Chapter 02: Proof Problems

1. Supply missing reasons for this proof.

Given: $m \| n$
Prove: $\angle 1 \cong \angle 3$
S1. $m \| n \mathrm{R} 1$.
S2. $\angle 1 \cong \angle 2 \mathrm{R} 2$.
S3. $\angle 2 \cong \angle 3 \mathrm{R} 3$.
S4. $\angle 1 \cong \angle 3 \mathrm{R} 4$.
ANSWER: R1. Given
R2. If 2 parallel line are cut by a transversal, then corresponding angles are congruent.
R3. If two lines intersect, the vertical angles formed are congruent.
R4. Transitive Property of Congruence
POINTS:
1
QUESTION TYPE: Essay
HAS VARIABLES: False
STUDENT ENTRY MODE: Basic
PREFACE NAME:
m parallel n
DATE CREATED:
12/24/2018 4:41 AM
DATE MODIFIED:
12/24/2018 4:41 AM

Chapter 02: Proof Problems

2. Supply missing statements and missing reasons for the following proof.

Given: $m \| n_{\text {and transversal } p ; ~}\left\langle\mathrm{l}_{\text {is }}\right.$ a right angle
Prove: $\angle 2$ is a right angle
S1. $m \| n_{\text {and }}$ transversal p R1.
S2. $\angle 1 \cong \angle 2 \mathrm{R} 2$.
S3. R3. Congruent measures have equal measures.
S4. $m \angle 1=90 \mathrm{R} 4$.
S5. R5. Substitution Property of Equality
S6. R6. Definition of a right angle

ANSWER:

POINTS:
QUESTION TYPE:
HAS VARIABLES:
STUDENT ENTRY MODE: Basic
PREFACE NAME: rt angles 1,2
DATE CREATED: 12/24/2018 4:41 AM
DATE MODIFIED: $\quad 12 / 24 / 20184: 41$ AM
R1. Given
S3. $m \angle 1=m \angle 2$
R4. Given
S5. $m \angle 2=90$
S6. $\angle 2$ is a right angle
1
Essay
False

R2. If 2 parallel lines are cut by a trans, corresponding angles are congruent.

3. In the figure, $x \| y$ and transversal z. Explain why $\angle 2$ and $\angle 3$ must be supplementary.

ANSWER:

POINTS:

QUESTION TYPE:
With $x \| y$, corresponding angles 1 and 3 must be congruent. Then $m \angle 1=m \angle 3$.
But $\angle \mathrm{l}$ and $\angle 2$ are supplementary in that the exterior sides of these adjacent angles form a straight line. Then $m \angle 1+m \angle 2=180$. By substitution, $m \angle 3+m \angle 2=180$. Then $\angle 2$ and $\angle 3$ are supplementary.

HAS VARIABLES: False
STUDENT ENTRY MODE: Basic
PREFACE NAME: par lines x, y

Chapter 02: Proof Problems

DATE CREATED: $\quad 12 / 24 / 2018$ 4:41 AM
DATE MODIFIED: $12 / 24 / 20184: 41$ AM
4. Use an indirect proof to complete the following problem.

Given: $\angle l_{\text {and }} \angle 2$ are supplementary (no drawing)
Prove: \angle land $\angle 2$ are not both obtuse angles.

ANSWER:

Suppose that $\angle 1_{\text {and }} \angle 2$ are both obtuse angles. Then $m \angle 1>90_{\text {and }} m \angle 2>90$.
It follows that $m \angle 1+m \angle 2>180$. But it is given that \angle and $\angle 2$ are supplementary, so that $m \angle 1+m \angle 2=180$.
With a contradiction of the known fact, it follows that the supposition must be false; thus, \angle land $\angle 2$ are not both obtuse angles.

POINTS:
 1

QUESTION TYPE:
Essay
HAS VARIABLES:
False
STUDENT ENTRY MODE: Basic
DATE CREATED: 12/24/2018 4:41 AM
DATE MODIFIED: 12/24/2018 4:41 AM

5. Use an indirect proof to complete the following problem.

Given: \angle lis not congruent to $\angle 2$
Prove: $\overrightarrow{Y W}$ does not bisect $\angle X Y Z$
ANSWER:
Suppose that $\overrightarrow{Y W}$ does bisect $\angle X Y Z$. Then $\angle 1 \cong \angle 2$. But it is given that $\angle \mathrm{l}$ is not congruent to $\angle 2$.
Thus, the supposition must be false and it follows that $\overrightarrow{Y W}$ does not bisect $\angle X Y Z$

POINTS:
QUESTION TYPE:
HAS VARIABLES:
STUDENT ENTRY MODE: Basic
PREFACE NAME: angle XYZ
DATE CREATED: 12/24/2018 4:41 AM
DATE MODIFIED: $\quad 12 / 24 / 20184: 41$ AM

Chapter 02: Proof Problems

6. Supply missing statements in the following proof.

Given: $m\left\|n_{\text {and }} n\right\| p$
Prove: $m \| p$
S1. R1. Given
S2. R2. If 2 parallel lines are cut by a transversal, corr. angles are congruent.
S3. R3. Given
S4. R4. Same as \#2.
S5. R5. Transitive Property of Congruence
S6. R6. If 2 lines are cut by a transversal so that corresponding angles are congruent, then these lines are parallel.

ANSWER:	S1. $m \\| n$
	S. $\angle 1 \cong \angle 2$
	S3. $n \\| p$
	S4. $\angle 2 \cong \angle 3$
	S5. $\angle 1 \cong \angle 3$
POINTS:	S6. $m \\| p$
QUESTION TYPE:	1
HAS VARIABLES:	Essay
STUDENT ENTRY MODE:	False
PREFACE NAME:	m,n,p
DATE CREATED:	$12 / 24 / 20184: 41 \mathrm{AM}$
DATE MODIFIED:	$12 / 24 / 20184: 41 \mathrm{AM}$

Chapter 02: Proof Problems

7. Supply missing statements and reasons for the foloowing proof.

Given: \angle is supplementary to $\angle 4$
Prove: $x \| y$
S1. R1.
S2. $\angle 3$ is supp. to $\angle 4 \mathrm{R} 2$. If the ext. sides of 2 adj . angles form a line, the angles are supp.
S3. R3. Angles supp. to the same angle are congruent.
S4. R4.
ANSWER:
S1. $\angle 1_{\text {is supplementary to }} \angle 4$
R1. Given
S3. $\angle 1 \cong \angle 3$
S4. $x \| y$
R4. If 2 lines are cut by a trans. so that corr. angles are congruent, these lines are parallel.

POINTS:

QUESTION TYPE: Essay
HAS VARIABLES: False
STUDENT ENTRY MODE: Basic
PREFACE NAME: x,y;trans z
DATE CREATED: $\quad 12 / 24 / 20184: 41$ AM
DATE MODIFIED: $12 / 24 / 20184: 41$ AM

Chapter 02: Proof Problems

8. In the triangle shown, $\angle C_{\text {is }}$ a right angle.Explain why $\angle A_{\text {and }} \angle B$ are complementary.

ANSWER:	The sum of the angles of a triangle is 180. With $\angle C$ being a right angle. $m \angle C=90$. Then $m \angle A+m \angle B+90=180$. By subtraction, $m \angle A+m \angle B=90$.
Thus, $\angle A$ and $\angle B$ are complementary.	
POINTS:	1
QUESTION TYPE:	Essay
HAS VARIABLES:	False
STUDENT ENTRY MODE:	Basic
PREFACE NAME:	rt tri ABC
DATE CREATED:	$12 / 24 / 20184: 41 \mathrm{AM}$
DATE MODIFIED:	$12 / 24 / 20184: 41 \mathrm{AM}$

9. Explain the following statement.

The measure of each interior angle of an equiangular triangle is 60 .
ANSWER:
The sum of the three angles of a triangle is 180. Let x represent the measure of each angle of the equiangular triangle. Then $x+x+x=180$, so $3 x=180$. Dividing by $3, x=60$. That is, the measure of each interior angle of an equiangular triangle is 60 .

POINTS:	1
QUESTION TYPE:	Essay
HAS VARIABLES:	False
STUDENT ENTRY MODE:	Basic
DATE CREATED:	$12 / 24 / 20184: 41$ AM
DATE MODIFIED:	$12 / 24 / 20184: 41$ AM

10. Supply missing reasons for the following proof.

Given: $\triangle A B C_{\text {with }}$ D-B-A
Prove: $m \angle 1=m \angle A+m \angle C$
S1. $\triangle A B C_{\text {with }}$ D-B-A R1.
S2. $m \angle A+m \angle C+m \angle C B A=180 \mathrm{R} 2$.
S3. $\angle \mathrm{l}$ and $\angle C B A$ are supp. R3.
S4. $m \angle 1+m \angle C B A=180 \mathrm{R} 4$.

Chapter 02: Proof Problems

S5. $m \angle 1+m \angle C B A=m \angle A+m \angle C+m \angle C B A R 5$.
S6. $m \angle 1=m \angle A+m \angle C \mathrm{R} 6$.
ANSWER:
R1. Given
R2. The sum of the interior angles of a triangle is 180 .
R3. If the exterior sides of 2 adjacent agles form a line, these angles are supplementary.
R4. Definition of supplementary angles
R5. Substitution Property of Equality
R6. Subtraction Property of Equality
POINTS: 1
QUESTION TYPE: Essay
HAS VARIABLES: False
STUDENT ENTRY MODE: Basic
PREFACE NAME: Ext angle, tri
DATE CREATED: 12/24/2018 4:41 AM
DATE MODIFIED: 12/24/20184:41 AM

11. Supply missing statements and missing reasons for the following proof.

Given: $\triangle R S T_{\text {so that }} \overline{V S}$ bisects $\angle R S T$;
also, $\angle 3 \cong \angle 4$
Prove: $\angle R \cong \angle T$
S1. $\Delta R S T_{\text {so that }} \overline{V S}$ bisects $\angle R S T$ R1.
S2. R2.
S3. R3. Given
S4. R4. If 2 angles of one triangle are congruent to 2 angles of a second triangle, then the third angles of these triangles are also congruent.
ANSWER:
R1. Given
S2. $\angle 1 \cong \angle 2$
R2. Definition of angle-bisector
S3. $\angle 3 \cong \angle 4$
S4. $\angle R \cong \angle T$
POINTS:
QUESTION TYPE:

Chapter 02: Proof Problems

HAS VARIABLES: False
STUDENT ENTRY MODE: Basic
PREFACE NAME: RST
DATE CREATED: 12/24/20184:41 AM
DATE MODIFIED: 12/24/20184:41 AM

12. Using the drawing provided, explain the following statement.

The sum of the interior angles of a quadrilateral is 360 .
ANSWER:
In $\triangle M N Q, m \angle M+m \angle 1+m \angle 3=180$. Similarly, $m \angle P+m \angle 2+m \angle 4=180$.
By the Addition Property of Equality,
$m \angle M+(m \angle 1+m \angle 2)+m \angle P+(m \angle 3+m \angle 4)=360$.
That is, $m \angle M+m \angle M N P+m \angle p+m \angle P Q M=360$.

POINTS:
QUESTION TYPE:
HAS VARIABLES:
STUDENT ENTRY MODE: Basic
PREFACE NAME:
DATE CREATED: $\quad 12 / 24 / 20184: 41$ AM
DATE MODIFIED: $\quad 12 / 24 / 20184: 41$ AM
13. Use an indirect proof to complete the following problem.

Given: $\triangle A B C$ (not shown)
Prove: $\angle A_{\text {and }} \angle B_{\text {cannot both be right angles. }}$.

ANSWER:

POINTS:
QUESTION TYPE:
HAS VARIABLES:
STUDENT ENTRY MODE: Basic

Chapter 02: Proof Problems

DATE CREATED:
12/24/2018 4:41 AM
DATE MODIFIED:
12/24/2018 4:41 AM

