SOLUTIONS MANUAL FOR PROTECTIVE RELAYING

 Principles and ApplicationsFOURTH EDITION

J. Lewis Blackburn
Thomas J. Domin

SOLUTIONS MANUAL FOR PROTECTIVE RELAYING Principles and Applications
 FOURTH EDITION

by
J. Lewis Blackburn Thomas J. Domin

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2014 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20140227
International Standard Book Number-13: 978-1-4822-0201-4 (Ancillary)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Protective Relaying Principles and Applications $4^{\text {th }}$ Edition

J. Lewis Blackburn (Deceased) Thomas Domain

Solutions Manual
 Prepared by the following contributors:

Sean W. Carr, P.E.
Sr. Engineer-Relay \& Protection Services
Commonwealth Edison Company
Sean.W.Carr@ComEd.com

James K. Niemira, P.E., ME-EPE

Principal Engineer-Power Systems Solutions
S\&C Electric Company
Jim.Niemira@SandC.com
John R. Bettler, P.E., MSEE
Principal Engineer-Relay \& Protection Services
Commonwealth Edison Company
John.Bettler@ComEd.com

William J. Niemira, MSEE
Associate-Power Delivery Services
Sargent \& Lundy LLC
wniemira@SargentLundy.com
Anthony D. Locatelli, P.E., MSEE
Sr. Engineer-Relay \& Protection Services
Commonwealth Edison Company

The classic work of J. Lewis Blackburn is well known to all of those practicing in the field of protective relaying and it is a humbling honor to have been invited to contribute to the latest revision of this work. The various collaborators to this solutions manual have worked many hours on the solutions to the exercise problems for this classic text. We hope that we have illustrated the solution techniques in a manner that is clear and educational for the users of this manual.

It is important to note that in working out these solutions, the collaborators have drawn upon their own years of experience working in this field. Some engineering assumptions and simplifying approximations are sometimes made and it is experience that guides one in the validity of the simplifying approximations and assumptions used. For the sake of those learning the craft, we have attempted to highlight approximations and assumptions when used, but there may be some occasions where we have forgotten to point out an assumption or approximation. We hope that this does not cause undue confusion. It is also possible that other justifiable assumptions may lead to somewhat different, equally valid solutions. Relay system design and settings selections are inherently a balance between competing considerations. Safety and protection being primary, other considerations of security, dependability, cost, and system performance may lead to different solutions depending upon which of these other considerations are emphasized in any particular application.

It is our hope that the users of this solutions manual will find it to be a useful educational tool and will benefit from it. If any errors are found, we apologize and would appreciate these being brought to our attention.

Sean Carr,
Chicago, IL
February 20, 2014

CHAPTER 2

2.1 A wye-connected generator has a nameplate rating of $200 \mathrm{MVA}, 20 \mathrm{kV}$, and its subtransient reactance $\left(X_{d}^{\prime \prime}\right)$ is 1.2 pu. Determine its reactance in ohms.
2.2 The generator of Problem 2.1 is connected in a power system where the base is specified as 100 MVA, 13.8 kV . What is the generator reactance $\left(X_{d}^{\prime \prime}\right)$ in per unit on this system base?
2.3 Convert the per-unit answer calculated in Problem 2.2 to ohms. Does this match the value determined in Problem 2.1?
2.4 Three 5 MVA single-phase transformers, each rated $8: 1.39 \mathrm{kV}$, have a leakage impedance of 6%. These can be connected in a number of different ways to supply three identical 5Ω resistive loads. Various transformer and load connections are outlined in Table P2.4. Complete the table columns. Use a three-phase base of 15 MVA.

TABLE P2.4

Case No. Pri	Transformer connection		Load connection to secondary HV	Line-to-line base kV	Load R in per unit	Total Z as viewed from the high side	
	mary Se	condary		LV		Per unit	Ω
1	Wye	Wye	Wye				
2	Wye	Wye	Delta				
3	Wye	Delta	Wye				
4	Wye	Delta	Wye				
5	Delta	Wye	Wye				
6	Delta	Wye	Delta				
7	Delta	Delta	Wye				
8	Delta	Delta	Delta				

2.5 A three-phase generator feeds three large synchronous motors over a $16 \mathrm{~km}, 115 \mathrm{kV}$ transmission line, through a transformer bank, as shown in Figure P2.5. Draw an equivalent single-line reactance diagram with all reactances indicated in per unit of a $100 \mathrm{MVA}, 13.8$ or 115 kV base.

2.6 In the system of Problem 2.5, it is desired to maintain the voltage at the motor bus of $1 . \angle 0^{\circ}$ per unit. The three motors are operating at full rating and $90 \% \mathrm{pf}$.
a. Determine the voltage required at the generator terminals assuming that there is no voltage regulating taps or similar equipment in this system.
b. What is the voltage required behind the subtransient reactance?
2.7 The percent impedance of a transformer is typically determined by a short circuit test. In such a test, the secondary of the transformer is shorted and the voltage on the primary is increased until rated current flows in the transformer windings. The applied voltage that produces rated current divided by the rated voltage of the transformer is equal to the per-unit impedance of the transformer.

A short circuit test on a $150 \mathrm{KVA}, 7200-240 \mathrm{~V}$ transformer provides the following results: Primary voltage at 20.8 primary amperes $=208.8 \mathrm{~V}$
a. Determine the $\% \mathrm{Z}$ of the transformer.
b. Calculate the ohmic impedance of the transformer in primary and secondary terms.
c. How much current would flow in the transformer if its secondary would become shorted during normal operating conditions? (Consider source impedance to be zero.)

- 2.1

Find impedance in ohms from per-unit.
$\mathrm{MVA}_{B}=200, \mathrm{kV}_{B}=20, X^{\prime \prime}{ }_{d}=Z_{\mathrm{PU}}=1.2$

Per Eq. (2.17) $\quad Z_{\Omega}=\frac{\mathrm{kV}_{B}^{2} \times \mathrm{ZPU}_{\mathrm{Pu}}}{\mathrm{MVA}_{B}}$

$$
\frac{20^{2} \times 1.2}{200}
$$

2.4

Impedance $X^{\prime \prime}{ }_{d}=\mathbf{2 . 4}$ ohms

- 2.2 - Method 1

Convert per-unit impedance from one base to another.
$\mathrm{MVA}_{1}=200, \quad \mathrm{MVA}_{2}=100, \mathrm{kV}_{1}=20, \mathrm{kV}_{2}=13.8, X^{\prime \prime}{ }_{d}=\mathrm{Z}_{1 \mathrm{PU}}=1.2$

Per Eq. (2.33) $\quad Z_{2} \mathrm{PU}=Z_{1} \mathrm{PU} \times \frac{\mathrm{MVA}_{2}}{\mathrm{MVA}_{1}} \times \frac{\mathrm{kV}_{1}{ }^{2}}{\mathrm{kV}_{2}{ }^{2}}$

$$
1.2 \times \frac{100}{200} \times \frac{20^{2}}{13.8^{2}}
$$

$$
1.26024
$$

Per-unit impedance in new base $Z_{2 P U}=\mathbf{1 . 2 6 0 2 4}$

- 2.2 - Method 2

Convert impedance from ohms (Result 2.1) to per-unit.
$\mathrm{MVA}_{B}=100, \quad \mathrm{kV}_{B}=13.8, X^{\prime \prime}{ }_{d}=\mathrm{Z}_{\Omega}=2.4$

Per Eq. (2.15)

$$
Z_{\mathrm{PU}}=\frac{Z_{\Omega}}{Z_{B}}=\frac{\mathrm{MVA}_{B} \times \mathrm{Z}_{n}}{\mathrm{kV}_{B}^{2}}
$$

$$
\frac{100 \times 2.4}{13.8^{2}}
$$

1. 26024

Per-unit impedance $Z_{\mathrm{PU}}=1.26024$

- 2.3

Convert impedance from per-unit (Result 2.2) back to ohms.
$\mathrm{MVA}_{B}=100, \quad \mathrm{kV}_{B}=13.8, X^{\prime \prime}{ }_{d}=\mathrm{Z}_{\mathrm{PU}}=1.26024$

Per Eq. (2.17) $\quad Z_{\Omega}=\frac{\mathrm{kV}_{B}^{2} \times \mathrm{Z}_{\mathrm{PU}}}{\mathrm{MVA}_{B}}$
$\frac{13.8^{2} \times 1.26024}{100}$
2.4

Impedance $X^{\prime \prime}{ }_{d}=\mathbf{2 . 4}$ ohms. This matches Result 2.1.
2.4 The transfomer per unit impedare con be pil refened to either side, so when either windiy tis cannected in wye, the trausfrman inpedare will be 6% Iz equivalint impelume in the line referred to the wige-connected side: When both winding are conneted in delta, the eqcivalent line impelane will be $1 / 3$ of the winding imperance, or $2 \% I z$.
Similarly, the load ruistors, when connectiod in delta, have ur equivelnt wye rexistme $08 \frac{1}{3}$ the ehinc value of resistors usel to Make up the delta.
Transformen impedave is 6% Iz on tramifour 1-phane Base of 5 MVA per phace, equivalut to 15 MVA 3 -phase.
The equivalent wyo-ronnectod load resictuce can be eppressed ron per anit bacir L_{y} dividin by the low-sile base impelave. The high-side per unt inyoedane is the some as the loulside per und iypedaver; the high-side equivalnt ingodane in ohns can be fand ly nultiplyivy the per unt impodure by the Hig-sile base ianpestuce.

$\begin{aligned} & \text { Wheted } \\ & \text { coniwt } \\ & \mathrm{HV}\end{aligned} \mathrm{kV} * \sqrt{3}=13.856 \mathrm{kV}, z_{B}=\frac{(3.856 \mathrm{kV})^{2}}{15 \mathrm{MVA}}=12.8 \Omega$ \triangle comutedtHV $8 \mathrm{kV}, z_{B}=\frac{(8 \mathrm{kV})^{2}}{15 \mathrm{uVA}}=4.267 \Omega$ Woyedcel $1.39 \mathrm{kV}+\sqrt{3}=2.408 \mathrm{kV}, Z_{B}=\frac{(2.408 \mathrm{kV})^{2}}{15 \mathrm{kVA}}=0.3864 \mathrm{kN}$ Δ cimented LV $1.39 \mathrm{kV}, Z_{B}=\frac{(1.39 \mathrm{kV})^{2}}{15 \mathrm{MVA}^{2}}=0.1288 \mathrm{~N}$

$$
\begin{array}{ll}
\frac{5}{0.1205}= & \frac{5 / 3}{0.1605}=4.31 \\
\frac{5}{0.1288}=38.82 & \frac{5 / 3}{0.1288}=12.94
\end{array}
$$

Soer spreabisuct.

$$
\operatorname{JiNF}_{1 / 26 / 14}, 282
$$

Base power (3-phase MVA)	HV winding voltage (kV)	HV delta LL voltage (kV)	HV wye LL voltage (kV)	Zbase for HV delta	Zbase for HV wye
15.000	8.000	8.000	13.856	4.267	12.799

Base power (3-phase MVA)	LV winding voltage (kV)	LV delta LL voltage (kV)	LV wye LL voltage (kV)	Zbase for LV delta	Zbase for LV wye
15.000	1.390	1.390	2.407	0.129	0.386

$$
\begin{aligned}
& 115 / 13.8 \mathrm{kV} \\
& x=10 \%
\end{aligned}
$$

$M_{1}: 10 \mathrm{~mm}, 13.8 \mathrm{AV}, \mathrm{K}_{d}^{6}=20 \%$
$M_{2}=5 \mathrm{mvA}, 13.8 \mathrm{VR}, \times e^{\prime \prime}=20 \%$
M_{3} ： $5 \mathrm{mVA}, 13.2 \mathrm{KV}, \times \mathrm{Ca}=19$
Chaviy Base：

$$
\begin{aligned}
& \text { Base: } \\
& \text { Epuinew }_{\prime}=Z_{\text {puoLD }}\left(\frac{\text { MVANEW }}{M N A_{\text {OD }}}\right)\left(\frac{k V_{\text {OLD }}}{k V_{\text {NEW }}}\right)^{2} \\
& \left.V_{1 "}^{\prime \prime}-100\right)(13.2)^{2}-21.07
\end{aligned}
$$

Cencrator $X_{d}{ }^{\prime \prime}=20 \%\left(\frac{100}{50}\right)\left(\frac{13.2}{13.8}\right)^{2}=36.6 \%, \quad 0.366 \mathrm{pu}$

$$
\text { F1 } \quad X=12 \%\left(\frac{100}{50}\right)=24 \%, \quad 0.24 \mathrm{pu}
$$

$$
T-2 \quad x=10 \%\left(\frac{100}{20}\right)=50 \%, \quad 0.50 \mathrm{pu}
$$

M1 $K_{d}^{\prime \prime}=20 \%\left(\frac{100}{10}\right)=200 \%, \quad 2.0$ pu
$M z \quad x_{d}^{\prime}=20 \%\left(\frac{100}{5}\right)=400 \%, \quad 4.0 \mathrm{pu}$

$$
m 3 \quad x_{0}^{\prime \prime}=17 \%\left(\frac{100}{5}\right)\left(\frac{13.21}{13.8}\right)^{2}=311 \%
$$

Line inpelane：$z_{p u}=\frac{z_{\text {bace }}}{z_{\text {base }}}$

$$
\begin{aligned}
& Z_{\text {bace 1N大V }}=\frac{(15 \mathrm{kV})^{2}}{100 \mathrm{MVA}}=132.25-\Omega \\
& Z_{\text {bine pue }}=\frac{\left(0.5 \frac{\Omega}{\mathrm{~m}}\right)(16 \mathrm{mi})}{132.25 \Omega}=0.0605 \mathrm{per}
\end{aligned}
$$

Reactance diagnom
All impedanes' in PU on 100 MVA base cul sither 13.8 kV base or 115 KV base as appopriato.

Problem 2.6

$$
\begin{aligned}
& \mathrm{MVA} \equiv 10^{6} \cdot \text { volt } \cdot \mathrm{amp} \\
& \mathrm{PU} \equiv 1
\end{aligned}
$$

Prob 2.6.a - Voltage at qenerator bus to keep 1 PU voltage at motor bus

$\mathrm{V}_{\text {motor }}:=1.0 \cdot \mathrm{PU}$
Load current - motors at rated power and 0.9 PF. Problem does not say explicitly, but we assume that the PF is lagging as this is the most probable.

Total motor bus power in per unit

$$
\begin{aligned}
& \mathrm{S}_{\text {motor }}:=\frac{10 \cdot \mathrm{MVA}+5 \cdot \mathrm{MVA}+5 \cdot \mathrm{MVA}}{100 \cdot \mathrm{MVA}} \cdot \mathrm{e}^{\mathrm{j} \cdot \operatorname{acos}(0.9)}=(0.18+0.087 \mathrm{j}) \mathrm{PU} \\
& \left|\mathrm{~S}_{\text {motor }}\right|=0.2 \mathrm{PU} \quad \arg \left(\mathrm{~S}_{\text {motor }}\right)=25.842 \mathrm{deg}
\end{aligned}
$$

Current is found from the relation that complex power is equal to voltage times complex conjugate of current.
$\mathrm{I}_{\text {motor }}:=\overline{\left(\frac{\mathrm{S}_{\text {motor }}}{\mathrm{V}_{\text {motor }}}\right)}=(0.18-0.087 \mathrm{y}) \mathrm{PU} \quad\left|\mathrm{I}_{\text {motor }}\right|=0.2 \mathrm{PU} \quad \arg \left(\mathrm{I}_{\text {motor }}\right)=-25.842 \mathrm{deg}$

Line reactance in PU (from prob. 2.5)

$$
\mathrm{Z}_{\mathrm{Line}}:=\mathrm{j} \cdot 0.0605 \mathrm{PU}
$$

T1 reactance in PU (from prob. 2.5)
$\mathrm{Z}_{\mathrm{T} 1}:=\mathrm{j} \cdot 0.24 \mathrm{PU}$
T2 reactance in PU (from prob. 2.5)
$\mathrm{Z}_{\mathrm{T} 2}:=\mathrm{j} \cdot 0.50 \mathrm{PU}$

Generator bus voltage is motor bus voltage plus voltage drop in T1, line, and T2.

$$
\begin{gathered}
\mathrm{V}_{\text {Gen.bus }}:=\mathrm{V}_{\text {motor }}+\mathrm{I}_{\text {motor }} \cdot\left(\mathrm{Z}_{\mathrm{T} 1}+\mathrm{Z}_{\text {Line }}+\mathrm{Z}_{\mathrm{T} 2}\right)=(1.07+0.144) \mathrm{PU} \\
\left|\mathrm{~V}_{\text {Gen.bus }}\right|=1.079 \mathrm{PU} \quad \arg \left(\mathrm{~V}_{\text {Gen.bus }}\right)=7.671 \mathrm{deg}
\end{gathered}
$$

Prob 2.6 b-Generator internal voltage behind subtransient reactance: add internal voltage drop to the generator terminal voltage
Generator subtransient reactance in PU (from prob. 2.5) $\quad Z_{G e n}:=\mathrm{j} \cdot 0.366$

$$
\begin{aligned}
& \mathrm{V}_{\text {Gen.internal }}:=\mathrm{V}_{\text {Gen.bus }}+\mathrm{I}_{\text {motor }} \cdot \mathrm{Z}_{\mathrm{Gen}}=(1.102+0.21 j \mathrm{PU} \\
& \left|\mathrm{V}_{\text {Gen.internal }}\right|=1.122 \mathrm{PU} \quad \arg \left(\mathrm{~V}_{\text {Gen.internal }}\right)=10.79 \mathrm{ldeg}
\end{aligned}
$$

$\mathrm{kVA} \equiv 1000 \cdot$ volt $\cdot \mathrm{amp}$

Problem 2.7

Transformer rated power and rated voltages

$$
\mathrm{S}_{\text {rated }}:=150 \cdot \mathrm{kVA} \quad \mathrm{~V}_{\text {rated.primary }}:=7200 \cdot \text { volt } \quad \mathrm{V}_{\text {rated.secondary }}:=240 \cdot \text { volt }
$$

Transformer rated current

$$
\begin{aligned}
& \mathrm{I}_{\text {rated.primary }}:=\frac{150 \cdot \mathrm{kVA}}{7.2 \cdot \mathrm{kV}}=20.833 \mathrm{~A} \\
& \mathrm{I}_{\text {rated. secondary }}:=\frac{150000 \cdot \mathrm{volt} \cdot \mathrm{amp}}{240 \cdot \text { volt }}=625 \mathrm{~A}
\end{aligned}
$$

This confirms that the short circuit test was in fact performed at rated current. The impedance voltage is therefore equal to the voltage measured during the test, or 208.8 volts.
2.7.a The transformer per cent impedance voltage ($\% I Z$ or $\% Z$) is equal to the measured impedance voltage expressed as per cent of the rated voltage or in this case:

$$
\begin{aligned}
\mathrm{V}_{\text {test }}:=208.8 \cdot \mathrm{volt} \quad \mathrm{X}_{\mathrm{T}}:=\frac{\mathrm{V}_{\text {test }}}{\mathrm{V}_{\text {rated.primary }}} & =0.029 \mathrm{PU} \quad \mathrm{X}_{\mathrm{T}}=2.9 \% \\
\frac{208.8 \cdot \mathrm{volt}}{7200 \cdot \mathrm{volt}} & =0.029 \mathrm{PU}
\end{aligned}
$$

2.7.b The equivalent ohmic impedance referred to the primary or secondary is equal to the corresponding base impedance times the per unit impedance.
$Z_{\text {base.primary }}:=\frac{\mathrm{V}_{\text {rated.primary }}{ }^{2}}{\mathrm{~S}_{\text {rated }}}=345.6 \Omega \quad \mathrm{Z}_{\text {base.secondary }}:=\frac{\mathrm{V}_{\text {rated.secondary }}{ }^{2}}{\mathrm{~S}_{\text {rated }}}=0.384 \Omega$

$$
\frac{(7.2 \cdot \mathrm{kV})^{2}}{0.15 \cdot \mathrm{MVA}}=345.6 \Omega
$$

$$
\frac{(0.24 \cdot \mathrm{kV})^{2}}{0.150 \cdot \mathrm{MVA}}=0.384 \Omega
$$

$\mathrm{X}_{\text {T.ohms.primary }}:=\mathrm{X}_{\mathrm{T}} \cdot \mathrm{Z}_{\text {base.primary }}=10.022 \Omega$
$\mathrm{X}_{\text {T.ohms.secondary }}:=\mathrm{X}_{\mathrm{T}} \cdot \mathrm{Z}_{\text {base.secondary }}=0.0111 \Omega$
2.7.c There are a few ways to arrive at the short circuit current. One way is to divide the rated voltage by the equivalent ohmic impedance on either primary or secondary.

Alternatively, 1.0 PU voltage can be divided by the PU impedance to determine the short circuit current in PU of rated current. The PU short circuit current can then be multiplied by the base current (i.e., rated current) on either primary or secondary as desired. This method can be further simplified to "divide rated current by per unit impedance."

Both methods are illustrated here:

$$
\begin{array}{ll}
\frac{\mathrm{V}_{\text {rated.primary }}}{\mathrm{X}_{\text {T.ohms.primary }}}=718.391 \mathrm{~A} & \frac{7200 \cdot \text { volt }}{10.022 \cdot \mathrm{ohm}}=718.419 \mathrm{~A} \\
\frac{\mathrm{~V}_{\text {rated.secondary }}}{\mathrm{X}_{\mathrm{T} . \text { ohms.secondary }}}=21551.724 \mathrm{~A} & \frac{240 \cdot \mathrm{volt}}{.0111 \cdot \mathrm{ohm}}=21621.622 \mathrm{~A}
\end{array}
$$

(NOTE: this result can also be used to illustrate the concept of significant digits. The result is 21.6 kA , athough the computer internally carries out calculations to greater precision than is significant.)

Another method to arrive at the same result:

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{SC} . \mathrm{PU}}:=\frac{1}{\mathrm{X}_{\mathrm{T}}}=34.483 \mathrm{PU} \quad \mathrm{I}_{\text {SC.Primary }}:=\mathrm{I}_{\mathrm{SC} \cdot \mathrm{PU} \cdot} \cdot \mathrm{I}_{\text {rated.primary }}=718.391 \mathrm{~A} \\
34.5 \cdot 20.8 \cdot \mathrm{amp}=717.6 \mathrm{~A} \\
\mathrm{I}_{\text {SC. secondary }}:=\mathrm{I}_{\mathrm{SC} \cdot \mathrm{PU}} \cdot \mathrm{I}_{\text {rated.secondary }}=21.552 \mathrm{kA} \\
34.5 \cdot 625 \cdot \mathrm{amp}=21562.5 \mathrm{~A}
\end{array}
$$

And finally, another method, often the simplest:

$$
\begin{array}{ll}
\frac{\mathrm{I}_{\text {rated.primary }}}{\mathrm{X}_{\mathrm{T}}}=718.391 \mathrm{~A} & \frac{20.8 \cdot \mathrm{amp}}{.029}=717.241 \mathrm{~A} \\
\frac{\mathrm{I}_{\text {rated. secondary }}}{\mathrm{X}_{\mathrm{T}}}=21551.724 \mathrm{~A} & \frac{625 \cdot \mathrm{amp}}{0.029}=21551.724 \mathrm{~A}
\end{array}
$$

CHAPTER 3

3.1 Four boxes represent an $A C$ generator, reactor, resistor, and capacitor and are connected to a source bus XY as shown in Figure P3.1. From the circuit and phasor diagrams, identify each box.

3.2 Two transformer banks are connected to a common bus as shown in Figure P3.2. What are the phase relations between the voltages V_{AN} and $V_{\mathrm{AN}^{\prime} ;} V_{\mathrm{BN}}$ and $V_{\mathrm{BN}^{\prime}}, V_{\mathrm{CN}}$ and $V_{\mathrm{CN}^{\prime}}$?

3.3 Reconnect transformer bank 2 of Problem 3.2 with the left windings in wye instead of delta, and the right windings in delta instead of wye so that V_{AN} and $V_{\mathrm{AN}^{\prime}}$ are in phase, V_{i} and $V_{\mathrm{BN}^{\prime}}$ are in phase, and V_{CN} and $V_{\mathrm{CN}^{\prime}}$ are in phase.

3.4 The power transformer connections shown in Figure P3.3 are nonstandard and quite unusual with today's standardization. However, this connection provides an excellent exercise in understanding phasors, polarity, and directional sensing relay connections.

Connect the three-directional phase relays A, B, C to line-side CTs and bus-side VTs for proper operation for phase faults out on the line. Use the $90^{\circ}-60^{\circ}$ connection. Each directional relay has maximum torque when the applied current leads the applied voltage by 30°. The auxiliary VTs should be connected to provide the relays with equivalent line-side voltages.

PROBLEM 3.1

$$
\begin{aligned}
& I_{1}=\text { RESISTOR } \\
& I_{2}=I_{\text {NDUCTOR }} \\
& I_{3}=\text { GENERATOR } \\
& I_{4}=\text { CAPACITOR }
\end{aligned}
$$

