STR AN (302 4 30k 4 h2) = 327
h—0 h h—0 h h—0
2. f(2) = lim flz+h)— f(x) _ lim [3(z +h) —8] — (3z —8) — Jim 3z +3h—8—3x+38
h—0 h h—0 h h—0 h
= lim%: lim 3 =3
h—0 h h—0
Domain of f = domain of f' = R.
2. f/(z)= lim flx+h)— f(x) ~ i [m(x 4+ h) + b] — (mz + b) ~ im mx +mh+b—mx—b
h—0 h h—0 h h—0 h
.omh .
=lim — = limm =m
h—0 h h—0
Domain of f = domain of f' = R.
- 2.5(t +h)® +6(t + h)] — (2.5¢> + 6t
5. f(0) = im LEFN =IOy [2BCHD) 460+ )] - (2504 61)
h—0 h h—0 h
. 2.5(t% +2th + h?) + 6t +6h — 2.5t —6t .. 2.5t% + 5th + 2.5k + 6h — 2.5t
= lim = lim
h—0 h h—0 h
2
~ lim 5th + 2.5h° 4 6h — lim h (5¢ + 2.5h + 6) — lim (5t + 2.5k + 6)
h—0 h h—0 h h—0
=5t+6

Domain of f = domain of f’ = R.

flx+h)— f(x) [4+8(z +h) —5(x+ h)*] — (4+ 8z — 5z°)

#Sm =T = h
. 4482+ 8h—5®+22h+h?) —4—8x+5x> . 8h—5zx% — 10zh — 5h? 4 5a?

= lim = lim

h—0 h h—0 h

J— — 2 — —

_ iy Sh—10zh = 5h7 hmwz lim (8 — 10z — 5h)

h—0 h h—0 h h—0
=8 — 10z

Domain of f = domain of f’ = R.
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. [4(p+ h)® +3(p+ h)] — (4p° + 3p)

= A= Jim T i 7
. A4ApP +12p°h + 12ph? +4h® +3p+3h —4p® —3p .. 12p°h + 12ph® +4h® + 3k
= lim = lim
h—0 h h—0 h
2 2
_ Jim h(12p? + 12];:1 +4h?+3) lim (1207 + 12ph + 4h? + 3) = 12p* + 3

Domain of A = Domain of A’ = R

F(t+h) — F(t) [(t+h)>—5(t+h)+1] — (> —5t+1)

fe 1 o
e i z
. 34+ 3Ph+3th?+h3 =5t —5h+1—t3+5t—1 | 3t’h+3th? +h® —5h
= lim = lim
h—0 h h—0 h
2 2
— jig MBEHBREN Z0) gy (3t +3th+h> —5) =3t> — 5
h—0 h h—0
Domain of F' = Domain of F’ = R.
1 1 (2 —4) — [(z+h)* — 4]
. 2 _ 2 _ 2 _ 2 _
h—0 h h—0 h h—0 h
_(@®—4)— (P f2eh+h*—4) | a® 4o —2ah—h*+4 —2zh — b’
= hm = hm = hm
h—0 h(xz + h)? —4] (22 — 4) h—0  h[(z 4+ h)? — 4] (z2 —4) h—0 h[(z + h)? — 4] (22 — 4)

h(—2x — h) —2z—h —2z 2z

TG AW -8 A Gr A @) @04 (@ -

Domain of f = Domain of f’ = (—o0, —2) U (—2,2) U (2, c0).

v+h W (v+h)(v+2)—v[(v+h)+2]
2. F'(v) = lim Foth)—F@) _ . @+h)+2 v+2 [(v+h)+2] (v+2)
h—0 h h—0 h h—0 h
_1imv2+2v+vh+2h—v2—vh—2v_lim 2h — lim 2
T RS0 hl(v+h)+2] (v+2) T h=oh[(v+h)+2](v+2) w0 [(v+h)+2] (v+2)

2 2

(v+2)(v+2) (v+2)?

Domain of F' = Domain of f’ = (—o0, —2) U (—2, 00).

(u+h)+1  u+l [(w+h)+1] (du—1) — (u+ 1) [4(u+ h) — 1]
29, g'(u)ziﬂw ~ tim A(u+h) —hl du—1 = i [4(u+ h) —hl] (du—1)
(ut+h+1)(du—1)— (u+1)(du+4h—1)
— lim [4(u+ h) — 1] (4u—1)
h—0 h

~ lim 4w +duh+4u—u—h—1—4u? —4duh+u—4u—4h +1
T RS0 hl4(u+h) —1] (4u —1)

—5h -5 -5 5

AT - =1 AUt h) —T@e-1)  @u-D@u—1 @u—17

Domain of g = Domain of ¢’ = (—o0, 3) U (§,00).
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_ 4_ 4 4 3 212 3 74y _ 4
30, f,(x)zlmf(:n—i—h) f(x):lim (z+h) :hm(az +4x’h 4+ 62°h° + 4zh’ + h*) —x
h—0 h h—0 h—0 h
. 4a®h + 6x2h% + 4xh® 4+ bt . h(4a® + 62%h + 4xh® + h®)
- ; - ;

= }Lin})(4x3 + 62%h + 4zh? + h®) = 423

Domain of f = domain of f' = R

1 1
1+ h) 1+
. f,(x):%ig})f(z—l—hz ,112})\/ l’-i—h itz
1 1
im Vit@+h) Vite Jit@+hV/Itz
= lim .
h—0 h V1i+(@+h)VI+z

\/1+$—\/1+(m+h) VItz+/1+@+h)
% hyl4(@+h)VI+z VI+z+/1+(@+h)
. (1+2) = [1+ (z+h)
=0 hy/T+ (z+h) \/1+x(\/1+x+\/1+(x+h))

—h -1
= lim = lim
h=0h/1+az+hV1+z(Vi+ta+VI+z+h) —0/1+z+h/I+z(VI+z+V1+z+h)
B -1 _ -1 o 1
S VItaVIita(Vitr+Vita) (L+a)2Vitz) 21 +2)3/2

Domain of f = Domain of f' = (—1, 00).

1 1 (1+vz)— (1+Vz+h)
vy gzt h)—g@) . 1+va+h 14z . (+Vz+h)(1+Vx)
2 ()= i TS =55 = h = h
T B T Bk Vil Y V-V th Vr+Vath
=0 h(14+VzHR)(1+Ve)  h—0h(1+Va+h)(1+Vz) Va+vVzth
= lim z—(z+h)
h=0h(1++vz+h)(1+vz)(Vz+Va+h)
. —h
T R VAT (L Va) (e VETh)
-1

T Ve M (Ve (Ve Ve T )
-1 _ 1

J— 71 J—
I+ VE) I+ V) (Ve +VE) T (1+vE)2ve Ve (1+vE)?

Domain of g = [0, 00), domain of g’ = (0, c0).

33. (a) Y
y=1+ \/m

1

S0 T x T 4o ¢ x T o Tk
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SECTION 2.8 THE DERIVATIVE ASAFUNCTION [

(b) Note that the third graph in part (a) generally has small positive values for its slope, f'; but as z — —3*, f’ — oo.

See the graph in part (d).

© f'o) = m LEFN =@ _ g 1V +3 - 14V +3)
h

h—0 h h—0

— lim ViEt+h)+3-Va+3 lim V(@+h)+3—z+3
h—0 h h—0 h

V@+h)+3+vVz+3
V@+h)+3+Vz+3

T (€ o O ok Bl C ) T x+h+3—x-3

h 1 1
= lim = lim =
""Oh(\/(x+h)+3+\/x+3) =0 /(x+h)+3+V2+3 2Vz+3

Domain of f = [—3, 00), Domain of f' = (-3, c0).

(d)
1 X
(x4+h)Z+1 2241
oy e @R f@) [t h) 41/ (@t )] - (e +1z) c+h  a
e N gl n
.zl +R)Z+1] = (z+h)(z?+1) . (2 +2na? 4+ xh® +2) — (2® 4z + ha® + 1)
= hm = hm
h—0 h(z + h)x h—0 h(x + h)x
~ i hz® +zh®> —h lim h(z® +xh—1) lim 2> +zh—1 2°-1 or 1_i
T h>0 h(z+h)z k50 h(z+h)z  hs0 (z+h)z T 22 x2
(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is 4
positive when the tangents have positive slope, and f'(z) is ‘ I \/ ¥ ’
negative when the tangents have negative slope. Both functions 6| | 6

are discontinuous at x = 0.

)

—4

flat+h) —f@) _ . @+h)'+2@+h)] - (@ +22)
———— = 11In
h h—0 h

.t +423h + 622h% + 4zh® + ht + 22+ 2h — 2t — 2z

= lim
h—0 h

. 42®h +622h% +4xh® + Rt +2h . h(42® 4 62%h + 4xh® + B3 4 2)

= Jim h = Jim, h

= %nré(zlx?’ +62°h + 4zh® + h® +2) = 42® + 2

3. (a) f'(x) = lim

W

(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is

positive when the tangents have positive slope, and f'(z) is

negative when the tangents have negative slope.

-2
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154 0 CHAPTER2 LIMITS AND DERIVATIVES

36. (a) N'(t) is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is

(b) To find N'(t), we use lim

©

37. As in Exercise 36, we use one-sided difference quotients for the first and

last values, and average two difference quotients for all other values.

38. As in Exercise 36, we use one-sided difference quotients for the first and
last values, and average two difference quotients for all other values. The

units for W’ (x) are grams per degree (g/°C).

changing with respect to time. Its units are thousands of surgeries per year.

for small values of h.

N(t+h) = N(@t) _ N(t+h) —N()
heo  (t+h)—t h

N(2002) — N(2000) 4897 — 5500

. ! ~ —
For 2000: N'(2000) » —=-2— 0 5

= —-301.5

For 2002: We estimate N'(2002) by using h = —2 and h = 2, and then average the two results to obtain a final estimate.
N(2000) — N(2002) 5500 — 4897

h—=_2 N'(2002) ~ —301.
= N'(2002) 2000 — 2002 ;) 3015
, N(2004) — N(2002) 7470 — 4897
) N'(2002) ~ - — 1286.
h = N'(2002) 2004 — 2002 2 86.5
So we estimate that N'(2002) ~ 1[—301.5 + 1286.5] = 492.5.
¢ 2000 2002 2004 2006 2008 2010 2012 2014

N'(t) | —301.5 492.5 1060.25 856.75 605.75 534.5 596 455

y (d) We could get more accurate values
15,000 + y
for N'(t) by obtaining data for
1200 +
10,000 + more values of £.
800 +
y = N(t)
5,000 +
400 ,
y=N(
0~ + + + + + + + 0 + + + + + + +
2000 2004 2008 2012 t / 2004 2008 2012 t
—400 4

t |14 21 28 35 42 49
H(t) |41 54 64 72 78 83 Nl

! 13 23 18 14 11 5
H (t) 7 14 14 14 7

0 7 14 21 28 35 42 49 1

44
x 155 177 200 224 244 ol y=Wi
W(z) | 372 310 198 97 98 L
W(z) | —2.82 —3.87 -453 —673 —9.75
~104
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

SECTION 2.8 THE DERIVATIVEASAFUNCTION [ 155
(a) dP/dt is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to
time ¢, measured in percentage points per year.

(b) 2 years after January 1, 2020 (January 1, 2022), the percentage of electrical power produced by solar panels was increasing

at a rate of 3.5 percentage points per year.

dN/dp is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the

price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect dN/dp to be

negative.
f is not differentiable at x = —4, because the graph has a corner there, and at x = 0, because there is a discontinuity there.
f is not differentiable at x = —1, because there is a discontinuity there, and at x = 2, because the graph has a corner there.

f is not differentiable at x = 1, because f is not defined there, and at z = 5, because the graph has a vertical tangent there.

f is not differentiable at + = —2 and « = 3, because the graph has corners there, and at = 1, because there is a discontinuity
there.
As we zoom in toward (—1, 0), the curve appears more and more like a straight 2

line, so f(z) = x 4 4/|z| is differentiable at x = —1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t

-2 1
eliminate the sharp point (a cusp). So f is not differentiable at x = 0. L J

As we zoom in toward (0, 1), the curve appears more and more like a straight 3

line, so g(x) = (2 — 1)?/? is differentiable at = = 0. But no matter how much

we zoom in toward (1, 0) or (—1, 0), the curve doesn’t straighten out—we can’t

-2 2
eliminate the sharp point (a cusp). So g is not differentiable at x = +1. L J
-1

Call the curve with the positive y-intercept g and the other curve h. Notice that g has a maximum (horizontal tangent) at

x = 0, but h # 0, so h cannot be the derivative of g. Also notice that where g is positive, h is increasing. Thus, h = f and

g = f'. Now f’(—1) is negative since f’ is below the z-axis there and f”(1) is positive since f is concave upward at z = 1.
Therefore, f''(1) is greater than f'(—1).

Call the curve with the smallest positive x-intercept g and the other curve h. Notice that where g is positive in the first
quadrant, h is increasing. Thus, h = f and g = f’. Now f’(—1) is positive since f’ is above the z-axis there and f" (1)
appears to be zero since f has an inflection point at z = 1. Therefore, f'(1) is greater than f”(—1).

a= f,b=f',c= f". We can see this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,

¢ = 0. We can immediately see that c can be neither f nor f’, since at the points where c has a horizontal tangent, neither a

nor b is equal to 0.
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50. Where d has horizontal tangents, only c is 0, so d’ = c. ¢ has negative tangents for x < 0 and b is the only graph that is
negative for x < 0, so ¢’ = b. b has positive tangents on R (except at z = 0), and the only graph that is positive on the same
domain is a, so b’ = a. We conclude thatd = f,c = f', b= f",and a = .

51. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,

neither ¢ nor b is equal to 0. Next, we note that a = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b’ = a. We conclude that c is the graph of the position function.

52. a must be the jerk since none of the graphs are 0 at its high and low points. a is 0 where b has a maximum, so b’ = a. bis 0

where ¢ has a maximum, so ¢’ = b. We conclude that d is the position function, c is the velocity, b is the acceleration, and a is

the jerk.
— 2 (2,2
5. () tim LEED @) Bl ) 22 ) 1) - (307 £ 20 1)

h—0 h h—0 h

_ (322 + 6wh + 3h* + 20+ 2h 4+ 1) — (32° + 22 + 1) y 6zh + 3h> + 2h
) h s h

i POT 3R ED) 60+ 3h42) = 62 42
h—0 h h—0

() = lim fle+h) = fi(z) _ lim [6(x+h)+2]— (6x+2) lim (6x + 6h +2) — (6x + 2)
h—0 h h—0 h h—0 h

We see from the graph that our answers are reasonable because the graph of

f is that of a linear function and the graph of f” is that of a constant

function.

f+h) - f(z)

roN 1 . l@+h)?=3(x+h)]— (z* - 3z)
#Sw= =i h

(z® + 32°h + 3zh® + h® — 3z — 3h) — (2® — 3z) lim 32%h + 3xh® + h® — 3h

- I—lbli% h h—0 h
2 2

(322 4 6xh 4 3h? — 3) — (32 — 3)

[lath) = f@) . Bt -3 - @3

7 T
f(=) ;llli% h—0 h h—0 h
h+ 3h? h h
_ mﬁx +3h7 _ im (62 +3 ):lim(6x+3h)=6$
h—0 h h—0 h—0
3 We see from the graph that our answers are reasonable because the graph of
{ ','f s / f 1 f is that of an even function (f is an odd function) and the graph of f” is
-3 / 3 that of an odd function. Furthermore, f' = 0 when f has a horizontal
/ tangent and f” = 0 when f’ has a horizontal tangent.
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55. f'(z) = }ng -1

SECTION 28 THE DERIVATIVE ASAFUNCTION O
[2(x +h)® — (x4 h)*] — (22" — 2°)
h—0 h
_ 2 _ 12
_ lim Mz H2h =307 —3zh = RT) (42 + 2h — 322 — 3zh — h?) = 4z — 322
h—0 h h—0
! —f 4(x+h)—3 h)?] — (42 — 32° — 6z —
S P ) e Co N C G0 ek R 0 el k0 Y A R )
h—0 h h—0 h h—0 h
:}lbirr%)(4—6x—3h)=4—6x
" 11
mey e L@th) = @) . [4—6@+h)]-(4-6x) . —6h ) —
Jrw) = iy z gl h =i S0 =0
n 111
@y i L2 +h)—f"(2) . —6—(=6) . 0 _
Fo(@) = Jim, D = g iy = im0 =0
3
' f \“fn
—4 A 6
‘\
T
\‘ f///
\_ )

The graphs are consistent with the geometric interpretations of the

derivatives because f’ has zeros where f has a local minimum and a local
maximum, f’’ has a zero where f’ has a local maximum, and f"’ is a
constant function equal to the slope of f”'.
56. (a) Since we estimate the velocity to be a maximum
at t = 10, the acceleration is 0 at t = 10.

v
501 a
1_.
251 20
of 10\/ t
0 10 20 !
(b) Drawing a tangent line at ¢ = 10 on the graph of a, a appears to decrease by 10 ft/s* over a period of 20 s.
Soatt = 10's, the jerk is approximately —10/20 = —0.5 (ft/s?)/s or ft/s*.
57. (a) Note that we have factored  — a as the difference of two cubes in the third step.
vy fle)=fla) .. xl/S—a1/3_ . /3 — gt/3
f(a) —}13,11 T —a _ilirfz T —a _;Eg (1’1/3fa1/3)(x2/3+x1/3a1/3+a2/3)
_ 1 1 _ 1 1-2/3
- il_r}r{l) 22/3 & 21/3q1/3 1+ q2/3 ~ 3¢2/3 or za
ven o JO+R)—FO . Vh-0 . 1
® 710 = i e I Y
exist, and therefore f/(0) does not exist.
(©) lim [/'(x)] = lim —
oo VN = T 327

This function increases without bound, so the limit does not

= oo and f is continuous at z = 0 (root function), so f has a vertical tangent at z = 0.
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vy o 9@ =g 2P0 1 ,
58. (a) ¢'(0) = ilg}) ey :llil}) = = ;13(1) 7 which does not exist.
_ 2/3 _ 2/3 1/3 _ 1/3\(.1/3 | 1/3
(b) gla) = lim LB =9 _ ypp T Z0T w —a)w +al)
e r_a e r_a e (2173 — al/3) (223 + 21/3a1/3 + a2/3)
Z1/3 4 g1/3 9q1/3 9
= lim = = or 2¢71/3
ooa 7273 + 21/3q1/3 + q2/3  3a2/3  3q1/3 3
(c) g(x) = z*/* is continuous at z = 0 and (d) - o4 N
: N T 2 .
;13(1) lg'(z)| = ;13(1) S oco. This shows that
g has a vertical tangent line at x = 0.
—0.2°- 0.2
0
r—6 if t—62>6 r—6 ifx>6
59. f(z)=|z—6] = . = .

—(z—6) ifz—6<0 6—z ifz<6

So the right-hand limit is lim L =S o 2 =620 @ =6 4 1 and the lefi-hand Timit
r—61 r—6 r—61 xr—6 r—6+ T — r—61
is lim f(z) = F(6) = lim l2—6[-0 = lim bz _ lim (—1) = —1. Since these limits are not equal,
r—6— —6 T—6" xr—6 z—6— T — 6 z—6"
f(6) = lim f(z) = (6) does not exist and f is not differentiable at 6. Y y=f(x)
rz—6 xr—6 1
u . Ia for /' is f'(2) -1 ifz<6 ,
owever, a formula for | 1s x) = J
1 ifz>6 0 o7
-1
z—6

Another way of writing the formula is f'(z) = | 6
T —

60. f(x) = [z] is not continuous at any integer n, so f is not differentiable
at n by the contrapositive of Theorem 4. If a is not an integer, then f

is constant on an open interval containing a, so f(a) = 0. Thus,

f(z) = 0, z not an integer.

z2 if >0 )
61. (@) f(z) =z|z| = ) (b) Since f(z) = z* forx > 0, we have f'(z) = 2z forz > 0.
—z* ifx <0
y [See Exercise 19(d).] Similarly, since f(z) = —a? for z < 0,
we have f'(z) = —2z forz < 0. Atz = 0, we have
0 oy — i 4@ = FO) L afE _
X f(o)_ili% z—0 _ill% x —ilir%)kr\—().
So f is differentiable at 0. Thus, f is differentiable for all x.

=2|z|.

20 if x>0
(c) From part (b), we have f'(z) = { }

2z if x <0
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T if >0 !
62. (a) || = , Y
—x ifz<O0
@) ] 20 if x>0 )
SO r)=x+ |x| = . 1
g 0 ifx<O
Graph the line y = 2z for x > 0 and graph y = 0 (the x-axis) for x < 0.
0 1
(b) g is not differentiable at x = 0 because the graph has a corner there, but
is differentiable at all other values; that is, g is differentiable on (—oo, 0) U (0, 00).
© o) 2¢ if x>0 (@) 2 ifx>0
C xTr) = = x) =
g 0 ifz<0 g 0 ifz<O
Another way of writing the formula is ¢’ (z) = 1 + sgnz for x # 0.
63. (a) If f is even, then
ooy St h) = f=x) L fl=(@ = h)] — f(=2)
fen =i h i h
i &N @ g SN @ g np =y
h—0 h h—0 —h
_ floa+Ax) - fl=) _ 4
- AlmHO Ax =)
Therefore, f is odd.
(b) If f is odd, then
"y f=x+h) = f(=z) . fl=(@=h)] - f(==)
e -
i L@ TI@ _ oy J@Z W ZJ@) e ny =y
h—0 h h—0 —h
_ flatAz) — f(z) _
=A@
Therefore, f’ is even.
o4 Fa) 0 ifz<0
. (a) f(x) =
@ z ifxz>0
F0)= tim LOFRN=FO) ) 0=0 O i o
h—0— h h—o— h h—0— h—0—
P — fe JOFR)—fO) . (O+A)-0 R
J+(0) = hll%l+ h N h1i>0+ h N hli%l+ h hll%l+ 1=1

Since these one-sided derivatives are not equal, f/(0) does not exist, so f is not differentiable at 0.

b) f(x) 0 if <0
x) =
( 22 ifz>0
, f(0+h) - (0) 0-0_ . 0 _ _
J20) hLI(gl* h _hlir(l)l* h _hliofh_hli%lfo_
o) LOER O R
f+(0)_h1lo+ h _hllo-%— h _hllr([)l-%— h —hllr{)1+h—0

Since these one-sided derivatives are equal, f/(0) exists (and equals 0), so f is differentiable at 0.
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0 if <0
Note thatash — 07,4+ h < 4,50 f(4+h)=5—(4+h). Ash— 0", 4+h>4,s0 f(4+h) = m
FL@) = lim f4+h)— f(4) ~ lim [b—(4+h)]—(5—4) — lim (5—-4—h)—1
h—0— h h—0— h h—0— h
— fim =2 = lim (-1) = -1
h—0— h—0—
1 _ 1 1 1
v o fA+R)—f4) . 5—(4+h) 5-4 . T_h
Fr)= ;}l%ﬂ h N hlir(r)lJr h B h,li,rél+ h
1 1—-h
. 1—h _1—h _ . 1=(1=h) h . 1
Pt h w0t TROL—h)  neor (I —h)  meor1—h
(b) 5} } (c) f is discontinuous at x = 0 (jump discontinuity) and at
} x = 5 (infinite discontinuity).
|
|
1T+ |
—1 5
0 4 }
|
I
x=75]

(d) f is not differentiable at x = 0 [discontinuous, from part (c)], x = 4 [one-sided derivatives are not equal, from part (a)],

and at ¢ = 5 [discontinuous, from part (c)].

66. (a) The initial temperature of the water is close to room temperature because of (b) ’
the water that was in the pipes. When the water from the hot water tank y=dTjde
starts coming out, d7'/dt is large and positive as 7" increases to the
temperature of the water in the tank. In the next phase, d7'/dt = 0 as the \_[ ¢

water comes out at a constant, high temperature. After some time, d7'/dt
becomes small and negative as the contents of the hot water tank are
exhausted. Finally, when the hot water has run out, dT'/dt is once again 0 as

the water maintains its (cold) temperature.

67. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the

graph in (a) would not have corners and the graph in (b) would be continuous.

y
(@) (b) y=ds/dt
o—0
o—0 Oo—0
0 3 g 10 15 19 ¢
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68. In the right triangle in the diagram, let Ay be the side opposite angle ¢ and Ax
the side adjacent to angle ¢. Then the slope of the tangent line ¢
is m = Ay/Axz = tan ¢. Note that 0 < ¢ < Z. We know (see Exercise 19)
that the derivative of f(x) = 22 is f'(x) = 2z. So the slope of the tangent to
x the curve at the point (1,1) is 2. Thus, ¢ is the angle between 0 and § whose
tangent is 2; that is, ¢ = tan™' 2 ~ 63°.
2 Review
TRUE-FALSE QuIZ
1. False.  Limit Law 2 applies only if the individual limits exist (these don’t).
2, False.  Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).
3. True. Limit Law 5 applies.
-9
4. False. —3 is not defined when z = 3, but = + 3 is.
.2t — . (43 (x-3)
BT T3 ST ooy ety
6. True. The limit doesn’t exist since f(z)/g(x) doesn’t approach any real number as z approaches 5.
(The denominator approaches 0 and the numerator doesn’t.)
. . x(x—5) .. sin(z—5) N .
7. False.  Consider hn% o or hrré p— . The first limit exists and is equal to 5. By Example 2.2.2, we know that
the latter limit exists (and it is equal to 1).
8. False. If f(z) =1/z,g(z) = —1/z,and a = 0, then lin% f(z) does not exist, lirr(l) g(x) does not exist, but
lir% [f(z)+g(z)] = lin})O = 0 exists.
9. True. Suppose that lim [f(z) + g(z)] exists. Now lim f(x) exists and lim g(z) does not exist, but
lim g(z) = lim {[f(z) + g(z)] — f(z)} = lim [f(x) + g(2)] — lim f(z) [by Limit Law 2], which exists, and
we have a contradiction. Thus, lim [f(z) + g(z)] does not exist.
10. True. A polynomial is continuous everywhere, so lirx}) p(z) exists and is equal to p(b).
1. False.  Consider lin}) [f(z) —g(z)] = lir% (% - %) This limit is —oo (not 0), but each of the individual functions
approaches co.
12. True. See Figure 2.6.8.
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13. False.  Consider f(z) =sinz forz > 0. lim f(z) # £oo and f has no horizontal asymptote.

1/(x—1) ifx#1

14. False. Consider f(z) =
/(@) {2 ifx=1

15. False.  The function f must be continuous in order to use the Intermediate Value Theorem. For example, let

1 if0<z<3
fz) = Ui X There is no number ¢ € [0, 3] with f(c) = 0.
-1 ifz=

16. True.  Use Theorem 2.5.8 with @ = 2, b = 5, and g(x) = 42 — 11. Note that f(4) = 3 is not needed.
17. True. Use the Intermediate Value Theorem witha = —1,b=1,and N = 7, since 3 < 7 < 4.
18. True, by the definition of a limit with e = 1.

2241 ifx#0
19. False.  For example, let f(z) =
2 if =0

Then f(x) > 1 forall z, but lim f(z) = lim (z®+1) =1
20. False. See the note after Theorem 2.8.4.

21. True. f/(r)exists = fisdifferentiableatr = fiscontinuousatr = lim f(z) = f(r).

2 2
22. False. % is the second derivative while (%) is the first derivative squared. For example, if y = =,
d?y dy\*
then —=> = t(==) =1
en e 0, bu ( e

23. True. f(x) = £'® — 102 + 5 is continuous on the interval [0, 2], f(0) = 5, f(1) = —4, and f(2) = 989. Since
—4 < 0 < 5, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a

solution of the equation #'® — 1022 + 5 = 0 in the interval (0, 1). Similarly, there is a solution in (1, 2).
24. True. See Exercise 2.5.76(b).
25. False. See Exercise 2.5.76(c).

26. False.  For example, let f(z) = z and a = 0. Then f is differentiable at a, but | f| = |z| is not.

EXERCISES

1. (@) (i) lim f(z)=3 (i) lim f(z)=0
z—2+ +

z——3

(iii) lim3 f(z) does not exist since the left and right limits are not equal. (The left limit is —2.)

(iv) lim f(z) =2
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1.

. Since a rational function is continuous on its domain, lim

CHAPTER2 REVIEW O

) hi% f(z) =0 (vi) hrg, flz)=—o00
(vii) lim flz)=4 (viii) EIP flz)=-1

(b) The equations of the horizontal asymptotes are y = —1 and y = 4.

(c) The equations of the vertical asymptotes are x = 0 and z = 2.

(d) f is discontinuous at z = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.
lim f(z)=-2, lim f(z)=0, 1im3 f(z) = oo, B
lim f(z)=—o0, lim f(z)=2, 12
r—3~ z—31 ¥
f is continuous from the right at 3 _/ 0 x
y=-2 \
x=-3 x=3

. Since the cosine function is continuous on (—oo, ), lin(1) cos(x® + 3x) = cos(0® + 3 -0) = cos0 = 1.

-9  3¥-9 _0_,
a3 22 +2x—3  32+23)—-3 12

2_ J— — — — —
‘=9 ~ fim (z+3)(z 3):li z—3 -3-3 —6 3

Clim ——— 2 _3-3_-6_3
232 422 -3 ens(z+3)@—1) eotsz—1 -3-1 -4 2

22 -9 22 -9

im —— 2 _ ; 2 _ + + v -7
'Ilir?+x2+2x73 ocosincez” +2xr—3 —0"asx — 1 andx2+2x73<0for1<z<3.
—1)3 h® —3h?4+3h—1)+1 3 _ 3p2
.1imM:hm( * )+ = Jim 230 +?’hzlnn(h2—3h+3):3
h—0 h h—0 h h—0 h h—0

Another solution: Factor the numerator as a sum of two cubes and then simplify.

. (h=1%41 (h—=1)%+1> [(h=1)+1][(h—1)* =1(h —1)+1?]
lim ———— = lim = lim
h—0 h h—0 h h—0 h
=lm [(h—1)?-h+2]=1-0+2=3
h—0

-4 (t+2)(t—2) . t+2 242 4

. lim = lim = lim = = —

1
=213 —8  t—2 (t—2)(2+20+4) t-282+2t+4 4+4+4 12 3

. limi:oosince(r79)4HO"'aerQandi4 > 0forr #9.

(r—9)

lim d-v _ lim _4-v lim L__l
voat |[4—v]  voat —(4—v)  e—at =1

r? —3r—4 . =4 +1) . r—4 —1—4 -5 5

im — = —_— = = =— ==

P g2 =3 o (4r = 3)(r+1) g —3 4(-1)-3 -7 7
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12 lim?,ﬂ/tJrzL_hm —Vt+4 3+\/t+) lim 9— (t+4)
Ti-5 t—5 t=5 t—5 3+Vt+4 H5(t—5(3+\/t+)

5—1t . -1 -1 1

lim - _ -
S (t—5)(3+vitd) t53+Vitd 3+v5rd 6

13. Since z is positive, V22 = |z| = z. Thus,

VeT=9 V@ 9VeE L VT9a  VT0 1

li lim - - -
ey L G Yy L R Y 2-0 2

14. Since x is negative, vVz2 = |z| = —x. Thus,

VzZ =9 R i V1-9/22 JT-0 1

li =1 L S - _Z
e 22— 6 eobe (22— 6)/(—x)  woee —24 6/  —2+0 2
15. Lett = sinz. Thenasx — 7, sinz — 07,s0¢ — 0T. Thus, lim In(sinz) = lim Int = —oo.
=T t—0
_ 2 _ 4 1—2 2 _ 4 4 1 4 2 2 1 _ _ _
16. lim 1-—2z T him ( x x)/a:zlim /x /x _0-0-1_-1_1

z——oc0 5+x—3x* a—-co (5+x—3xt)/2t s—-ob/xt+1/23-3 0+0-3 -3 3

17. lim (V2?2 +4z+1—2)= lim

T — 00 Tr—00

<\/x2+4x+1fx Vel +dor+ 14\ lim (2 + 42 +1) —
1 ViZtdz +1+x) oo Va2 +dz+1+a

= lim vide by x = vV forx >
N
441/ 4+0 4

oo /T+4/z+1/a2+1 I+0+0+1 2

18. Lett =2 — 2® = 2(1 — x). Thenas 2 — oo, t — —oo, and lim " = lim €' =0.

xr— 00 t— —o0

19. Lett = 1/z. Thenasx — 07, ¢t — co,and lim tan™'(1/z) = tlim tan™'t = g

x—0

2. lim (—— + —— — Jim [—— + . = lim o2y :
"emi\z—1 22-3zx+2) e—1|z—1 (z—1DE—-2)] o—1|(z-1=-2) (z—1(z-2)

21. From the graph of y = (cos® x) /2, it appears that y = 0 is the horizontal 5

asymptote and x = 0 is the vertical asymptote. Now 0 < (cos x)2 <1 =

0 ? 1 2
—<ZL oo o <= ””<— But lim 0 =0 and

a2 a2 2 x2 z—+oo

1 2 -6 6

lim — =0, so by the Squeeze Theorem, lim T . ( )

z—doo T2 r—+oo X -1
s>z

= oo because cos? z — 1and 22 — 0" asz — 0, so z = 0 is the

. . . €O
Thus, y = 0 is the horizontal asymptote. hn})

vertical asymptote.
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22. From the graph of y = f(z) =

CHAPTER2 REVIEW U 165

Vo2 +x + 1 — /22 — z, it appears that there are 2 horizontal asymptotes and possibly 2

vertical asymptotes. To obtain a different form for f, let’s multiply and divide it by its conjugate.

(2 4+z+1)— (2® —x)

Vit o +1+Va? -
)= (Va2 +zr+1-va2 -z =
hiz) (\/ v )\/x2+x+l+\/x2—x
. 2z +1
Vi2+z+1+Va2—x
Now
. 2z +1
lim = lim
_ 2+ (1/x)
x—»oo\/l (1/z) + (1/22) 4+ /1 — (1/z)
2
“1rih

so y = 1 is a horizontal asymptote. For z < 0, we have V22 = |z| =

with x < 0, we get

Vit +1+Va?—x Vait+az+1+vVa2—z

Vit r+1+Va? -2

[since V2 = x for z > 0]

—x, so when we divide the denominator by z,

1,1 1
\/1+—+—2+\/1—]
X x T

z V2
Therefore,
lim fi(x)= lm —— 2 + 1 i 24 (1/x)
a0 R E S V= e [\/1 1/z) + (1/22) + /I —( 1/:5)]
2
=—— =1,
—(1+1)
so y = —1 is a horizontal asymptote. p 4 \
The domain of f is (—oo,0] U [1,00). Asz — 07, f (z) — 1, s0
x = 0 s not a vertical asymptote. As z — 11, f(z) —» v/3,s0z =1 B IR 10
is not a vertical asymptote and hence there are no vertical asymptotes.
. J
-4

23. Since 2 — 1 < f(z) < 2° for0 < z < 3 and lim1 2z—-1)=1= lim1 x?, we have lirri f(z) = 1 by the Squeeze Theorem.

24, Let f(z) = —a°, g(z) = 2” cos(1/2?) and h(z) = 2”. Then since |cos(1/2)| < 1 for z # 0, we have

f(z) < g(z) < h(x) for z # 0, and so lig}) f(z) = lig}) h(z)=0 =

25. Given e > 0, we need 6 > O such that if 0 < |z — 2| < 4, then |(14 — 5z) —

|-5z+10|<e & |-5llz—2<e &

|(14 — 5z) — 4| < e. Thus, lirré (14 — 5z) = 4 by the definition of a limit.

4| < e. But |(14 — 5z) —

lirr%) g(x) = 0 by the Squeeze Theorem.

<e &

|z — 2] < /5. Soif we choose § = ¢/5,then0 < |z —2| <d§ =
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26.

27.

28.

29.

30.

31.

U CHAPTER2 LIMITS AND DERIVATIVES

Given e > 0 we must find § > 0 so that if 0 < |z — 0] < §, then | ¥z — 0] < e. Now | ¥z — 0| = |¥z| <e =
lz| = | /x> < €% Sotake § = €. Then 0 < |z — 0] = |z| < = |¥Z2—0|= |z = {/Ja] < Ve ==

Therefore, by the definition of a limit, lirr%) Jx =0.

Given £ > 0, we need 6 > 0 so that if 0 < |z — 2| < 4, then |2® — 3z — (—2)| < e. First, note that if |z — 2| < 1, then
—-l<z—-2<1,500<z—-1<2 = |z—1] <2 Nowletd =min{e/2,1}. Then0 < |z —2| <d =
=3z —(=2)|=|z-2)(=z-1)| =z -2z — 1| < (¢/2)(2) = .

Thus, lim (22 — 3z) = —2 by the definition of a limit.

Given M > 0, weneed § > O such thatif 0 < z — 4 < §, then2/;/x —4 > M. Thisistrue < Vr—4<2/M &
x—4 < 4/M?. Soifwechoose § =4/M? then0 <z —4<3§ = 2/\/x—4 > M. So by the definition of a limit,

lim (2//z —4) = occ.

r—4t

@) f(z) =+v—zifr <0, f(z) =3 —zif0 <z <3, f(z) = (x —3)*ifz > 3.

(i) lim f(z)= lim (3—=z)=3 (i) lim f(z)= lim /-2 =0
z—0t z—0t z—0~ z—0~
(iii) Because of (i) and (ii), lirr(l) f(z) does not exist. (iv) lim f(z)= lim 3—=x)=0
r— r—3" r—3"
(v) lim+ f(x)= lim (z—3)*>=0 (vi) Because of (iv) and (v), lim3 flx)=0.
r—3 r—3 T
(b) f is discontinuous at 0 since lir% f(z) does not exist. (c)

f is discontinuous at 3 since f(3) does not exist.

@ g(r) =20 —22if0<z<2,g9(r)=2—2if2<z2<3,g(x) =2 —4if3 <z <4,9(z) =mifz > 4.

Therefore, lim g(z) = lim (22 —z?) = 0and lim+ g(z) = lim+ (2 —x) = 0. Thus, lim2 glz) =0=g(2),
r—27 T—2 T

r—2" r—2

so g is continuous at 2. lim g(z) = lim (2—x) = —1and lim g(z)= lim+ (x —4) = —1. Thus,

r—3" r—3" z—3+ r—3
lim g(x) = —1 = g(3), so g is continuous at 3. () Tyr
lim g(z) = lim (z—4)=0and lim g(z)= lim = =.
x—4~ r—4= z—4+ rz—4

Thus, linf}1 g(z) does not exist, so g is discontinuous at 4. But
xr—

0 2\/1 x

lim+ g(z) = 7 = g(4), so g is continuous from the right at 4.
x—4

sin x

sin z and e” are continuous on R by Theorem 2.5.7. Since e” is continuous on R, e is continuous on R by Theorem 2.5.9.

sin x

Lastly, = is continuous on R since it’s a polynomial and the product xe is continuous on its domain R by Theorem 2.5.4.
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32. 2% — 9 is continuous on R since it is a polynomial and /z is continuous on [0, co) by Theorem 2.5.7, so the composition
V22 — 9 is continuous on {z | 2° —9 > 0} = (—o0, —3] U [3, c0) by Theorem 2.5.9. Note that z* — 2 7 0 on this set and

2

so the quotient function g(z) = is continuous on its domain, (—oo, —3] U [3, c0) by Theorem 2.5.4.

22 _
33. f(x) = 2° — #® + 3z — 5 is continuous on the interval [1, 2], f(1) = —2, and f(2) = 25. Since —2 < 0 < 25, there is a
number c in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a solution of the equation
2% — 2% + 3z — 5 = 0 in the interval (1, 2).
34. f(z) = cosy/x — €” + 2 is continuous on the interval [0, 1], f(0) = 2, and f(1) = —0.2. Since —0.2 < 0 < 2, there is a

number ¢ in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a solution of the equation

cosy/xT —e® +2 =0, o0r cos\/r = e” — 2, in the interval (0, 1).
35. (a) The slope of the tangent line at (2, 1) is

. fl@)—f2) . 9-22"—1 . 8—22  —2(2®—4)
;Ln% xr—2 —;LIH2 xr—2 —;LIH2 xr—2 —;LIH2 x—2 T a2 xr—2

= lim [-2(z +2)] = —2-4= -8
(b) An equation of this tangent lineisy — 1 = —8(z — 2) ory = —8z + 17.

36. For a general point with z-coordinate a, we have

m— lim f(z) = f(a) ~ Jim 2/(1—3z)—2/(1—3a) ~ Jim 2(1 —3a) —2(1 — 3z)
z—a T —a z—a T —a z—a (1 —3a)(1 —3z)(z —a)
6(z —a) 6 6

- ;E,r}l (1-3a)(1—3z)(z—a) - ;lirfll (1—3a)(1 - 3z) - (1 —3a)?

—0)ory =6z +2.Fora=—1,m=32

Fora = 0, m = 6 and f(0) = 2, so an equation of the tangent lineisy — 2 = 6 s

(z
and f(—1) = 3, so an equation of the tangent lineis y — 3 = %(m +1lory= %x + %,

37. (a) s = s(t) = 1 + 2t 4 t* /4. The average velocity over the time interval [1, 1 4 k] is

oo s(4h)—s(1) 1420 +m)+ (1+h)7/4-13/4  10h+h* _ 10+ h
T (1+h) -1 h - 4 4

So for the following intervals the average velocities are:

(i) [1,3]: h =2, vave = (10+2)/4=3m/s (i) [1,2]: B =1, vaye = (10 +1)/4 = 2.75 m/s

(iii) [1,1.5]: h =0.5, vaye = (10 + 0.5)/4 = 2.625m/s  (iv) [L,1.1]: h = 0.1, vaye = (10+ 0.1)/4 = 2.525 m/s

5(1“2_ SA) _ gy 104 10 o 5,

b) When ¢ = 1, the instant: locity is li
(b) en » the instantaneous velocity is lim ey T 4 4

38. (a) When V increases from 200 in® to 250 in®, we have AV = 250 — 200 = 50 in®, and since P = 800/V,
~ 800 800

AP = P(250) — P(200) = 550 " 200 — 3.2 —4 = —0.8 Ib/in?. So the average rate of change
. AP 08 Ib/in?

S 22 0016 .
SAV T 750 in®
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(b) Since V' = 800/ P, the instantaneous rate of change of V' with respect to P is

. . V(P+h)—V(P) .. 800/(P+h)—800/P . 800[P —(P+Hh)
i AR T A h = fim I = TP

_ i 80 __800
“hso (PP P2

which is inversely proportional to the square of P.

39. (a) f'(2) = lim f@)—f@) . 2*—-2z-4

z—2 xr—2 z—2 xr—2
_ 2
i BZDE D 2 o9y =10
z—2 T —2 z—2

—4 4
(b)y—4=10(x —2) ory = 10x — 16 { / / J

-12
40. 25 = 64,50 f(z) = 2% and @ = 2.

M. (a) f'(r) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars/(percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As 7 increases, C increases. So f’(r) will always be positive.

42. ! 43. " 44, \
1N N \ of'\/
0 X g ‘ \/
A~

=

f/

N AL

0 X
f . o—
0 X
2 2 22° —2(z + h)?
— 2 2 2 2
45. f'(z) = lim floth) = flz) _ lim (@Hh)? 22 _ lim —— (z+7)
h—0 h—0 h h—0 h
. 20% =222 —4ah—2h* | —4xh—2h% . h(—4x —2h)
= lim =1m —— 7= =11mm —
h—0 ha?(x + h)? h—0 ha?(z + h)2 =0 ha2(z + h)2
—4x —2h —4dx 4
= l1m = = ——
h—o x2(x + h)2  z?-2? x3

Domain of f = (—o0,0) U (0, c0).
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. - VIFT=/t+n)+1
46 f’(t)—limw_hm ViE+h) +1 \/t+1_hm Grh T ivitl
| : _ N I

h—0 h h—0 h h—0
:hm\/t+1f\/(t+h)+1 VEFT+/(t+h)+1

h=0 hy/(t+h)+ 1Vt +1 |VE+1+/(t+h)+1
i (t+1)—[(t+h) +1]

h*“h\/(t+h)+1\/t+1(\/t+1+\/(t+h)+1)

= lim —h

h*(’h\/(t+h)+1\/t+1(\/t+1+\/(t+h)+1)
1
= lim
h=0 \/(t+h)+1\/t+1(\/t+1+\/(t+h)+1)

-1 1 1
CVIFIVIFL(VIFI4+VEFTL) G+ )2VEFT 2(t 4+ 1)P?

Domain of f = (—1,00).

f(a:—l—h)—f(m):hm\/3—5(x+h)—\/3—5x\/3—5(1—0—11)—0—\/3—51

h h—0 h V3—5(@+h)+/3—bx
o BS@ R BB -5 _ -5
hﬂoh(\/3—5(x+h)+\/3_5x) =0 \/3—b(z+h)+v3—bz 2V3 5z

4. @ f'() = lim

(b) Domain of f: (the radicand must be nonnegative) 3 — 5z >0 =

hr <3 = re(—oo,%] p 6
Domain of f': exclude £ because it makes the denominator zero; \f }
z € (—o0,2) -3 \,\ !
(c) Our answer to part (a) is reasonable because f'(z) is always negative and ! \
f is always decreasing. b -6
48. (a) Asx — +oo, f(z) = (4 —z)/(3 + x) — —1, so there is a horizontal - y
asymptote aty = —1. Asx — —37, f(z) — oo, andas z — —3 7,
f(z) — —oo. Thus, there is a vertical asymptote at z = —3. d .
y=-1
(b) Note that f is decreasing on (—oo, —3) and (—3, 00), so f’ is negative on R y
those intervals. As x — +o0, f' — 0. Asz — —3~ andasx — —37, g
f— —c0. 0 .
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49.

50.

51.

52.

U CHAPTER2 LIMITS AND DERIVATIVES

4—(z+h) 4-=
_ i 3@+ 34z . BFr)[d-(eth)]-@-a)3+ (z+h)
h—0 h =0 h[34 (z+ h)] (34 z)

© f'(z) = Jim w
iy (12—82—3h+4z — 2 — ha) — (12+ 4z +4h — 3z — 2 — ha)
o h[3+ (@ + )3+ )

—7h -7 7

S BTGB ) AABr@INGTY)  Btar

(d) The graphing device confirms our graph in part (b).

f is not differentiable: at x = —4 because f is not continuous, at ¢ = —1 because f has a corner, at z = 2 because f is not

continuous, and at x = 5 because f has a vertical tangent.

The graph of a has tangent lines with positive slope for x < 0 and negative slope for = > 0, and the values of c fit this pattern,
so ¢ must be the graph of the derivative of the function for a. The graph of c has horizontal tangent lines to the left and right of
the x-axis and b has zeros at these points. Hence, b is the graph of the derivative of the function for c. Therefore, a is the graph

of f, cis the graph of ', and b is the graph of f”.
Domain: (—o0,0) U (0,00); lim f(z) =1, lirn+ (z) =0;
rz—0~ x—0

f'(z) > 0forall z in the domain; lim f'(z) =0; lim f'(z) =1

&Tr— 00

(a) P’(t) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are

percent per year (%/yr).

(b) To find P’ (¢), we use }llir% P+ h})L — P R Plt+ h}z — P for small values of h.

P(1960) — P(1950)  35.7 —31.1
1960 — 1950 h 10

For 1950: P'(1950) ~ = 0.46

For 1960: We estimate P’(1960) by using h = —10 and h = 10, and then average the two results to obtain a

final estimate.

P(1950) — P(1960) _ 31.1 —35.7

=— / ~ =0.
h=-10 = P'(1960) o T060 — 0.46

B , _ P(1970) — P(1960) _ 34.0 —35.7 _
h=10 = P'(1960) ~ ——p— ol = S 017

So we estimate that P’ (1960) ~ $[0.46 + (—0.17)] = 0.145.

t 1950 1960 1970 1980 1990 2000 2010
P'(t) | 0460 0.145 —0.385 —0.415 —0.115 —0.085 —0.170
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051
374
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354
031
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021
314
1t
29+ 0
274 1950 1960\ 1970 1980 1990 2000 2010
25+ “01r
231 02T
il il il il il il il _0'3--
1950 1960 1970 1980 1990 2000 2010 ! —0.41
_0'5..

(d) We could get more accurate values for P’ (¢) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995,
and 2005.

53. B’(t) is the rate at which the number of US $20 bills in circulation is changing with respect to time. Its units are billions of

bills per year. We use a symmetric difference quotient (see Exercise 2.7.60) to estimate B’(2010).

B(2010 + 5) — B(2010 —5)  B(2015) — B(2005)  8.57 — 5.77
(2010 + 5) — (2010 — 5) 2(5) - 10

B'(2010) =~ = 0.280 billion of bills per year

(or 280 million bills per year).

54. (a) Drawing slope triangles, we obtain the following estimates: F”(1950) ~ 43 = 0.11, F'(1965) ~ ==& = —0.16,
and F'(1987) ~ 52 = 0.02.
(b) The rate of change of the average number of children born to each woman was increasing by 0.11 in 1950, decreasing
by 0.16 in 1965, and increasing by 0.02 in 1987.
(c) There are many possible reasons:

e In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.

o In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a
large family.

e In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

5. |f(2)| < g(w) & —g(a) < f(x) < g(x) and lim g(z) = 0 = lim —g(a).

r—a r—a

Thus, by the Squeeze Theorem, lim f(x) = 0.

56. (a) Note that f is an even function since f(z) = f(—=z). Now for any integer n,
[n] + [-n] = n — n = 0, and for any real number k which is not an integer,

k] + [kl =[k] + (—[K] —1) = —1.So lim f(z) exists (and is equal to —1)

for all values of a.

(b) f is discontinuous at all integers.
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1. Lett = ¢z,s0x =15 Thent — lasz — 1, s0

L Yr-1 . -1 (t—1)(t+1) . t+1 1+1 2
lim = lim = lim = lim = =-.
s=lyr—1 =183 -1 t=1(t—-1)(2+¢+1) =12+t+1 124141 3

Another method: Multiply both the numerator and the denominator by (/z + 1) ( Va? + Yz + 1).

\/ax+b—2.\/aaz+b+2_hm ar+b—4
T var+b+2 =0 x(\/am+b+2)

approaches 0 as x — 0, the limit will exist only if the numerator also approaches 0 as x — 0. So we require that

2. First rationalize the numerator: lim . Now since the denominator
x—0

a a
a(0)+b—4=0 = b=4. Sotheequation becomes lim —— =1 = =1 = a=4
(0) q a—0 \Jaz + 4+ 2 VA+2

Therefore, a = b = 4.

3. For—i <z < ,wehave2r —1 <0and2z+1> 0,502z — 1| = —(2z — 1) and |22 + 1| = 2z + 1.

2ot —Redl] g, Qe D ZQed D) g 24 gy =

Therefore, lim
xz—0 x z—0 xT z—0 I z—0

4. Let R be the midpoint of O P, so the coordinates of R are (%x, %xQ) since the coordinates of P are (x, :1:2). Let @ = (0,a).

2 2

. T 1 . . %l’ —a  2*-2a
Since the slope mop = — = x, mgr = —— (negative reciprocal). But mqr = 5 0 = , so we conclude that
T T sr— T
2

—1=22-2a = 2a=2’4+1 = a:%ater%.AstO,aH%,andthelimitingpositiononis(O,%).

5. (a)ForO<x<1,[[m]]=0,so[[ix]]:O,and lim [[ixﬂ:0.F0r—1<m<0,[[x]]:—1,so[[—iﬂ=_71,and

z—0

[#] [«]

. . -1 . . - .z .
lim =— = lim (—) = oo. Since the one-sided limits are not equal, 11rn0 == does not exist.
T z—0 T

z—0~ X z—0~
(b) Forz >0,1/x —1<[1/z] <1/z = z(l/z—1)<z[l/z] <z(l/z) = 1-z<z[l/z] <1
Asz — 0", 1 —x — 1, so by the Squeeze Theorem, lim+ z[1/z] = 1.
z—0

Forz <0,1/z—1<[1/z] <1/xz = z(l/z—-1)>z[l/2] >z(l/z) = 1—z>z[l/z] >1.

Asxz — 07,1 —x — 1, so by the Squeeze Theorem, lim z[1/z] = 1.
r—0—

Since the one-sided limits are equal, lirr(l) z[1/z] = 1.
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6. (a) []° + [y]® = 1. Since [z]* and [y]? are positive integers or 0, there are S
only 4 cases:

Case (i):

=1y =0 =1<z<2and0<y<1 W

Case (ii): [z] = -1, [yl =0=>—-1<zx<0and0 <y <1

I
] ) 0 1
I
I

A

Case (iii):[z] =0, [y =1 =0<z<landl <y <2

= = = =

Case (iv):[z] =0, [y =-1=0<z<land-1<y <0

(b) [z]* — [y]? = 3. The only integral solution of n* — m? = 3isn = +2
and m = =£1. So the graph is

{(z,9) | [2] = £2, [yl = +1} = {(%y)

2<zx<3o0or 2<x<l1,
1<y<2o0r -1<y<0 |

©z+y’=1 = [z+y]l==41 = 1<z+y<2

or—1<z4+y<0

(dForn<z<n+1l,Jz]=nThen[z]+[y] =1 = [yJ=1-n = y

1 —n <y < 2 — n. Choosing integer values for n produces the graph.

7. (a) The function f(z) = z/ [x] is defined whenever [z] # 0. Since [z] = 0 for z € [0, 1), it follows that the domain of f is
(_007 0) U [17 OO)
To determine the range we examine the values of f on the intervals (—oco, 0) and [1, co) separately. A graph of f is

helpful here.

y

=7 —6 =5 —4 -3 -2 -1 0 1 2 3 4 5 6 7 X

On (—o0, 0), consider the intervals [—a, —a + 1) for each positive integer a. On each such interval, f is decreasing,

f(a) =1, and
lim T 1 1
lim  f(z) = IH(T‘ZH) _—etl_ 1- =
z—(—at1)— lim [=] —a a
z—(—a+1)~
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So the range of f on the interval [—a, —a + 1) is (1 — 1/a, 1]. The intervals (1 — 1/a, 1] are nested and their union is just

the largest one, which occurs when a = 1. So the range of f on (—oo, 0) is (0, 1].

On [1, 00), consider the intervals [a, a + 1), for each positive integer a. On each such interval, f is increasing,

f(a) =1,and
or-" a1 1
x—(a+1)— a
li — — — 14z
Zﬁ(gfl)* 1) lim [z a + a
z—(a+1)~

So the range of f on the interval [a,a + 1) is [1,1 4+ 1/a). The intervals [1,1 4 1/a) are nested and their union is the

largest one, which occurs when a = 1. So the range of f on [1,00) is [1, 2).

Finally, combining the preceding results, we see that the range of f is (0,1] U [1,2), or (0, 2).

. -1 . .

(b) First note that z — 1 < [z] < z. Forz > 0, r=- < M < E. For x > 2, taking reciprocals, we have
x T x

> — > 1. Now lim =1land lim 1 = 1. It follows by the Squeeze Theorem that lim — = 1.

[[x]] z—oo L — 1 T—00 T—00 [[x]]

rx—1

8. (a) Here are a few possibilities:

y

(b) The “obstacle” is the line x = y (see diagram). Any intersection of the graph of f with the line y = x constitutes a fixed
point, and if the graph of the function does not cross the line somewhere in (0, 1), then it must either start at (0, 0)

(in which case 0 is a fixed point) or finish at (1, 1) (in which case 1 is a fixed point).

(c) Consider the function F'(z) = f(x) — x, where f is any continuous function with domain [0, 1] and range in [0, 1]. We
shall prove that f has a fixed point. Now if f(0) = 0 then we are done: f has a fixed point (the number 0), which is what
we are trying to prove. So assume f(0) # 0. For the same reason we can assume that f(1) # 1. Then F/(0) = f(0) >0
and F(1) = f(1) — 1 < 0. So by the Intermediate Value Theorem, there exists some number c in the interval (0, 1) such

that F'(c) = f(c) —c =0. So f(c) = ¢, and therefore f has a fixed point.

lim [f(z) + g()] = 2 lim f(z) + lim g(z) =2 (1)
Y limi@ —g@i=1 | m /@) - Im @ =1 @

Adding equations (1) and (2) gives us 2 lim f(z) =3 = lim f(z) = 2. From equation (1), lim g(z) = 3. Thus,

lim [f(x) g(2)] = lim f(z) - lim g(z) = 5 - 3 =

r—a r—a r—a

[SIE

3
I
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10. (a) Solution 1: We introduce a coordinate system and drop a perpendicular y A
from P, as shown. We see from ZNC'P that tan 26 = T L , and from
—x
/N BP that tan 6 = y/x . Using the double-angle formula for tangents, P(x, y)
we get Y — tan20 = 2 tan 6 = 2(y/z) . After a bit of (]
1—z 1—tan?0 1— (y/z)2 Bl 20\ C
1 22 0 MoNo L
simplification, this becomes == & yY=zBr-2).
-z 22 —y2

As the altitude AM decreases in length, the point P will approach the x-axis, that is, y — 0, so the limiting location of P
must be one of the roots of the equation z(3x — 2) = 0. Obviously it is not z = 0 (the point P can never be to the left of

the altitude AM, which it would have to be in order to approach 0) so it must be 3z — 2 = 0, that is, z = %

Solution 2: We add a few lines to the original diagram, as shown. Now note

that /ZBPQ = ZPBC (alternate angles; QP || BC by symmetry) and

similarly ZCQP = ZQCB. So ABPQ and ACQP are isosceles, and 2 ¢
the line segments BQ, QP and PC are all of equal length. As |[AM| — 0,
B C
P and @ approach points on the base, and the point P is seen to approach a
position two-thirds of the way between B and C, as above.
y
(b) The equation 4> = x(3z — 2) calculated in part (a) is the equation of A
the curve traced out by P. Now as |[AM| — 00,260 — 5,0 — I,
x — 1, and since tan @ = y/x, y — 1. Thus, P only traces out the P (x, y)
part of the curve with 0 < y < 1. A
B 9 C
0 M % 1 x

1. (a) Consider G(z) = T'(x 4 180°) — T'(x). Fix any number a. If G(a) = 0, we are done: Temperature at a = Temperature
ata + 180°. If G(a) > 0, then G(a + 180°) = T'(a + 360°) — T'(a + 180°) = T'(a) — T'(a + 180°) = —G(a) < 0.
Also, G is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, G has a zero on the
interval [a, a + 180°]. If G(a) < 0, then a similar argument applies.

(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

. @AW h) —af(@) . [ef@th) el (@)  hf@th)
) K = pm I = p h R
Let W@ 4t pat ) = af () + (@)

because f is differentiable and therefore continuous.
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13. (a) Putx = 0 and y = 0 in the equation: (0 +0) = f(0) + f(0) +0%-0+0-0> = f(0) = 2£(0).

Subtracting f(0) from each side of this equation gives f(0) = 0.

2 2
(b) f,(o):%ii% f(0+h})L_f(0) :%i_,mo [f(0)+f(h)+0hh+0h ] = 1(0) :}llil:% f(h) :;il% f(;) 1
© f'(z) = %ﬂw ~ lim [f(x)+f(h)+x;h+xh2} —f@) _ i f(h)JrlT;thth
= lim {m-&-xz—&-mh] =1+2?
h—0 h

14. We are given that | f(z)| < x® for all z. In particular, | f(0)| < 0, but |a| > 0 for all a. The only conclusion is

o < TOTO 1y

that f(0) = 0. Now ‘f(rgz — 5(0)‘ - ‘fg:)

x
= —:—:|I| =
x

But lir% (—|z]) =0= lin(l) ||, so by the Squeeze Theorem, lin%) = 0. So by the definition of a derivative,

f is differentiable at O and, furthermore, f’(0) = 0.
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