Solutions Manual For

A Course in Real Analysis

(Updated 3/28/2017)

Hugo D. Junghenn

Contents

Preface vi
Chapter 1 3
Chapter 2 14
Chapter 3 24
Chapter 4 35
Chapter 5 52
Chapter 6 68
Chapter 7 84
Chapter 8 103
Chapter 9 127
Chapter 10 150
Chapter 11 159
Chapter 12 176
Chapter 13 185

Preface

This book contains complete solutions to the exercises in A Course in Real Analysis. There are over 1600 problems of varying degrees of difficulty, some involving only straightforward application of results in the text, others requiring a deeper analysis. To derive maximum benefit, the reader is urged to attempt a solution before consulting this manual.

Hugo D. Junghenn
Washington, D.C.
January 2015

Chapter 1 Solutions

Section 1.2

1. (a) Since $(-a)+a=0$, uniqueness of the additive inverse of $(-a)$ implies that $-(-a)=a$.
(b) $[(a b)+(-a) b]=[a+(-a)] b=0 \cdot b=0$, so uniqueness of the additive inverse implies $-(a b)=(-a) b$. A similar argument works for the second equality.
(c) By (b) and (a), ($-a)(-b)=-(a(-b))=-(-(a b))=a b$.
(d) By (b), $(-1) a=1(-a)=-a$.
(e) By commutativity and associativity of multiplication,

$$
(a / b)(b c)=a\left(b^{-1} b\right) c=a c=c\left(d^{-1} d\right) a=(c / d)(a d),
$$

hence the first equality follows from 1.2.1(h). For the second equality, by commutativity and associativity of multiplication and 1.2.1(i),

$$
(a / b)(c / d)=\left(a b^{-1}\right)\left(c d^{-1}\right)=(a c)\left(b^{-1} d^{-1}\right)=(a c)(b d)^{-1}=(a c) /(b d) .
$$

(f) Using commutativity and associativity of multiplication, the distributive law, and 1.2.1(i),

$$
\begin{aligned}
a / b+c / d & =a b^{-1}\left(d d^{-1}\right)+c d^{-1}\left(b b^{-1}\right)=a d\left(b^{-1} d^{-1}\right)+b c\left(b^{-1} d^{-1}\right) \\
& =a d(b d)^{-1}+b c(b d)^{-1}(a d+b c) /(b d) .
\end{aligned}
$$

2. Let $r=m / n$ and $s=p / q$ where $m, n, p, q \in \mathbb{N}$ and $n q \neq 0$. By Exercise $1, r \pm s=(m q \pm p n) /(n q)$ and $r s=(m p) /(n q)$, which are rational. Since $1 / s=\left(p q^{-1}\right)^{-1}=p^{-1} q=q / p, r / s$ is the product of rational numbers hence is rational.
3. If $s:=r / x \in \mathbb{Q}$, then, by Exercise $2, x=r / s \in \mathbb{Q}$, a contradiction. Therefore, $r / x \in \mathbb{I}$. The remaining parts have similar proofs.
4. (a) By commutativity and associativity of multiplication and the distributive law,

$$
\begin{aligned}
(x-y) \sum_{j=1}^{n} x^{n-j} y^{j-1} & =\sum_{j=1}^{n} x^{n-j+1} y^{j-1}-\sum_{j=1}^{n} x^{n-j} y^{j} \\
& =\sum_{j=0}^{n-1} x^{n-j} y^{j}-\sum_{j=1}^{n} x^{n-j} y^{j} \\
& =x^{n}-y^{n} .
\end{aligned}
$$

(b) Replace y in part (a) by $-y$.
(c) Replace x and y in part (a) by x^{-1} and y^{-1}, respectively.
5. The left side of (a) is $\frac{n-1}{n} \frac{n-2}{n} \cdots \frac{1}{n}=\frac{n!}{n^{n}}$. For (b),

$$
\begin{aligned}
(2 n)! & =[2 n(2 n-2)(2 n-4) \cdots 4 \cdot 2][(2 n-1)(2 n-3) \cdots 3 \cdot 1] \\
& =2^{n}[n(n-1)(n-2) \cdots 2 \cdot 1][(2 n-1)(2 n-3) \cdots 3 \cdot 1]
\end{aligned}
$$

6. $\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(n-k+1)!(k-1)!}+\frac{n!}{(n-k)!k!}$

$$
\begin{aligned}
& =\frac{k n!+(n-k+1) n!}{(n-k+1)!k!} \\
& =\binom{n+1}{k}
\end{aligned}
$$

7. Let a_{n} denote the difference of the two sides of the equation in (a). Combining fractions in the resulting summation leads to

$$
a_{n}=\sum_{k=0}^{n} \frac{n-2 k}{(n+2)(k+1)(n-k+1)}
$$

Making the index change $j=n-k$ results in

$$
a_{n}=\sum_{j=0}^{n} \frac{2 j-n}{(n+2)(j+1)(n-j+1)}=-a_{n} .
$$

Therefore, $a_{n}=0$. Part (b) is proved similarly.
8. $f(k)=k^{3}-(k-1)^{3}=3 k^{2}-3 k+1$.

Section 1.3

1. (a) If $a>0$ and $b<0$, then $-(a b)=a(-b)>0$ hence $a b<0$.
(b) If $a>0$ and $1 / a<0$, then $1=a(1 / a)<0$. The converse is similar.
(c) Follows from $a / b-c / d=(a d-b c) / b d$.
2. Multiply the given inequalities by x, using (d) of 1.3.2.
3. Part (a) follows from a double application of 1.3.2(d). Part (b) follows from (a) by noting that $-y<-x$ and $0<-b<-a$. Part (c) follows from (a).
4. If $0<x<y$, then multiplying the inequality by $1 /(x y)$ and using (d) of 1.3 .2 shows that $1 / y<1 / x$. If $x<y<0$, then $0<-y<-x$ hence, by the first part, $1 /(-x)<1 /(-y)$ so $1 / x>1 / y$.
5. If $-1<x<y$ or $x<y<-1$, then $(y+1)(x+1)>0$ hence

$$
\frac{y}{y+1}-\frac{x}{x+1}=\frac{y-x}{(y+1)(x+1)}>0
$$

If $x<-1<y$, then $(y+1)(x+1)<0$ and the inequality is reversed.
6. (a) By Exercise 1.2.4, $y^{n}-x^{n}=(y-x) \sum_{j=1}^{n} y^{n-j} x^{j-1}$. Each term of the sum is positive and less than $y^{n-j} y^{j-1}=y^{n-1}$. Since there are n terms, part (a) follows.
(b) The inequality is equivalent to

$$
n(n+1) x y+n y+n x+x+1<n(n+1) x y+n y+n x+y+1
$$

which reduces to $x<y$.
7. The given inequality implies that $m x>n x-n$ and $m<n$. Therefore, $n>(n-m) x>x$.
8. $a=t a+(1-t) a<t b+(1-t) b=b$.
9. If the inequality holds, take $x=y=1$ to get $a \geq-2$ and $x=1, y=-1$ to get $a \leq 2$. Conversely, suppose that $0 \leq a \leq 2$. The inequality then holds trivially if $x y \geq 0$, and if $x y<0$ then $x^{2}+y^{2}+a x y=$ $(x+y)^{2}+(2-a)(-x y) \geq 0$. A similar argument works for the case $-2 \leq a \leq 0$.
10. If $a>b$ then $x:=(a-b) / 2>0$ and $a>b+x$, contradicting the hypothesis.
11. Note that $b>0$. Suppose $a>b$. Then $x:=(1+a / b) / 2>1$ and $b x=(a+b) / 2<a$, contradicting the hypothesis.
12. The inequality is equivalent to $a<x^{2}+x$ for all $x>0$. Assume $a>0$. If $a \geq 1$ then $x=1 / 2$ violates the condition. If $0<a<1$, then $x:=a / 4<1$ so $a>x+x>x^{2}+x$, again, violating the condition. Therefore, $a \leq 0$.
13. (a) Follows from $0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}$.
(b) $0 \leq(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=2\left(x^{2}+y^{2}+z^{2}\right)-2(x y+y z+x z)$.
(c) By expansion, the inequality is equivalent to $2 x y z w \leq(y z)^{2}+(x w)^{2}$, which follows from (a).
(d) Follows from (a).
14. Expand $(x-a)^{2} \geq 0$ and divide by x.
15. (a) Write $x-y=(x-z)+(z-y)$ and apply the triangle inequality.
(b) $|x-L|<\varepsilon$ iff $-\varepsilon<x-L<\varepsilon$.
16. (a) Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$, where $x_{1}<\cdots<x_{n}$. Then $\min \{S\}=x_{1}$ and $\max \{-S\}=-x_{1}$. Part (b) is proved in a similar manner.
(c) Let $x=\max (S \cup T)$ and assume without loss of generality that $x \in S$. Then $x=\max S$ and $t \leq x$ for all $t \in T$ hence $\max T \leq x$. Therefore, $x=\max \{\max S, \max T\}$. Part (d) is proved similarly.
17. (a) For the equalities, consider the cases $x \geq 0$ and $x \leq 0$.
(b) Follows from (a).
(c) Add and subtract the equations $x=y-z$ and $|x|=y+z$.
(d) Use (b) and the triangle inequality.
(e) $(x-y)^{-}=\max \{y-x, 0\} \leq y$.
18. If $a \leq x \leq b$, then $x \leq|b|$ and $-x \leq-a \leq|a|$, hence $|x| \leq \max \{|a|,|b|\}$.
19. Consider cases $x \geq y$ and $x \leq y$.
20. Set $x:=\max \{a, b\}$. By Exercises 16 and 19, $x=\frac{1}{2}(a+b+|a-b|)$ and $\max \{a, b, c\}=\max \{x, c\}=\frac{1}{2}(x+c+|x-c|)$. Substituting the expression for x gives the formula for $\max \{a, b, c\}$. The corresponding formula for $\min \{a, b, c\}$ may be found similarly or may be derived from (a).
21. Assume without loss of generality that $S_{1}=S \backslash\left\{a_{1}, \ldots, a_{k}\right\}$, so $\min S_{1}=$ a_{k+1}. Each of the remaining sets S_{j} contains at least one of a_{1}, \ldots, a_{k} hence $\min S_{j} \leq a_{k}<a_{k+1}$, verifying the assertion.

Section 1.4

1. $x \in-A \Rightarrow-x \in A \Rightarrow-x \leq \sup A \Rightarrow x \geq-\sup A$. Therefore, $-\sup A$ is a lower bound for $-A$ hence $-\sup A \leq \inf (-A)$. Similarly, $a \in A \Rightarrow$ $-a \in-A \Rightarrow-a \geq \inf (-A) \Rightarrow a \leq-\inf (-A)$, so $-\inf (-A)$ is an upper bound for A hence $\sup A \leq-\inf (-A)$ or $-\sup A \geq \inf (-A)$
2. (a) $\sup =12, \quad \inf =-12$.
(b) $\sup =1, \quad \inf =-1$.
(c) $\sup =3 / 2, \quad \inf =-3 / 2$.
(d) $\sup =0, \quad \inf =-2$.
3. (a) $\sup =3, \inf =2$,
(b) $\sup =3, \inf =-2$.
(c) $\sup =10 / 3, \inf =3$.
(d) $\sup =\frac{3+\sqrt{5}}{2}, \inf =-\infty$.
(e) $\sup =+\infty, \inf =-\infty$.
(f) $\sup =2, \inf =3 / 2$.
(g) $\sup =\frac{3+\sqrt{2}}{2}, \inf =\frac{3-\sqrt{2}}{2}$.
(h) $\sup =3, \inf =0$.
(i) $\sup =\frac{1}{2}+\frac{\sqrt{2}}{4}, \inf =\frac{1}{2}-\frac{\sqrt{2}}{4}$.
(j) $\sup =\frac{1}{2}+\frac{\sqrt{6}}{4}, \inf =-1 / 8$.
$(\mathrm{k}) \sup =4, \inf =-2$.
(l) $\sup =2, \inf =-2$.
$(\mathrm{m}) \sup =4 / 3, \inf =-1$.
(n) $\sup =3 / 2, \inf =-5 / 4$.
4. If B is bounded above then any upper bound of B is an upper bound of A hence $\sup A \leq \sup B$. The inequality still holds if B is unbounded above. A similar argument establishes the other inequality.
5. Let $x, y \in A$. Then $\pm(x-y) \leq \sup A-\inf A$ hence $|x-y| \leq \sup A-\inf A$. Since $|x|-|y| \leq|x-y|,|x|-|y| \leq \sup A-\inf A$ so $|x| \leq \sup A-\inf A+|y|$. Since x was arbitrary, we have $\sup |A| \leq \sup A-\inf A+|y|$ hence $\sup |A|-\sup A+\inf A \leq|y|$. Since y was arbitrary it follows that $\sup |A|-\sup A+\inf A \leq \inf |A|$.
6. (a) $a \in A$ and $b \in B \Rightarrow a+b \leq \sup A+\sup B \Rightarrow \sup (A+B) \leq$ $\sup A+\sup B$. The infimum case is similar.
(b) Since $x>0, x a \leq x \sup A$ for all $a \in A$, hence $\sup (x A) \leq x \sup A$. Replacing x by $1 / x$ proves the inequality in the other direction.
(c) For any $a \in A$ and $b \in B, a b \geq \inf A \inf B$, so $\inf A B \geq \inf A \inf B$. If inf $A=0$, choose a sequence a_{n} in A with $a_{n} \rightarrow 0$. Fix any $b \in B$. Then $\inf A B \leq a_{n} b \rightarrow 0$ so $\inf A B \leq \inf A \inf B$ in this case. Now suppose $\inf A \neq 0$. Then $a b \geq \inf A B \Rightarrow a \leq b^{-1} \inf A B \Rightarrow \inf A \geq$ $b^{-1} \inf A B \Rightarrow b \inf A \geq \inf A B \Rightarrow b \geq[\inf A]^{-1} \inf A B \Rightarrow \inf B \leq$ $[\inf A]^{-1} \inf A B \Rightarrow \inf A \inf B \geq \inf A B$.
(d) $a \in A \Rightarrow a^{r} \leq(\sup A)^{r} \Rightarrow \sup A^{r} \leq(\sup A)^{r}$. Also, $a=\left(a^{r}\right)^{1 / r} \leq$ $\left(\sup A^{r}\right)^{1 / r}$ hence $\sup A \leq\left(\sup A^{r}\right)^{1 / r}$.
(e) $a \in A \Rightarrow \inf A \leq a \Rightarrow 1 / \inf A \geq 1 / a \Rightarrow 1 / \inf A \geq \sup A^{-1}$. Also, $1 / a \leq \sup A^{-1} \Rightarrow a \geq 1 /\left(\sup A^{-1}\right) \Rightarrow \inf A \geq 1 /\left(\sup A^{-1}\right)$, or $1 /(\inf A) \leq \sup A^{-1}$
7. Let r denote the infimum. By the approximation property for suprema, there exists $x \in A$ such that $\sup A-r<x \leq \sup A$. Suppose $x<\sup A$. Choose $y \in A$ such that $x<y \leq \sup A$. Then $y-x<r$, a contradiction. Therefore, $\sup A=x \in A$.
8. For all $x, y \in A, x<y+r$ hence $\sup A \leq y+r$ or $\sup A-r \leq y$. Therefore, $\sup A-r \leq \inf A$ or $\sup A-\inf A \leq r$.
9. Let $a<b$ and let $r \in(a-\sqrt{2}, b-\sqrt{2})$ be rational. Then $r+\sqrt{2} \in(a, b)$ is irrational.
10. If $r_{1}<\cdots<r_{n}$ are rationals in (a, b) then there exists a rational in $\left(r_{n}, b\right)$. Therefore, the number of rationals in (a, b) must be infinite. A similar argument applies to irrationals.
11. Choose $n \in \mathbb{N}$ such that $n(b-a)>1$ and let $m=\left\lfloor 2^{n} a\right\rfloor+1$. Then $2^{n} a<m \leq 2^{n} a+1<2^{n} b$, the last inequality because $2^{n}>n$. Therefore, $a<m / 2^{n}<b$.
12. (a) If $n:=\lfloor x\rfloor=\lfloor-x\rfloor$, then $x-1<n \leq x$ and $-x-1<n \leq-x$. Adding these inequalities gives $-2<2 n \leq 0$ so $n=0$. The converse is trivial.
(b) If $n:=\lfloor x\rfloor=-\lfloor-x\rfloor$, then $x-1<n \leq x$ and $x \leq n<x+1$. This is possible only if $x=n$. The converse is trivial.
(c) By definition $-x-1<\lfloor-x\rfloor \leq-x$.
(d) Adding $m-x-1<\lfloor m-x\rfloor \leq m-x$ to $x-1<\lfloor x\rfloor \leq x$ gives $m-2<\lfloor x\rfloor+\lfloor m-x\rfloor \leq m$.
13. (a) Let $s=\sum_{j=0}^{n} x_{j}$ and $t=\sum_{j=0}^{n}\left\lfloor x_{j}\right\rfloor$. Then $s-1<\lfloor s\rfloor \leq s$ and $s-(n+1)<t \leq s$. Adding the first inequality to $-s \leq-t<n+1-s$ gives $-1<\lfloor s\rfloor-t<n+1$, hence $0 \leq\lfloor s\rfloor-t \leq n$.
(b) By (a), $\lfloor s\rfloor-t=k$ for some $k=0,1, \ldots n$. By definition of $\lfloor s\rfloor$, $s-1<k+t \leq s$.
14. Let $x:=\left(b^{m}\right)^{1 / n}$ and $y:=\left(b^{1 / n}\right)^{m}$. By definition, x is the unique positive solution of $x^{n}=b^{m}$. Since $y^{n}=\left[\left(b^{1 / n}\right)^{m}\right]^{n}=\left[\left(b^{1 / n}\right)^{n}\right]^{m}=b^{m}, x=y$.
15. Use Exercise 1.2 .4 with $x=a^{1 / n}$ and $y=b^{1 / n}$.
16. Use Exercise 15.
17. Let $\ell \leq x \leq u$ for all $x \in A$. By the Archimedean principle, there exist positive integers m and n such that $-m<\ell \leq u<n$. Set $N=$ $\max \{m, n\}$.
18. This follows from 1.4.11.
19. Let $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}, a, b, c, d \in \mathbb{Q}$. Then, for example,

$$
\begin{gathered}
x y=(a c+2 b d)+(b c+a d) \sqrt{2} \in \mathbb{Q}(\sqrt{2}) \text { and } \\
1 / y=(c-d \sqrt{2})\left(c^{2}+2 d^{2}\right) \in \mathbb{Q}(\sqrt{2})
\end{gathered}
$$

The set $\left\{x \in \mathbb{Q}(\sqrt{2}): x^{2}<\sqrt{3}\right\}$ is bounded above but has no least upper bound in $\mathbb{Q}(\sqrt{2})$ hence $\mathbb{Q}(\sqrt{2})$ is not complete.
20. For any $a \in \mathbb{N}$, if $r:=\sqrt{n+a}+\sqrt{n} \in \mathbb{Q}$, then squaring both sides of $\sqrt{n+a}=r-\sqrt{n}$ shows that $\sqrt{n} \in \mathbb{Q}$ and hence that $n=j^{2}$ for some $j \in \mathbb{N}$ (1.4.11). Then $\sqrt{n+a} \in \mathbb{Q}$ hence $n+a=k^{2}$ for some $k \in \mathbb{N}$. Therefore, $a=k^{2}-j^{2}=(k-j)(k+j)$. If $a=11$, then $k-j=1$ and $j+k=11$ so $n=25$. If $a=21$, then either $k-j=1$ and $j+k=21$ or $k-j=3$ and $j+k=7$. The first choice leads to $j=10$ and $n=100$, and the second to $j=2$ and $n=4$.
21. Let $r=(\sqrt{n}+1)(\sqrt{n+p}+1)^{-1}$. If $n=(p-1)^{2} / 4$, then $n+p=(p+1)^{2} / 4$, hence $r \in \mathbb{Q}$. Conversely, let $r \in \mathbb{Q}$. Since

$$
r^{2}(n+p)=2(r-1) \sqrt{n}+n+(1-r)^{2}
$$

\sqrt{n} is rational and hence n is a perfect square, say $n=m^{2}, m \in \mathbb{N}$ (1.4.11). Since

$$
\sqrt{n+p}=r^{-1}(\sqrt{n}+1)-1=r^{-1}(m+1)-1
$$

$\sqrt{n+p}$ is rational hence $n+p=k^{2}$ for some $k \in \mathbb{N}$. Therefore $p=$ $k^{2}-m^{2}=(k-m)(k+m)$. Since p is prime, $k-m=1$ and $k+m=p$. Thus $m=(p-1) / 2$, hence $n=(p-1)^{2} / 4$.

Section 1.5

1. Let $P(n)$ be the assertion that $a<x_{n}<x_{n+1}<b$. Since $x_{1}-a<1$, $x_{1}-a<\sqrt{x_{1}-a}<1$ hence $x_{1}=a+\left(x_{1}-a\right)<a+\sqrt{x_{1}-a}=x_{2}<b$. Therefore, $P(1)$ holds. Assume $P(n)$ holds. Then

$$
0<\sqrt{x_{n}-a}<\sqrt{x_{n+1}-a}<1
$$

so $a<a+\sqrt{x_{n}-a}<a+\sqrt{x_{n+1}-a}<a+1$, which is $P(n+1)$. A similar argument proves the other inequality.
2. Let $P(n)$ be the statement that a set with n members has a largest and a smallest element. Clearly $P(1)$ and $P(2)$ are true. Let $n \geq 2$ and assume that $P(n)$ holds. If S is a set with $n+1$ members then removing a member a from S produces a set T with n members. Let m be the smallest and M the largest element of T. Then $\min \{m, a\}$ is the smallest and $\max \{M, a\}$ the largest element of S. Therefore $P(n+1)$ holds.
3. Let $f(n)$ denote the sum on the left side of the equation and $g(n)$ the sum on the right. Then $f(1)=1 / 2=g(1)$. Now let $n \geq 1$. Then

$$
\begin{aligned}
& f(n+1)-f(n)=\sum_{k=1}^{2 n+2} \frac{(-1)^{k+1}}{k}-\sum_{k=1}^{2 n} \frac{(-1)^{k+1}}{k}=\frac{1}{2 n+1}-\frac{1}{2 n+2} \\
& g(n+1)-g(n)=\sum_{k=n+2}^{2 n+2} \frac{1}{k}-\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{2 n+2}+\frac{1}{2 n+1}-\frac{1}{n+1} .
\end{aligned}
$$

Since the right sides are equal, $f(n)=g(n) \Rightarrow f(n+1)=g(n+1)$.
4. Let $S(n)$ denote the sum on the left side of the equation and $g(n)$ the expression on the right. In each part, one easily checks that $S(1)=g(1)$. Now let $n>1$ and assume that $S(n-1)=g(n-1)$. Then the last term of the sum $S(n)$ is $S(n)-S(n-1)=S(n)-g(n-1)$. This shows that the induction step $S(n)=g(n)$ holds iff the last term of the sum $S(n)$ is $g(n)-g(n-1)$. For example,
(a) $n=\frac{n(n+1)}{2}-\frac{(n-1) n}{2}$,
(c) $n^{3}=\frac{n^{2}}{4}\left[(n+1)^{2}-(n-1)^{2}\right]$,
(f) $\frac{1}{\sqrt{n}+\sqrt{n-1}}=\sqrt{n}-\sqrt{n-1}$.
5. $\frac{25}{3} n^{3}-\frac{15}{2} n^{2}+\frac{1}{6} n$.
6. (a) $\sum_{k=1}^{999} k+\sum_{k=1}^{999} k^{2}=\frac{999 \cdot 1000}{2}+\frac{999 \cdot 1000 \cdot 1999}{6}=333,333,000$.
(b) $\sum_{k=1}^{500}\left(4 k^{2}-1\right)=4 \frac{500 \cdot 501 \cdot 1001}{6}-500=167,166,500$.
(c) $\begin{aligned} \sum_{k=1}^{251}(4 k-3)(4 k-1) & =16 \frac{251 \cdot 252 \cdot 503}{6}-16 \frac{251 \cdot 252}{2}+3 \cdot 251 . \\ & =85,348,785\end{aligned}$

$$
=85,348,785
$$

7. For $n \geq 1$, let $Q(n)$ be the statement $P\left(n-1+n_{0}\right)$. Then $Q(1)=P\left(n_{0}\right)$ is true. Assume $Q(n)=P\left(n-1+n_{0}\right)$ is true. Then $Q(n+1)=P\left(n+n_{0}\right)$ is true. By mathematical induction, $Q(n)=P\left(n-1+n_{0}\right)$ is true for all $n \geq 1$, that is, $P(n)$ is true for every $n \geq n_{0}$.
8. In each case, let $f(n)$ be the left side of the inequality and $g(n)$ the right side, and let $P(n): f(n)<g(n)$. Let n_{0} be the base value of n for which $P(n)$ is true. It is straightforward to check that in each case $f\left(n_{0}\right)<g\left(n_{0}\right)$. Assume $P(n)$ holds for some $n \geq n_{0}$, so that $f(n) / g(n)<1$. Then
(a) $\frac{f(n+1)}{g(n+1)}=\frac{2 n+3}{2^{n+1}}=\frac{f(n)}{2 g(n)}+\frac{1}{2^{n}}<1$.
(b) $\frac{f(n+1)}{g(n+1)}=\frac{n^{2}+2 n+1}{2^{n+1}}=\frac{f(n)}{2 g(n)}+\frac{2 n+1}{2^{n+1}}<1$
(c) $\frac{f(n+1)}{g(n+1)}=\frac{2^{n+1}}{(n+1)!}=\frac{2}{n+1} \frac{f(n)}{g(n)}<1$.
(d) $\frac{f(n+1)}{g(n+1)}=\frac{3^{n+1}}{(n+1)!}=\frac{3}{n+1} \frac{f(n)}{g(n)}<1$.
(e) $\frac{f(n+1)}{g(n+1)}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}=\frac{f(n)}{g(n)} \frac{2}{(1+1 / n)^{n}}<1$.
(f) $\frac{f(n+1)}{g(n+1)}=\frac{8^{n+1}(n+1)!}{(2 n+2)!}=\frac{f(n)}{g(n)} \frac{4}{2 n+1}<1$.
9. Check that $6<\ln (6!)$. For the induction step, use $(n+1)!=(n+1) n!$.
10. The inequality clearly holds for $n=0$. Suppose $(1+x)^{n} \geq 1+n x$ for some $n \geq 0$. Then $(1+x)^{n+1}=(1+x)^{n}(1+x) \geq(1+n x)(1+x)=$ $1+(n+1) x+n x^{2} \geq 1+(n+1) x$.
11. For $n \geq 1$, let $Q(n)$ be the statement that $P\left(k-1+n_{0}\right)$ is true for $k=1, \ldots, n$. Then $Q(1)=P\left(n_{0}\right)$ is true. Assume $Q(n)$ is true, so $P\left(k-1+n_{0}\right)$ is true for $k=1, \ldots, n$, equivalently, $P(j)$ is true for $n_{0} \leq j \leq n-1+n_{0}$. By hypothesis, $P\left(n+n_{0}\right)$ is true hence $P(j)$ is true for $n_{0} \leq j \leq n+n_{0}$. Thus $P\left(k-1+n_{0}\right)$ is true for $k=1, \ldots n+1$, that is, $Q(n+1)$ is true. By mathematical induction, $Q(n)$ is true for every $n \geq 1$ hence $P(n)$ is true for every $n \geq n_{0}$.
12. Obvious for $n=2$. Let $n>2$ and suppose the prime factorization holds for all integers m with $2 \leq m \leq n$. If $n+1$ is prime, we're done. Otherwise $n+1=m k$ where $2 \leq m, k<n$. By hypothesis, m and k have prime factorizations hence so does the product.
13. Let g_{n} denote the expression on the right in the assertion. One checks directly that $g_{0}=g_{1}=1$. Let $n \geq 2$ and assume that $f_{j}=g_{j}$ for all $2 \leq j \leq n$. Then

$$
\begin{aligned}
g_{n+1}-f_{n+1} & =g_{n+1}-f_{n}-f_{n-1}=g_{n+1}-g_{n}-g_{n-1} \\
& =\frac{1}{\sqrt{5}}\left(a^{n+2}-a^{n+1}-a^{n}\right)+\frac{1}{\sqrt{5}}\left(b^{n+2}-b^{n+1}-b^{n}\right) \\
& =\frac{a^{n}}{\sqrt{5}}\left(a^{2}-a-1\right)+\frac{b^{n}}{\sqrt{5}}\left(b^{2}-b-1\right)=0 .
\end{aligned}
$$

14. Let b_{n} denote the right side of the equation. One checks directly that $b_{n}=a_{n}$ for $n=0,1$. Let $n \geq 2$ and assume that $b_{j}=a_{j}$ for $2 \leq j \leq n$. We show that $b_{n+1}=a_{n+1}$ or, equivalently, $2 b_{n+1}=b_{n}+b_{n-1}$:

$$
\begin{aligned}
b_{n}+b_{n-1} & =\left[\frac{(-1)^{n}}{3 \cdot 2^{n-1}}+\frac{(-1)^{n-1}}{3 \cdot 2^{n-2}}\right]\left(a_{0}-a_{1}\right)+\frac{2}{3}\left(a_{0}+2 a_{1}\right) \\
& =\frac{(-1)^{n-1}\left(a_{0}-a_{1}\right)}{3 \cdot 2^{n-2}}\left[\frac{-1}{2}+1\right]+\frac{2}{3}\left(a_{0}+2 a_{1}\right) \\
& =\frac{2(-1)^{n+1}\left(a_{0}-a_{1}\right)}{3 \cdot 2^{n}}+\frac{2}{3}\left(a_{0}+2 a_{1}\right) \\
& =2 b_{n+1}
\end{aligned}
$$

15. The set of all nonnegative integers of the form $m-q n, q \in \mathbb{Z}$, is nonempty (Archimedean principle) hence has a smallest member $r=m-q n$ (well ordering principle). If $r \geq n$, then $0 \leq r-n=m-(q+1) n<r$, contradicting the minimal property of r. Therefore, $m=q n+r$ has the required form. If also $m=q^{\prime} n+r^{\prime}, q^{\prime} \in \mathbb{Z}, r^{\prime} \in\{0, \ldots, n-1\}$, then $\left|q-q^{\prime}\right| n=\left|r-r^{\prime}\right|<n$ hence $q^{\prime}=q$ and $r^{\prime}=r$.
16. Clearly, $n=1$ has a decimal representation. Assume all integers $q \leq n$ have decimal representations. By the division algorithm, $n+1=10 q+d$, $d \in\{0,1, \ldots, 9\}$. Since $q \leq n, q$ has a decimal representation, say $q=d_{p} d_{p-1} \ldots d_{0}$. Then

$$
n+1=\sum_{k=0}^{p} d_{k} 10^{k+1}+d=d_{p} d_{p-1} \ldots d_{0} d
$$

Therefore, by induction, all positive integers have decimal representations. To see that the representation is unique, suppose that

$$
n=\sum_{k=0}^{p} d_{k} 10^{k}=\sum_{k=0}^{q} e_{k} 10^{k}, \quad d_{j}, e_{j} \in\{0,1, \ldots, 9\} .
$$

Then

$$
e_{0}-d_{0}=\sum_{k=1}^{p} d_{k} 10^{k}-\sum_{k=1}^{q} e_{k} 10^{k},
$$

which is divisible by 10 . Therefore $e_{0}=d_{0}$ and $\sum_{k=1}^{p} d_{k} 10^{k}=$ $\sum_{k=1}^{q} e_{k} 10^{k}$. Arguing similarly, we see that $e_{1}=d_{1}$. Continuing in this manner, eventually $p=q$ and $e_{j}=d_{j}, 0 \leq j \leq p$.

Section 1.6

1. $\boldsymbol{x}=\boldsymbol{c}-\frac{\boldsymbol{d} \cdot \boldsymbol{e}-(\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})}{1-(\boldsymbol{a} \cdot \boldsymbol{b})(b \cdot \boldsymbol{d})} \boldsymbol{a}, \quad \boldsymbol{y}=\boldsymbol{e}-\frac{\boldsymbol{b} \cdot \boldsymbol{c}-(\boldsymbol{a} \cdot \boldsymbol{b})(\boldsymbol{d} \cdot \boldsymbol{e})}{1-(\boldsymbol{a} \cdot \boldsymbol{b})(\boldsymbol{b} \cdot \boldsymbol{d})} d$.
2. By 1.6.3,

$$
\|\boldsymbol{x}+\boldsymbol{y}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}+\|\boldsymbol{y}\|_{2}^{2}+2(\boldsymbol{x} \cdot \boldsymbol{y}) \text { and }\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}+\|\boldsymbol{y}\|_{2}^{2}-2(\boldsymbol{x} \cdot \boldsymbol{y})
$$

Adding and subtracting gives (a) and (b).
(c) By the triangle inequality,

$$
\|\boldsymbol{x}\|_{2}=\|\boldsymbol{x}-\boldsymbol{y}+\boldsymbol{y}\|_{2} \leq\|\boldsymbol{x}-\boldsymbol{y}\|_{2}+\|\boldsymbol{y}\|_{2}
$$

hence $\|\boldsymbol{x}\|_{2}-\|\boldsymbol{y}\|_{2} \leq\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$. Similarly, $\|\boldsymbol{y}\|_{2}-\|\boldsymbol{x}\|_{2} \leq\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$.
(d) Use induction.
3. By 1.6.3, $\left\|\boldsymbol{x}_{1}+\boldsymbol{x}_{2}+\cdots+\boldsymbol{x}_{k}\right\|_{2}^{2}=\sum_{i, j=1}^{n} \boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}=\sum_{j=1}^{k} \boldsymbol{x}_{j} \cdot \boldsymbol{x}_{j}$.
4. For the triangle inequality, we have

$$
\|\boldsymbol{x}+\boldsymbol{y}\|_{1}=\sum_{j=0}^{n}\left|x_{j}+y_{j}\right| \leq \sum_{j=0}^{k}\left|x_{j}\right|+\left|y_{j}\right|=\|\boldsymbol{x}\|_{1}+\|\boldsymbol{y}\|_{1}
$$

and

$$
\begin{aligned}
\|\boldsymbol{x}+\boldsymbol{y}\|_{\infty} & =\max \left\{\left|x_{1}+y_{1}\right|, \ldots,\left|x_{n}+y_{n}\right|\right\} \\
& \leq \max \left\{\left|x_{1}\right|+\left|y_{1}\right|, \ldots,\left|x_{n}\right|+\left|y_{n}\right|\right\} \\
& \leq \max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}+\max \left\{\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right\} \\
& =\|\boldsymbol{x}\|_{\infty}+\|\boldsymbol{y}\|_{\infty}
\end{aligned}
$$

The remaining properties are clear.
5. If $\|\boldsymbol{x}\|_{2},\|\boldsymbol{y}\|_{2} \leq r$ and $0 \leq t \leq 1$, then, by 1.6.4,

$$
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\|_{2} \leq\|t \boldsymbol{x}\|_{2}+\|(1-t) \boldsymbol{y}\|_{2}=t\|\boldsymbol{x}\|_{2}+(1-t)\|\boldsymbol{y}\|_{2} \leq r
$$

The other sets in the exercise are not convex.
6. $\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2} \leq \sqrt{n} \max _{j=1, \ldots, n}\left|x_{j}\right| \leq \sqrt{n} \sum_{j=1}^{n}\left|x_{j}\right| \leq n^{3 / 2} \max _{j=1, \ldots, n}\left|x_{j}\right|$

$$
=n^{3 / 2}\left(\max _{j=1, \ldots, n} x_{j}^{2}\right)^{1 / 2} \leq n^{3 / 2}\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}
$$

7. The hypotheses imply that

$$
\sum_{j=1}^{n} x_{j}^{2}=\sum_{j=1}^{n} y_{j}^{2}=1 \text { and } \sum_{j=1}^{n}\left(x_{j}+y_{j}\right)^{2}=4
$$

It follows that $\sum_{j=1}^{n} x_{j} y_{j}=1$ and $\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}=0$. The same does not hold for $\|\cdot\|_{\infty}($ take $\boldsymbol{x}=(-1,1)$ and $\boldsymbol{y}=(1,1))$ or for $\|\cdot\|_{1}$ (take $\boldsymbol{x}=(1,0)$ and $\boldsymbol{y}=(0,1))$.
8. Use the law of cosines.
9. Direct calculation. For (f) show that $\|\boldsymbol{a} \times \boldsymbol{b}\|^{2}=\|\boldsymbol{a}\|^{2}\|\boldsymbol{b}\|^{2} \cos ^{2} \theta$.

Chapter 2 Solutions

Section 2.1

1. Some possibilities:
(a) $a_{n}=\left[a+b+(-1)^{n}(b-a)\right] / 2$.
(b) $a_{n}=\left[a+b+(-1)^{\lfloor(n+1) / 2\rfloor}(b-a)\right] / 2$, $a_{n}=[a+b+(a-b)[\sin (n \pi / 2)-\cos (n \pi / 2)] / 2$.
(c) $a_{n}=\left[a+b+(-1)^{\lfloor(n-1) / 3\rfloor}(a-b)\right] / 2$.
(d) $a_{n}=\frac{1}{2}(b+c-2 a) x_{n}^{2}+\frac{1}{2}(b-c) x_{n}+a, x_{n}:=\sin [(n-1) \pi / 2]$.
(e) $a_{n}=3+(-1)^{\lfloor(n+1) / 2\rfloor}+\left[(-1)^{n}-1\right] / 2$.
2. $x_{1}=a, x_{n}=a+b-x_{n-1}, n>1$.
3. (a) Since $|(4 n-1) /(2 n+7)-2|=15 /(2 n+7)<8 / n$, choose any integer $N \geq 8 / \varepsilon$.
(b) If $n \geq 6,\left|\left(2 n^{2}-n\right) /\left(n^{2}+3\right)-2\right|=|n+6| /\left(n^{2}+3\right) \leq 2 n / n^{2}=2 / n$. Therefore, choose $N \geq \min \{6,2 / \varepsilon\}$.
(c) $|(5 \sqrt{n}+7) /(3 \sqrt{n}+2)-5 / 3|=11 /(9 \sqrt{n}+6)<11 / \sqrt{n}$, so choose any integer $N \geq(11 / \varepsilon)^{2}$.
(d) For $n \geq 2,(n-1) /(\sqrt{n}+1) \geq(n / 2) / 2 \sqrt{n}=\sqrt{n} / 4$, so choose any integer $N \geq 16 M^{2}$.
(e) $\left|(2+1 / n)^{3}-8\right|=\left[(2+1 / n)^{2}+2(2+1 / n)+4\right] / n \leq 19 / n$, so choose any integer $N>19 / \varepsilon$.
(f) $\sqrt{\frac{n+2}{n+1}}-1=\frac{1}{\sqrt{n+1}(\sqrt{n+2}+\sqrt{n+1})} \leq \frac{1}{n}$, so choose any integer $N>1 / \varepsilon$.
4. The disjoint intervals $(-3 / 2,-1 / 2)$ and $(1 / 2,3 / 2)$ each contain infinitely many terms of the sequence. Therefore, no limit can exist.
5. Let $r=p q^{-1}, p, q \in \mathbb{Z}, q>0$. For all $n \geq q, n!r \in \mathbb{Z}$ hence $\sin (n!r \pi)=0$.

6 . The general term in the sequence may be written $n^{p-1}\left(1+n^{-2}\right)^{p}$, which tends to 1 if $p=1,0$ if $p<1$, and $+\infty$ if $p>1$.
7. Let $A=\left\{x_{1}, \ldots, x_{p}\right\}$ and $A_{j}=\left\{n: a_{n}=x_{j}\right\}$. One of these sets, say A_{1}, must have infinitely many members. Since $\left|x_{1}-a\right| \leq\left|x_{1}-a_{n}\right|+\left|a_{n}-a\right|$ and $a_{n} \rightarrow a$, letting $n \rightarrow+\infty$ through A_{1} shows that $x_{1}=a$. We may therefore choose $\varepsilon>0$ so that $I:=(a-\varepsilon, a+\varepsilon)$ contains no x_{j} for $j \geq 2$. Let $N \in \mathbb{N}$ such that $a_{n} \in I$ for all $n \geq N$. For such $n, a_{n}=a$.
8. (a) $b_{n}=\left(3 a_{n}+2 b_{n}-3 a_{n}\right) / 2 \rightarrow(c-3 a) / 2$.
(b) Let $c_{n}=3 a_{n} b_{n}+5 a_{n}^{2}-2 b_{n}$. Then

$$
b_{n}=\left(c_{n}-5 a_{n}^{2}\right) /\left(3 a_{n}-2\right) \rightarrow(1-20) /(6-2)=-19 / 4 .
$$

9. (a) 2. (b) $\sqrt{a / b}$. (c) $k / 2$. (d) $b / 2 \sqrt{a}$. (e) 1 . (f) $1 / 2 a$. (g) $-k a^{k-1}$. (h) a / k. (i) $0 . \quad$ (j) 0 . (k) $1 / 2$. (l) 1 .
10. If $\left|a_{n}\right| \leq M$ for all n, then $\left|a_{n} b_{n}\right| \leq M\left|b_{n}\right| \rightarrow 0$.
11. Use $-r \leq a_{n}-b_{n} \leq r$ and 2.1.4.
12. $\sqrt{n} a_{n}=\left(n a_{n}\right)(1 / \sqrt{n}) \rightarrow a \cdot 0=0$. For a counter example to the converse take $a_{n}=(-1)^{n} / n$ or $1 / n^{3 / 4}$.
13. If $a=0$, given $\varepsilon>0$ choose N such that $a_{n}<\varepsilon^{k}$ for all $n \geq N$. Suppose $a>0$. Then there exists N such that $a_{n}>0$ for all $n \geq N$. By Exercise 1.4.15,

$$
\left|a_{n}^{1 / k}-a^{1 / k}\right|=\left|a_{n}-a\right|\left(\sum_{j=1}^{k} a_{n}^{1-j / k} a^{(j-1) / k}\right)^{-1} \rightarrow 0
$$

since the expression inside the parentheses tends to

$$
\sum_{j=1}^{k} a^{1-j / k} a^{(j-1) / k}=k a^{1-1 / k}>0
$$

Therefore, $a_{n}^{1 / k} \rightarrow a^{1 / k}$.
14. (a) Suppose first that $r>1$. Set $h_{n}=r^{1 / n}-1$. Then $h_{n}>0$, and by the binomial theorem, $r=\left(1+h_{n}\right)^{n}>n h_{n}$. Therefore, by the squeeze principle, $h_{n} \rightarrow 0$. If $r<1$ consider $1 / r$.
(b) Set $h_{n}=n^{1 / n}-1$. Then $n=\left(1+h_{n}\right)^{n}>n(n-1) h_{n}^{2} / 2$, hence $h_{n} \rightarrow 0$.
(c) Set $h_{n}=\left(r+n^{k}\right)^{1 / n}-1$. By the binomial theorem, for $n \geq k$

$$
r+n^{k}=\left(1+h_{n}\right)^{n}>\frac{n(n-1) \cdots(n-k) h_{n}^{k+1}}{(k+1)!}>\frac{(n-k)^{k+1} h_{n}^{k+1}}{(k+1)!}
$$

hence $h_{n} \rightarrow 0$.
(d) Use the inequality $2 x / \pi \leq \sin x \leq x, 0 \leq x \leq \pi / 2$, and the squeeze principle.
15. Follows from the identities $x=x^{+}-x^{-}, x^{+}=(|x|+x) / 2$, and $x^{-}=$ $(|x|-x) / 2$.
16. Let $s=1 /|r|$ and $h=s-1$. By the binomial theorem,

$$
s^{n}=(h+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} h^{k} .
$$

Since $s>1$, each term in the sum is positive hence, for $n>m$,

$$
s^{n}>\binom{n}{m+1} h^{m+1}=\frac{n(n-1) \cdots(n-m)}{(m+1)!} h^{m+1}>\frac{(n-m)^{m+1}}{(m+1)!} h^{m+1} .
$$

Therefore,

$$
0<\left|n^{m} r^{n}\right|=\frac{n^{m}}{s^{n}}<\frac{n^{m}(m+1)!}{(n-m)^{m+1} h^{m+1}}=\frac{(m+1)!}{n(1-m / n)^{m+1} h^{m+1}}
$$

Since the term on the right tends to 0 as $n \rightarrow+\infty$, the squeeze principle implies that $n^{m} r^{n} \rightarrow 0$.
17. $a_{n}<r a_{n-1}<r^{2} a_{n-2}<\cdots<r^{n-1} a_{1} \rightarrow 0$. For the example, take $a_{n}=2^{1 / n}$.
18. Suppose first that $a \in \mathbb{R}$. Given $\varepsilon>0$, choose N such that $\left|a_{n}-a\right|<\varepsilon / 2$ for all $n>N$. For such n,

$$
\begin{aligned}
&\left|\frac{a_{1}+\cdots+a_{n}}{n}-a\right| \leq\left|\frac{\left(a_{1}-a\right)+\cdots+\left(a_{N}-a\right)}{n}\right| \\
&+\left|\frac{\left(a_{N+1}-a\right)+\cdots+\left(a_{n}-a\right)}{n}\right| \\
& \leq\left|\frac{\left(a_{1}-a\right)+\cdots+\left(a_{N}-a\right)}{n}\right|+\frac{n-N}{n} \frac{\varepsilon}{2}
\end{aligned}
$$

The second term on the right in the last inequality is less than $\varepsilon / 2$. Also, there exists $N^{\prime}>N$ such that the first term is less than $\varepsilon / 2$ for all $n \geq N^{\prime}$. For such $n,\left|\left(a_{1}+\cdots a_{n}\right) / n-a\right|<\varepsilon$.

Now suppose $a_{n} \rightarrow+\infty$. Let $M>0$ and choose N such that $a_{n}>4 M$ for all $n>N$. For such n,

$$
\begin{aligned}
\frac{a_{1}+\cdots+a_{n}}{n} & =\frac{a_{1}+\cdots+a_{N}}{n}+\frac{a_{N+1}+\cdots+a_{n}}{n} \\
& \geq \frac{a_{1}+\cdots+a_{N}}{n}+\frac{4(n-N) M}{n} .
\end{aligned}
$$

Choose $N^{\prime}>N$ such that

$$
\frac{n-N}{n}>\frac{1}{2} \quad \text { and } \quad \frac{a_{1}+\cdots+a_{N}}{n}>-M
$$

for all $n \geq N^{\prime}$. For such $n,\left(a_{1}+\cdots+a_{n}\right) / n \geq 2 M-M=M$.
The converse is false: consider $a_{n}=(-1)^{n}$.
19. Choose N such that $a_{n}-a<\varepsilon$ for all $n \geq N$. For such n,

$$
0 \leq \min \left\{a_{1}, \ldots, a_{n}\right\}-a \leq a_{n}-a<\varepsilon .
$$

Therefore, $\min \left\{a_{1}, \ldots, a_{n}\right\} \rightarrow a$. The converse is false: consider $a_{n}=$ $1+(-1)^{n}$.
20. Given $\varepsilon>0$, choose N such that $\left|a_{n}\right| / n<\varepsilon$ for all $n \geq N$. Then

$$
b_{n}:=n^{-1} \max \left\{a_{1}, \ldots, a_{n}\right\}=\max \left\{\alpha_{n}, \beta_{n}\right\}
$$

where

$$
\alpha_{n}:=n^{-1} \max \left\{a_{1}, \ldots, a_{N}\right\}, \quad \beta_{n}=n^{-1} \max \left\{a_{N+1}, \ldots, a_{n}\right\}
$$

Choose $N^{\prime}>N$ such that $\left|\alpha_{n}\right|<\varepsilon$ for all $n \geq N^{\prime}$. For such n we also have $-\varepsilon<\beta_{n}<\varepsilon$, hence $-\varepsilon<b_{n}<\varepsilon$.

If $\left\{a_{n}\right\}$ is bounded below by c then

$$
c / n \leq a_{n} / n \leq \max \left\{a_{1}, \ldots, a_{n}\right\} / n
$$

Hence if $(1 / n) \max \left\{a_{1}, \ldots, a_{n}\right\} \rightarrow 0$, then $a_{n} / n \rightarrow 0$. The example $a_{n}=1-n$ shows that the converse is not generally true.
21. $\left(x_{1}^{n}+\cdots+x_{k}^{n}\right)^{1 / n}=x_{k}\left[\left(x_{1} / x_{k}\right)^{n}+\cdots+\left(x_{k-1} / x_{k}\right)^{n}+1\right]^{1 / n}$ and

$$
1 \leq\left[\left(x_{1} / x_{k}\right)^{n}+\cdots+\left(x_{k-1} / x_{k}\right)^{n}+1\right]^{1 / n} \leq k^{1 / n} \rightarrow 1
$$

22. Suppose that $c \leq f(x)-x \leq d$ for all x, so $c+j x \leq f(j x) \leq d j x$. Summing and using Exercise 1.5.4,

$$
n c+x n(n+1) / 2 \leq \sum_{j=1}^{n} f(j x) \leq n d+x n(n+1) / 2
$$

hence

$$
c / n+x(1+1 / n) / 2 \leq\left(1 / n^{2}\right) \sum_{j=1}^{n} f(j x) \leq d / n+x(1+1 / n) / 2
$$

Letting $n \rightarrow+\infty$, we obtain (a). Part (b) is proved similarly.
23. Let $c=a_{1} / a_{0}$ and $r=-1 / 2$. By induction, $\frac{a_{n+1}}{a_{n}}=c^{r^{n}}$ hence

$$
a_{n+1}=\left(\frac{a_{n+1}}{a_{n}}\right) \ldots\left(\frac{a_{1}}{a_{0}}\right) a_{0}=a_{0} c^{1+r+\cdots r^{n}} \rightarrow a_{0} c^{1 /(1-r)}=a_{0}^{1 / 3} a_{1}^{2 / 3}
$$

