Solutions Manual For

A Course in Real Analysis

 $(Updated \ 3/28/2017)$

Hugo D. Junghenn

|____ | ____

Contents

Preface																vi
Chapter 1																3
Chapter 2																14
Chapter 3																24
Chapter 4																35
Chapter 5																52
Chapter 6																68
Chapter 7																84
Chapter 8																103
Chapter 9																. 127
Chapter 10																150
Chapter 11																159
Chapter 12																176
Chapter 13																185

v

Preface

This book contains complete solutions to the exercises in *A Course in Real Analysis*. There are over 1600 problems of varying degrees of difficulty, some involving only straightforward application of results in the text, others requiring a deeper analysis. To derive maximum benefit, the reader is urged to attempt a solution before consulting this manual.

Hugo D. Junghenn Washington, D.C. January 2015

Chapter 1 Solutions

Section 1.2

1. (a) Since (-a) + a = 0, uniqueness of the additive inverse of (-a) implies that -(-a) = a.

(b) $[(ab) + (-a)b] = [a + (-a)]b = 0 \cdot b = 0$, so uniqueness of the additive inverse implies -(ab) = (-a)b. A similar argument works for the second equality.

- (c) By (b) and (a), (-a)(-b) = -(a(-b)) = -(-(ab)) = ab.
- (d) By (b), (-1)a = 1(-a) = -a.
- (e) By commutativity and associativity of multiplication,

$$(a/b)(bc) = a(b^{-1}b)c = ac = c(d^{-1}d)a = (c/d)(ad),$$

hence the first equality follows from 1.2.1(h). For the second equality, by commutativity and associativity of multiplication and 1.2.1(i),

$$(a/b)(c/d) = (ab^{-1})(cd^{-1}) = (ac)(b^{-1}d^{-1}) = (ac)(bd)^{-1} = (ac)/(bd).$$

(f) Using commutativity and associativity of multiplication, the distributive law, and 1.2.1(i),

$$\begin{aligned} a/b + c/d &= ab^{-1}(dd^{-1}) + cd^{-1}(bb^{-1}) = ad(b^{-1}d^{-1}) + bc(b^{-1}d^{-1}) \\ &= ad(bd)^{-1} + bc(bd)^{-1}(ad + bc)/(bd). \end{aligned}$$

- 2. Let r = m/n and s = p/q where $m, n, p, q \in \mathbb{N}$ and $nq \neq 0$. By Exercise 1, $r \pm s = (mq \pm pn)/(nq)$ and rs = (mp)/(nq), which are rational. Since $1/s = (pq^{-1})^{-1} = p^{-1}q = q/p$, r/s is the product of rational numbers hence is rational.
- 3. If $s := r/x \in \mathbb{Q}$, then, by Exercise 2, $x = r/s \in \mathbb{Q}$, a contradiction. Therefore, $r/x \in \mathbb{I}$. The remaining parts have similar proofs.
- 4. (a) By commutativity and associativity of multiplication and the distributive law,

$$(x-y)\sum_{j=1}^{n} x^{n-j}y^{j-1} = \sum_{j=1}^{n} x^{n-j+1}y^{j-1} - \sum_{j=1}^{n} x^{n-j}y^{j}$$
$$= \sum_{j=0}^{n-1} x^{n-j}y^{j} - \sum_{j=1}^{n} x^{n-j}y^{j}$$
$$= x^{n} - y^{n}.$$

- (b) Replace y in part (a) by -y.
- (c) Replace x and y in part (a) by x^{-1} and y^{-1} , respectively.

5. The left side of (a) is
$$\frac{n-1}{n} \frac{n-2}{n} \cdots \frac{1}{n} = \frac{n!}{n^n}$$
. For (b),
 $(2n)! = \left[2n(2n-2)(2n-4)\cdots 4\cdot 2\right] \left[(2n-1)(2n-3)\cdots 3\cdot 1\right]$
 $= 2^n \left[n(n-1)(n-2)\cdots 2\cdot 1\right] \left[(2n-1)(2n-3)\cdots 3\cdot 1\right].$

6.
$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(n-k+1)!(k-1)!} + \frac{n!}{(n-k)!k!}$$
$$= \frac{kn! + (n-k+1)n!}{(n-k+1)!k!}$$
$$= \binom{n+1}{k}$$

7. Let a_n denote the difference of the two sides of the equation in (a). Combining fractions in the resulting summation leads to

$$a_n = \sum_{k=0}^n \frac{n-2k}{(n+2)(k+1)(n-k+1)}.$$

Making the index change j = n - k results in

$$a_n = \sum_{j=0}^n \frac{2j-n}{(n+2)(j+1)(n-j+1)} = -a_n.$$

Therefore, $a_n = 0$. Part (b) is proved similarly.

8. $f(k) = k^3 - (k-1)^3 = 3k^2 - 3k + 1.$

Section 1.3

- (a) If a > 0 and b < 0, then -(ab) = a(-b) > 0 hence ab < 0.
 (b) If a > 0 and 1/a < 0, then 1 = a(1/a) < 0. The converse is similar.
 (c) Follows from a/b c/d = (ad bc)/bd.
- 2. Multiply the given inequalities by x, using (d) of 1.3.2.
- 3. Part (a) follows from a double application of 1.3.2(d). Part (b) follows from (a) by noting that -y < -x and 0 < -b < -a. Part (c) follows from (a).
- 4. If 0 < x < y, then multiplying the inequality by 1/(xy) and using (d) of 1.3.2 shows that 1/y < 1/x. If x < y < 0, then 0 < -y < -x hence, by the first part, 1/(-x) < 1/(-y) so 1/x > 1/y.

5. If -1 < x < y or x < y < -1, then (y+1)(x+1) > 0 hence

$$\frac{y}{y+1} - \frac{x}{x+1} = \frac{y-x}{(y+1)(x+1)} > 0.$$

If x < -1 < y, then (y + 1)(x + 1) < 0 and the inequality is reversed.

- 6. (a) By Exercise 1.2.4, $y^n x^n = (y x) \sum_{j=1}^n y^{n-j} x^{j-1}$. Each term of the sum is positive and less than $y^{n-j} y^{j-1} = y^{n-1}$. Since there are *n* terms, part (a) follows.
 - (b) The inequality is equivalent to

$$n(n+1)xy + ny + nx + x + 1 < n(n+1)xy + ny + nx + y + 1,$$

which reduces to x < y.

- 7. The given inequality implies that mx > nx n and m < n. Therefore, n > (n - m)x > x.
- 8. a = ta + (1 t)a < tb + (1 t)b = b.
- 9. If the inequality holds, take x = y = 1 to get $a \ge -2$ and x = 1, y = -1 to get $a \le 2$. Conversely, suppose that $0 \le a \le 2$. The inequality then holds trivially if $xy \ge 0$, and if xy < 0 then $x^2 + y^2 + axy = (x + y)^2 + (2 a)(-xy) \ge 0$. A similar argument works for the case $-2 \le a \le 0$.
- 10. If a > b then x := (a b)/2 > 0 and a > b + x, contradicting the hypothesis.
- 11. Note that b > 0. Suppose a > b. Then x := (1 + a/b)/2 > 1 and bx = (a + b)/2 < a, contradicting the hypothesis.
- 12. The inequality is equivalent to $a < x^2 + x$ for all x > 0. Assume a > 0. If $a \ge 1$ then x = 1/2 violates the condition. If 0 < a < 1, then x := a/4 < 1 so $a > x + x > x^2 + x$, again, violating the condition. Therefore, $a \le 0$.
- 13. (a) Follows from $0 \le (x y)^2 = x^2 2xy + y^2$. (b) $0 \le (x - y)^2 + (y - z)^2 + (z - x)^2 = 2(x^2 + y^2 + z^2) - 2(xy + yz + xz)$. (c) By expansion, the inequality is equivalent to $2xyzw \le (yz)^2 + (xw)^2$, which follows from (a).
 - (d) Follows from (a).
- 14. Expand $(x-a)^2 \ge 0$ and divide by x.
- (a) Write x − y = (x − z) + (z − y) and apply the triangle inequality.
 (b) |x − L| < ε iff −ε < x − L < ε.

16. (a) Let $S = \{x_1, \ldots, x_n\}$, where $x_1 < \cdots < x_n$. Then $\min\{S\} = x_1$ and $\max\{-S\} = -x_1$. Part (b) is proved in a similar manner.

(c) Let $x = \max(S \cup T)$ and assume without loss of generality that $x \in S$. Then $x = \max S$ and $t \leq x$ for all $t \in T$ hence $\max T \leq x$. Therefore, $x = \max\{\max S, \max T\}$. Part (d) is proved similarly.

- 17. (a) For the equalities, consider the cases $x \ge 0$ and $x \le 0$.
 - (b) Follows from (a).
 - (c) Add and subtract the equations x = y z and |x| = y + z.
 - (d) Use (b) and the triangle inequality.
 - (e) $(x y)^{-} = \max\{y x, 0\} \le y.$
- 18. If $a \le x \le b$, then $x \le |b|$ and $-x \le -a \le |a|$, hence $|x| \le \max\{|a|, |b|\}$.
- 19. Consider cases $x \ge y$ and $x \le y$.
- 20. Set $x := \max\{a, b\}$. By Exercises 16 and 19, $x = \frac{1}{2}(a + b + |a b|)$ and $\max\{a, b, c\} = \max\{x, c\} = \frac{1}{2}(x + c + |x c|)$. Substituting the expression for x gives the formula for $\max\{a, b, c\}$. The corresponding formula for $\min\{a, b, c\}$ may be found similarly or may be derived from (a).
- 21. Assume without loss of generality that $S_1 = S \setminus \{a_1, \ldots, a_k\}$, so min $S_1 = a_{k+1}$. Each of the remaining sets S_j contains at least one of a_1, \ldots, a_k hence min $S_j \leq a_k < a_{k+1}$, verifying the assertion.

Section 1.4

- 1. $x \in -A \Rightarrow -x \in A \Rightarrow -x \leq \sup A \Rightarrow x \geq -\sup A$. Therefore, $-\sup A$ is a lower bound for -A hence $-\sup A \leq \inf(-A)$. Similarly, $a \in A \Rightarrow -a \in -A \Rightarrow -a \geq \inf(-A) \Rightarrow a \leq -\inf(-A)$, so $-\inf(-A)$ is an upper bound for A hence $\sup A \leq -\inf(-A)$ or $-\sup A \geq \inf(-A)$
- 2. (a) $\sup = 12$, $\inf = -12$.(b) $\sup = 1$, $\inf = -1$.(c) $\sup = 3/2$, $\inf = -3/2$.(d) $\sup = 0$, $\inf = -2$.
- 3. (a) $\sup = 3$, $\inf = 2$, (b) $\sup = 3$, $\inf = -2$. (c) $\sup = 10/3$, $\inf = 3$. (d) $\sup = \frac{3 + \sqrt{5}}{2}$, $\inf = -\infty$.
 - (c) $\sup = 10/6$, $\inf = 0$. (d) $\sup = \frac{1}{2}$, $\inf = \frac{1}{2}$ (e) $\sup = +\infty$, $\inf = -\infty$. (f) $\sup = 2$, $\inf = 3/2$.
 - $\begin{array}{ll} (g) \, \sup = \frac{3+\sqrt{2}}{2}, \ \inf = \frac{3-\sqrt{2}}{2}. \\ (h) \, \sup = 3, \ \inf = 0. \\ (i) \, \sup = \frac{1}{2} + \frac{\sqrt{2}}{4}, \ \inf = \frac{1}{2} \frac{\sqrt{2}}{4}. \\ (k) \, \sup = 4, \ \inf = -2. \\ (m) \, \sup = 4/3, \ \inf = -1. \\ \end{array}$

- 4. If B is bounded above then any upper bound of B is an upper bound of A hence $\sup A \leq \sup B$. The inequality still holds if B is unbounded above. A similar argument establishes the other inequality.
- 5. Let $x, y \in A$. Then $\pm(x-y) \leq \sup A \inf A$ hence $|x-y| \leq \sup A \inf A$. Since $|x|-|y| \leq |x-y|, |x|-|y| \leq \sup A - \inf A$ so $|x| \leq \sup A - \inf A + |y|$. Since x was arbitrary, we have $\sup |A| \leq \sup A - \inf A + |y|$ hence $\sup |A| - \sup A + \inf A \leq |y|$. Since y was arbitrary it follows that $\sup |A| - \sup A + \inf A \leq \inf |A|$.
- 6. (a) $a \in A$ and $b \in B \Rightarrow a + b \leq \sup A + \sup B \Rightarrow \sup (A + B) \leq \sup A + \sup B$. The infimum case is similar.

(b) Since x > 0, $xa \le x \sup A$ for all $a \in A$, hence $\sup (xA) \le x \sup A$. Replacing x by 1/x proves the inequality in the other direction.

(c) For any $a \in A$ and $b \in B$, $ab \ge \inf A \inf B$, so $\inf AB \ge \inf A \inf B$. If $\inf A = 0$, choose a sequence a_n in A with $a_n \to 0$. Fix any $b \in B$. Then $\inf AB \le a_n b \to 0$ so $\inf AB \le \inf A \inf B$ in this case. Now suppose $\inf A \ne 0$. Then $ab \ge \inf AB \Rightarrow a \le b^{-1} \inf AB \Rightarrow \inf A \ge b^{-1} \inf AB \Rightarrow b \inf A \ge \inf AB \Rightarrow b \ge [\inf A]^{-1} \inf AB \Rightarrow \inf B \le [\inf A]^{-1} \inf AB \Rightarrow \inf A \inf B \ge \inf AB$.

(d) $a \in A \Rightarrow a^r \leq (\sup A)^r \Rightarrow \sup A^r \leq (\sup A)^r$. Also, $a = (a^r)^{1/r} \leq (\sup A^r)^{1/r}$ hence $\sup A \leq (\sup A^r)^{1/r}$.

(e) $a \in A \Rightarrow \inf A \leq a \Rightarrow 1/\inf A \geq 1/a \Rightarrow 1/\inf A \geq \sup A^{-1}$. Also, $1/a \leq \sup A^{-1} \Rightarrow a \geq 1/(\sup A^{-1}) \Rightarrow \inf A \geq 1/(\sup A^{-1})$, or $1/(\inf A) \leq \sup A^{-1}$

- 7. Let r denote the infimum. By the approximation property for suprema, there exists $x \in A$ such that $\sup A r < x \leq \sup A$. Suppose $x < \sup A$. Choose $y \in A$ such that $x < y \leq \sup A$. Then y x < r, a contradiction. Therefore, $\sup A = x \in A$.
- 8. For all $x, y \in A$, x < y + r hence $\sup A \le y + r$ or $\sup A r \le y$. Therefore, $\sup A - r \le \inf A$ or $\sup A - \inf A \le r$.
- 9. Let a < b and let $r \in (a \sqrt{2}, b \sqrt{2})$ be rational. Then $r + \sqrt{2} \in (a, b)$ is irrational.
- 10. If $r_1 < \cdots < r_n$ are rationals in (a, b) then there exists a rational in (r_n, b) . Therefore, the number of rationals in (a, b) must be infinite. A similar argument applies to irrationals.
- 11. Choose $n \in \mathbb{N}$ such that n(b-a) > 1 and let $m = \lfloor 2^n a \rfloor + 1$. Then $2^n a < m \le 2^n a + 1 < 2^n b$, the last inequality because $2^n > n$. Therefore, $a < m/2^n < b$.

12. (a) If $n := \lfloor x \rfloor = \lfloor -x \rfloor$, then $x - 1 < n \le x$ and $-x - 1 < n \le -x$. Adding these inequalities gives $-2 < 2n \le 0$ so n = 0. The converse is trivial.

(b) If $n := \lfloor x \rfloor = -\lfloor -x \rfloor$, then $x - 1 < n \le x$ and $x \le n < x + 1$. This is possible only if x = n. The converse is trivial.

(c) By definition $-x - 1 < \lfloor -x \rfloor \le -x$.

(d) Adding $m - x - 1 < \lfloor m - x \rfloor \le m - x$ to $x - 1 < \lfloor x \rfloor \le x$ gives $m - 2 < \lfloor x \rfloor + \lfloor m - x \rfloor \le m$.

- 13. (a) Let $s = \sum_{j=0}^{n} x_j$ and $t = \sum_{j=0}^{n} \lfloor x_j \rfloor$. Then $s 1 < \lfloor s \rfloor \le s$ and $s (n+1) < t \le s$. Adding the first inequality to $-s \le -t < n+1-s$ gives $-1 < \lfloor s \rfloor t < n+1$, hence $0 \le \lfloor s \rfloor t \le n$. (b) By (a), $\lfloor s \rfloor - t = k$ for some $k = 0, 1, \dots n$. By definition of $\lfloor s \rfloor$, $s - 1 < k + t \le s$.
- 14. Let $x := (b^m)^{1/n}$ and $y := (b^{1/n})^m$. By definition, x is the unique positive solution of $x^n = b^m$. Since $y^n = \left[(b^{1/n})^m \right]^n = \left[(b^{1/n})^n \right]^m = b^m$, x = y.
- 15. Use Exercise 1.2.4 with $x = a^{1/n}$ and $y = b^{1/n}$.
- 16. Use Exercise 15.
- 17. Let $\ell \leq x \leq u$ for all $x \in A$. By the Archimedean principle, there exist positive integers m and n such that $-m < \ell \leq u < n$. Set $N = \max\{m, n\}$.
- 18. This follows from 1.4.11.
- 19. Let $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$, $a, b, c, d \in \mathbb{Q}$. Then, for example,

$$xy = (ac + 2bd) + (bc + ad)\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$
 and
 $1/y = (c - d\sqrt{2})(c^2 + 2d^2) \in \mathbb{Q}(\sqrt{2}).$

The set $\{x \in \mathbb{Q}(\sqrt{2}) : x^2 < \sqrt{3}\}$ is bounded above but has no least upper bound in $\mathbb{Q}(\sqrt{2})$ hence $\mathbb{Q}(\sqrt{2})$ is not complete.

20. For any $a \in \mathbb{N}$, if $r := \sqrt{n+a} + \sqrt{n} \in \mathbb{Q}$, then squaring both sides of $\sqrt{n+a} = r - \sqrt{n}$ shows that $\sqrt{n} \in \mathbb{Q}$ and hence that $n = j^2$ for some $j \in \mathbb{N}$ (1.4.11). Then $\sqrt{n+a} \in \mathbb{Q}$ hence $n+a = k^2$ for some $k \in \mathbb{N}$. Therefore, $a = k^2 - j^2 = (k-j)(k+j)$. If a = 11, then k - j = 1 and j+k = 11 so n = 25. If a = 21, then either k - j = 1 and j + k = 21 or k - j = 3 and j + k = 7. The first choice leads to j = 10 and n = 100, and the second to j = 2 and n = 4.

21. Let $r = (\sqrt{n}+1)(\sqrt{n+p}+1)^{-1}$. If $n = (p-1)^2/4$, then $n+p = (p+1)^2/4$, hence $r \in \mathbb{Q}$. Conversely, let $r \in \mathbb{Q}$. Since

$$r^{2}(n+p) = 2(r-1)\sqrt{n} + n + (1-r)^{2},$$

 \sqrt{n} is rational and hence n is a perfect square, say $n = m^2, m \in \mathbb{N}$ (1.4.11). Since

$$\sqrt{n+p} = r^{-1}(\sqrt{n}+1) - 1 = r^{-1}(m+1) - 1,$$

 $\sqrt{n+p}$ is rational hence $n+p=k^2$ for some $k \in \mathbb{N}$. Therefore $p=k^2-m^2=(k-m)(k+m)$. Since p is prime, k-m=1 and k+m=p. Thus m=(p-1)/2, hence $n=(p-1)^2/4$.

Section 1.5

1. Let P(n) be the assertion that $a < x_n < x_{n+1} < b$. Since $x_1 - a < 1$, $x_1 - a < \sqrt{x_1 - a} < 1$ hence $x_1 = a + (x_1 - a) < a + \sqrt{x_1 - a} = x_2 < b$. Therefore, P(1) holds. Assume P(n) holds. Then

$$0 < \sqrt{x_n - a} < \sqrt{x_{n+1} - a} < 1$$

so $a < a + \sqrt{x_n - a} < a + \sqrt{x_{n+1} - a} < a + 1$, which is P(n+1). A similar argument proves the other inequality.

- 2. Let P(n) be the statement that a set with n members has a largest and a smallest element. Clearly P(1) and P(2) are true. Let $n \ge 2$ and assume that P(n) holds. If S is a set with n + 1 members then removing a member a from S produces a set T with n members. Let m be the smallest and M the largest element of T. Then min $\{m, a\}$ is the smallest and max $\{M, a\}$ the largest element of S. Therefore P(n + 1) holds.
- 3. Let f(n) denote the sum on the left side of the equation and g(n) the sum on the right. Then f(1) = 1/2 = g(1). Now let $n \ge 1$. Then

$$f(n+1) - f(n) = \sum_{k=1}^{2n+2} \frac{(-1)^{k+1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \frac{1}{2n+1} - \frac{1}{2n+2}$$
$$g(n+1) - g(n) = \sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}.$$

Since the right sides are equal, $f(n) = g(n) \Rightarrow f(n+1) = g(n+1)$.

4. Let S(n) denote the sum on the left side of the equation and g(n) the expression on the right. In each part, one easily checks that S(1) = g(1). Now let n > 1 and assume that S(n - 1) = g(n - 1). Then the last term of the sum S(n) is S(n) - S(n - 1) = S(n) - g(n - 1). This shows that the induction step S(n) = g(n) holds iff the last term of the sum S(n) is g(n) - g(n - 1). For example,

(a)
$$n = \frac{n(n+1)}{2} - \frac{(n-1)n}{2}$$
,
(c) $n^3 = \frac{n^2}{4} [(n+1)^2 - (n-1)^2]$,
(f) $\frac{1}{\sqrt{n} + \sqrt{n-1}} = \sqrt{n} - \sqrt{n-1}$

5.
$$\frac{25}{3}n^3 - \frac{15}{2}n^2 + \frac{1}{6}n$$
.

- 6. (a) $\sum_{k=1}^{999} k + \sum_{k=1}^{999} k^2 = \frac{999 \cdot 1000}{2} + \frac{999 \cdot 1000 \cdot 1999}{6} = 333,333,000.$ (b) $\sum_{k=1}^{500} (4k^2 - 1) = 4 \frac{500 \cdot 501 \cdot 1001}{6} - 500 = 167,166,500.$ (c) $\sum_{k=1}^{251} (4k - 3)(4k - 1) = 16 \frac{251 \cdot 252 \cdot 503}{6} - 16 \frac{251 \cdot 252}{2} + 3 \cdot 251.$ = 85,348,785
- 7. For $n \ge 1$, let Q(n) be the statement $P(n-1+n_0)$. Then $Q(1) = P(n_0)$ is true. Assume $Q(n) = P(n-1+n_0)$ is true. Then $Q(n+1) = P(n+n_0)$ is true. By mathematical induction, $Q(n) = P(n-1+n_0)$ is true for all $n \ge 1$, that is, P(n) is true for every $n \ge n_0$.
- 8. In each case, let f(n) be the left side of the inequality and g(n) the right side, and let P(n) : f(n) < g(n). Let n_0 be the base value of n for which P(n) is true. It is straightforward to check that in each case $f(n_0) < g(n_0)$. Assume P(n) holds for some $n \ge n_0$, so that f(n)/g(n) < 1. Then
 - $\begin{aligned} \text{(a)} \ \frac{f(n+1)}{g(n+1)} &= \frac{2n+3}{2^{n+1}} = \frac{f(n)}{2g(n)} + \frac{1}{2^n} < 1. \\ \text{(b)} \ \frac{f(n+1)}{g(n+1)} &= \frac{n^2 + 2n + 1}{2^{n+1}} = \frac{f(n)}{2g(n)} + \frac{2n+1}{2^{n+1}} < 1 \\ \text{(c)} \ \frac{f(n+1)}{g(n+1)} &= \frac{2^{n+1}}{(n+1)!} = \frac{2}{n+1} \frac{f(n)}{g(n)} < 1. \\ \text{(d)} \ \frac{f(n+1)}{g(n+1)} &= \frac{3^{n+1}}{(n+1)!} = \frac{3}{n+1} \frac{f(n)}{g(n)} < 1. \\ \text{(e)} \ \frac{f(n+1)}{g(n+1)} &= \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} = \frac{f(n)}{g(n)} \frac{2}{(1+1/n)^n} < 1. \\ \text{(f)} \ \frac{f(n+1)}{g(n+1)} &= \frac{8^{n+1}(n+1)!}{(2n+2)!} = \frac{f(n)}{g(n)} \frac{4}{2n+1} < 1. \end{aligned}$
- 9. Check that $6 < \ln(6!)$. For the induction step, use (n+1)! = (n+1)n!.

- 10. The inequality clearly holds for n = 0. Suppose $(1+x)^n \ge 1 + nx$ for some $n \ge 0$. Then $(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$.
- 11. For $n \ge 1$, let Q(n) be the statement that $P(k 1 + n_0)$ is true for $k = 1, \ldots, n$. Then $Q(1) = P(n_0)$ is true. Assume Q(n) is true, so $P(k 1 + n_0)$ is true for $k = 1, \ldots, n$, equivalently, P(j) is true for $n_0 \le j \le n 1 + n_0$. By hypothesis, $P(n + n_0)$ is true hence P(j) is true for $n_0 \le j \le n + n_0$. Thus $P(k 1 + n_0)$ is true for $k = 1, \ldots, n + 1$, that is, Q(n + 1) is true. By mathematical induction, Q(n) is true for every $n \ge 1$ hence P(n) is true for every $n \ge n_0$.
- 12. Obvious for n = 2. Let n > 2 and suppose the prime factorization holds for all integers m with $2 \le m \le n$. If n+1 is prime, we're done. Otherwise n+1 = mk where $2 \le m, k < n$. By hypothesis, m and k have prime factorizations hence so does the product.
- 13. Let g_n denote the expression on the right in the assertion. One checks directly that $g_0 = g_1 = 1$. Let $n \ge 2$ and assume that $f_j = g_j$ for all $2 \le j \le n$. Then

$$g_{n+1} - f_{n+1} = g_{n+1} - f_n - f_{n-1} = g_{n+1} - g_n - g_{n-1}$$

= $\frac{1}{\sqrt{5}} \left(a^{n+2} - a^{n+1} - a^n \right) + \frac{1}{\sqrt{5}} \left(b^{n+2} - b^{n+1} - b^n \right)$
= $\frac{a^n}{\sqrt{5}} (a^2 - a - 1) + \frac{b^n}{\sqrt{5}} (b^2 - b - 1) = 0.$

14. Let b_n denote the right side of the equation. One checks directly that $b_n = a_n$ for n = 0, 1. Let $n \ge 2$ and assume that $b_j = a_j$ for $2 \le j \le n$. We show that $b_{n+1} = a_{n+1}$ or, equivalently, $2b_{n+1} = b_n + b_{n-1}$:

$$b_n + b_{n-1} = \left[\frac{(-1)^n}{3 \cdot 2^{n-1}} + \frac{(-1)^{n-1}}{3 \cdot 2^{n-2}}\right] (a_0 - a_1) + \frac{2}{3}(a_0 + 2a_1)$$

$$= \frac{(-1)^{n-1}(a_0 - a_1)}{3 \cdot 2^{n-2}} \left[\frac{-1}{2} + 1\right] + \frac{2}{3}(a_0 + 2a_1)$$

$$= \frac{2(-1)^{n+1}(a_0 - a_1)}{3 \cdot 2^n} + \frac{2}{3}(a_0 + 2a_1)$$

$$= 2b_{n+1}.$$

15. The set of all nonnegative integers of the form $m-qn, q \in \mathbb{Z}$, is nonempty (Archimedean principle) hence has a smallest member r = m - qn (well ordering principle). If $r \ge n$, then $0 \le r - n = m - (q + 1)n < r$, contradicting the minimal property of r. Therefore, m = qn + r has the required form. If also $m = q'n + r', q' \in \mathbb{Z}, r' \in \{0, \ldots, n - 1\}$, then |q - q'|n = |r - r'| < n hence q' = q and r' = r. 16. Clearly, n = 1 has a decimal representation. Assume all integers $q \le n$ have decimal representations. By the division algorithm, n + 1 = 10q + d, $d \in \{0, 1, \ldots, 9\}$. Since $q \le n$, q has a decimal representation, say $q = d_p d_{p-1} \ldots d_0$. Then

$$n+1 = \sum_{k=0}^{p} d_k 10^{k+1} + d = d_p d_{p-1} \dots d_0 d.$$

Therefore, by induction, all positive integers have decimal representations. To see that the representation is unique, suppose that

$$n = \sum_{k=0}^{p} d_k 10^k = \sum_{k=0}^{q} e_k 10^k, \ d_j, e_j \in \{0, 1, \dots, 9\}.$$

Then

$$e_0 - d_0 = \sum_{k=1}^p d_k 10^k - \sum_{k=1}^q e_k 10^k,$$

which is divisible by 10. Therefore $e_0 = d_0$ and $\sum_{k=1}^p d_k 10^k = \sum_{k=1}^q e_k 10^k$. Arguing similarly, we see that $e_1 = d_1$. Continuing in this manner, eventually p = q and $e_j = d_j$, $0 \le j \le p$.

Section 1.6

1.
$$\boldsymbol{x} = \boldsymbol{c} - \frac{\boldsymbol{d} \cdot \boldsymbol{e} - (\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})}{1 - (\boldsymbol{a} \cdot \boldsymbol{b})(\boldsymbol{b} \cdot \boldsymbol{d})} \boldsymbol{a}, \quad \boldsymbol{y} = \boldsymbol{e} - \frac{\boldsymbol{b} \cdot \boldsymbol{c} - (\boldsymbol{a} \cdot \boldsymbol{b})(\boldsymbol{d} \cdot \boldsymbol{e})}{1 - (\boldsymbol{a} \cdot \boldsymbol{b})(\boldsymbol{b} \cdot \boldsymbol{d})} \boldsymbol{d}.$$

2. By 1.6.3,

$$||\boldsymbol{x}+\boldsymbol{y}||_{2}^{2} = ||\boldsymbol{x}||_{2}^{2} + ||\boldsymbol{y}||_{2}^{2} + 2(\boldsymbol{x}\cdot\boldsymbol{y}) \text{ and } ||\boldsymbol{x}-\boldsymbol{y}||_{2}^{2} = ||\boldsymbol{x}||_{2}^{2} + ||\boldsymbol{y}||_{2}^{2} - 2(\boldsymbol{x}\cdot\boldsymbol{y})$$

Adding and subtracting gives (a) and (b).

(c) By the triangle inequality,

$$||\boldsymbol{x}||_2 = ||\boldsymbol{x} - \boldsymbol{y} + \boldsymbol{y}||_2 \le ||\boldsymbol{x} - \boldsymbol{y}||_2 + ||\boldsymbol{y}||_2$$

hence $||\boldsymbol{x}||_2 - ||\boldsymbol{y}||_2 \le ||\boldsymbol{x} - \boldsymbol{y}||_2$. Similarly, $||\boldsymbol{y}||_2 - ||\boldsymbol{x}||_2 \le ||\boldsymbol{x} - \boldsymbol{y}||_2$. (d) Use induction.

3. By 1.6.3,
$$||\boldsymbol{x}_1 + \boldsymbol{x}_2 + \dots + \boldsymbol{x}_k||_2^2 = \sum_{i,j=1}^n \boldsymbol{x}_i \cdot \boldsymbol{x}_j = \sum_{j=1}^k \boldsymbol{x}_j \cdot \boldsymbol{x}_j.$$

4. For the triangle inequality, we have

$$||\boldsymbol{x} + \boldsymbol{y}||_1 = \sum_{j=0}^n |x_j + y_j| \le \sum_{j=0}^k |x_j| + |y_j| = ||\boldsymbol{x}||_1 + ||\boldsymbol{y}||_1$$

and

$$||\boldsymbol{x} + \boldsymbol{y}||_{\infty} = \max\{|x_1 + y_1|, \dots, |x_n + y_n|\} \\ \leq \max\{|x_1| + |y_1|, \dots, |x_n| + |y_n|\} \\ \leq \max\{|x_1|, \dots, |x_n|\} + \max\{|y_1|, \dots, |y_n|\} \\ = ||\boldsymbol{x}||_{\infty} + ||\boldsymbol{y}||_{\infty}$$

The remaining properties are clear.

5. If $||\boldsymbol{x}||_2$, $||\boldsymbol{y}||_2 \leq r$ and $0 \leq t \leq 1$, then, by 1.6.4,

$$||t\boldsymbol{x} + (1-t)\boldsymbol{y}||_2 \le ||t\boldsymbol{x}||_2 + ||(1-t)\boldsymbol{y}||_2 = t||\boldsymbol{x}||_2 + (1-t)||\boldsymbol{y}||_2 \le r.$$

The other sets in the exercise are not convex.

6.
$$\left(\sum_{j=1}^{n} x_j^2\right)^{1/2} \le \sqrt{n} \max_{j=1,\dots,n} |x_j| \le \sqrt{n} \sum_{j=1}^{n} |x_j| \le n^{3/2} \max_{j=1,\dots,n} |x_j|$$

= $n^{3/2} \left(\max_{j=1,\dots,n} x_j^2\right)^{1/2} \le n^{3/2} \left(\sum_{j=1}^{n} x_j^2\right)^{1/2}$.

7. The hypotheses imply that

$$\sum_{j=1}^{n} x_j^2 = \sum_{j=1}^{n} y_j^2 = 1 \text{ and } \sum_{j=1}^{n} (x_j + y_j)^2 = 4.$$

It follows that $\sum_{j=1}^{n} x_j y_j = 1$ and $\sum_{j=1}^{n} (x_j - y_j)^2 = 0$. The same does not hold for $|| \cdot ||_{\infty}$ (take $\boldsymbol{x} = (-1, 1)$ and $\boldsymbol{y} = (1, 1)$) or for $|| \cdot ||_1$ (take $\boldsymbol{x} = (1, 0)$ and $\boldsymbol{y} = (0, 1)$).

- 8. Use the law of cosines.
- 9. Direct calculation. For (f) show that $\|\boldsymbol{a} \times \boldsymbol{b}\|^2 = \|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 \cos^2 \theta$.

Chapter 2 Solutions

Section 2.1

1. Some possibilities:

- (a) $a_n = [a + b + (-1)^n (b a)]/2.$ (b) $a_n = [a + b + (-1)^{\lfloor (n+1)/2 \rfloor} (b - a)]/2,$ $a_n = [a + b + (a - b) [\sin(n\pi/2) - \cos(n\pi/2)]/2.$ (c) $a_n = [a + b + (-1)^{\lfloor (n-1)/3 \rfloor} (a - b)]/2.$ (d) $a_n = \frac{1}{2} (b + c - 2a) x_n^2 + \frac{1}{2} (b - c) x_n + a, x_n := \sin [(n - 1)\pi/2].$ (e) $a_n = 3 + (-1)^{\lfloor (n+1)/2 \rfloor} + [(-1)^n - 1]/2.$
- 2. $x_1 = a, x_n = a + b x_{n-1}, n > 1.$
- 3. (a) Since |(4n-1)/(2n+7)-2| = 15/(2n+7) < 8/n, choose any integer $N \ge 8/\varepsilon$.

(b) If $n \ge 6$, $|(2n^2 - n)/(n^2 + 3) - 2| = |n + 6|/(n^2 + 3) \le 2n/n^2 = 2/n$. Therefore, choose $N \ge \min\{6, 2/\varepsilon\}$.

(c) $|(5\sqrt{n}+7)/(3\sqrt{n}+2)-5/3| = 11/(9\sqrt{n}+6) < 11/\sqrt{n}$, so choose any integer $N \ge (11/\varepsilon)^2$.

(d) For $n \ge 2$, $(n-1)/(\sqrt{n}+1) \ge (n/2)/2\sqrt{n} = \sqrt{n}/4$, so choose any integer $N \ge 16M^2$.

(e) $|(2+1/n)^3 - 8| = [(2+1/n)^2 + 2(2+1/n) + 4]/n \le 19/n$, so choose any integer $N > 19/\varepsilon$.

(f) $\sqrt{\frac{n+2}{n+1}} - 1 = \frac{1}{\sqrt{n+1}(\sqrt{n+2} + \sqrt{n+1})} \leq \frac{1}{n}$, so choose any integer $N > 1/\varepsilon$.

- 4. The disjoint intervals (-3/2, -1/2) and (1/2, 3/2) each contain infinitely many terms of the sequence. Therefore, no limit can exist.
- 5. Let $r = pq^{-1}$, $p, q \in \mathbb{Z}$, q > 0. For all $n \ge q$, $n!r \in \mathbb{Z}$ hence $\sin(n!r\pi) = 0$.
- 6. The general term in the sequence may be written $n^{p-1}(1+n^{-2})^p$, which tends to 1 if p = 1, 0 if p < 1, and $+\infty$ if p > 1.
- 7. Let $A = \{x_1, \ldots, x_p\}$ and $A_j = \{n : a_n = x_j\}$. One of these sets, say A_1 , must have infinitely many members. Since $|x_1 - a| \le |x_1 - a_n| + |a_n - a|$ and $a_n \to a$, letting $n \to +\infty$ through A_1 shows that $x_1 = a$. We may therefore choose $\varepsilon > 0$ so that $I := (a - \varepsilon, a + \varepsilon)$ contains no x_j for $j \ge 2$. Let $N \in \mathbb{N}$ such that $a_n \in I$ for all $n \ge N$. For such $n, a_n = a$.

8. (a) $b_n = (3a_n + 2b_n - 3a_n)/2 \rightarrow (c - 3a)/2$. (b) Let $c_n = 3a_nb_n + 5a_n^2 - 2b_n$. Then

$$b_n = (c_n - 5a_n^2)/(3a_n - 2) \to (1 - 20)/(6 - 2) = -19/4$$

- 9. (a) 2. (b) $\sqrt{a/b}$. (c) k/2. (d) $b/2\sqrt{a}$. (e) 1. (f) 1/2a. (g) $-ka^{k-1}$. (h) a/k. (i) 0. (j) 0. (k) 1/2. (l) 1.
- 10. If $|a_n| \leq M$ for all n, then $|a_n b_n| \leq M |b_n| \to 0$.
- 11. Use $-r \le a_n b_n \le r$ and 2.1.4.
- 12. $\sqrt{n}a_n = (na_n)(1/\sqrt{n}) \rightarrow a \cdot 0 = 0$. For a counter example to the converse take $a_n = (-1)^n/n$ or $1/n^{3/4}$.
- 13. If a = 0, given $\varepsilon > 0$ choose N such that $a_n < \varepsilon^k$ for all $n \ge N$. Suppose a > 0. Then there exists N such that $a_n > 0$ for all $n \ge N$. By Exercise 1.4.15,

$$|a_n^{1/k} - a^{1/k}| = |a_n - a| \left(\sum_{j=1}^k a_n^{1-j/k} a^{(j-1)/k}\right)^{-1} \to 0,$$

since the expression inside the parentheses tends to

$$\sum_{j=1}^{k} a^{1-j/k} a^{(j-1)/k} = k a^{1-1/k} > 0$$

Therefore, $a_n^{1/k} \to a^{1/k}$.

- 14. (a) Suppose first that r > 1. Set $h_n = r^{1/n} 1$. Then $h_n > 0$, and by the binomial theorem, $r = (1 + h_n)^n > nh_n$. Therefore, by the squeeze principle, $h_n \to 0$. If r < 1 consider 1/r.
 - (b) Set $h_n = n^{1/n} 1$. Then $n = (1 + h_n)^n > n(n-1)h_n^2/2$, hence $h_n \to 0$. (c) Set $h_n = (r + n^k)^{1/n} - 1$. By the binomial theorem, for $n \ge k$

$$r + n^{k} = (1 + h_{n})^{n} > \frac{n(n-1)\cdots(n-k)h_{n}^{k+1}}{(k+1)!} > \frac{(n-k)^{k+1}h_{n}^{k+1}}{(k+1)!},$$

hence $h_n \to 0$.

(d) Use the inequality $2x/\pi \le \sin x \le x$, $0 \le x \le \pi/2$, and the squeeze principle.

15. Follows from the identities $x = x^+ - x^-$, $x^+ = (|x| + x)/2$, and $x^- = (|x| - x)/2$.

16. Let s = 1/|r| and h = s - 1. By the binomial theorem,

$$s^{n} = (h+1)^{n} = \sum_{k=0}^{n} {n \choose k} h^{k}.$$

Since s > 1, each term in the sum is positive hence, for n > m,

$$s^{n} > \binom{n}{m+1}h^{m+1} = \frac{n(n-1)\cdots(n-m)}{(m+1)!}h^{m+1} > \frac{(n-m)^{m+1}}{(m+1)!}h^{m+1}.$$

Therefore,

$$0 < |n^m r^n| = \frac{n^m}{s^n} < \frac{n^m (m+1)!}{(n-m)^{m+1} h^{m+1}} = \frac{(m+1)!}{n(1-m/n)^{m+1} h^{m+1}}$$

Since the term on the right tends to 0 as $n \to +\infty$, the squeeze principle implies that $n^m r^n \to 0$.

- 17. $a_n < ra_{n-1} < r^2 a_{n-2} < \cdots < r^{n-1}a_1 \to 0$. For the example, take $a_n = 2^{1/n}$.
- 18. Suppose first that $a \in \mathbb{R}$. Given $\varepsilon > 0$, choose N such that $|a_n a| < \varepsilon/2$ for all n > N. For such n,

$$\frac{a_1 + \dots + a_n}{n} - a \bigg| \le \bigg| \frac{(a_1 - a) + \dots + (a_N - a)}{n} \bigg| \\ + \bigg| \frac{(a_{N+1} - a) + \dots + (a_n - a)}{n} \bigg| \\ \le \bigg| \frac{(a_1 - a) + \dots + (a_N - a)}{n} \bigg| + \frac{n - N}{n} \frac{\varepsilon}{2}.$$

The second term on the right in the last inequality is less than $\varepsilon/2$. Also, there exists N' > N such that the first term is less than $\varepsilon/2$ for all $n \ge N'$. For such n, $|(a_1 + \cdots + a_n)/n - a| < \varepsilon$.

Now suppose $a_n \to +\infty$. Let M > 0 and choose N such that $a_n > 4M$ for all n > N. For such n,

$$\frac{a_1 + \dots + a_n}{n} = \frac{a_1 + \dots + a_N}{n} + \frac{a_{N+1} + \dots + a_n}{n}$$
$$\geq \frac{a_1 + \dots + a_N}{n} + \frac{4(n-N)M}{n}.$$

Choose N' > N such that

$$\frac{n-N}{n} > \frac{1}{2} \quad \text{and} \quad \frac{a_1 + \dots + a_N}{n} > -M$$

for all $n \ge N'$. For such n, $(a_1 + \dots + a_n)/n \ge 2M - M = M$.

The converse is false: consider $a_n = (-1)^n$.

19. Choose N such that $a_n - a < \varepsilon$ for all $n \ge N$. For such n,

$$0 \le \min\{a_1, \dots, a_n\} - a \le a_n - a < \varepsilon$$

Therefore, $\min\{a_1, \ldots, a_n\} \to a$. The converse is false: consider $a_n = 1 + (-1)^n$.

20. Given $\varepsilon > 0$, choose N such that $|a_n|/n < \varepsilon$ for all $n \ge N$. Then

$$b_n := n^{-1} \max\{a_1, \dots, a_n\} = \max\{\alpha_n, \beta_n\},\$$

where

$$\alpha_n := n^{-1} \max\{a_1, \dots, a_N\}, \ \beta_n = n^{-1} \max\{a_{N+1}, \dots, a_n\}$$

Choose N' > N such that $|\alpha_n| < \varepsilon$ for all $n \ge N'$. For such n we also have $-\varepsilon < \beta_n < \varepsilon$, hence $-\varepsilon < b_n < \varepsilon$.

If $\{a_n\}$ is bounded below by c then

$$c/n \le a_n/n \le \max\{a_1, \dots, a_n\}/n.$$

Hence if $(1/n) \max\{a_1, \ldots, a_n\} \to 0$, then $a_n/n \to 0$. The example $a_n = 1 - n$ shows that the converse is not generally true.

21.
$$(x_1^n + \dots + x_k^n)^{1/n} = x_k [(x_1/x_k)^n + \dots + (x_{k-1}/x_k)^n + 1]^{1/n}$$
 and
 $1 \le [(x_1/x_k)^n + \dots + (x_{k-1}/x_k)^n + 1]^{1/n} \le k^{1/n} \to 1.$

22. Suppose that $c \leq f(x) - x \leq d$ for all x, so $c + jx \leq f(jx) \leq djx$. Summing and using Exercise 1.5.4,

$$nc + xn(n+1)/2 \le \sum_{j=1}^{n} f(jx) \le nd + xn(n+1)/2$$

hence

$$c/n + x(1+1/n)/2 \le (1/n^2) \sum_{j=1}^n f(jx) \le d/n + x(1+1/n)/2.$$

Letting $n \to +\infty$, we obtain (a). Part (b) is proved similarly.

23. Let $c = a_1/a_0$ and r = -1/2. By induction, $\frac{a_{n+1}}{a_n} = c^{r^n}$ hence

$$a_{n+1} = \left(\frac{a_{n+1}}{a_n}\right) \dots \left(\frac{a_1}{a_0}\right) a_0 = a_0 c^{1+r+\dots r^n} \to a_0 c^{1/(1-r)} = a_0^{1/3} a_1^{2/3}$$