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Preface

This book contains complete solutions to the exercises in A Course in
Real Analysis. There are over 1600 problems of varying degrees of difficulty,
some involving only straightforward application of results in the text, others
requiring a deeper analysis. To derive maximum benefit, the reader is urged to
attempt a solution before consulting this manual.

Hugo D. Junghenn
Washington, D.C.
January 2015
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Chapter 1 Solutions
Section 1.2

1. (a) Since (—a)+a = 0, uniqueness of the additive inverse of (—a) implies
that —(—a) = a.

(b) [(ab) + (—a)b] = [a+ (—a)]b=0-b =0, so uniqueness of the additive
inverse implies —(ab) = (—a)b. A similar argument works for the second
equality.

(c) By (b) and (a), (—a)(=b) = —(a(=b)) = —(—(ab)) = ab.
(d) By (b), (-1)a = 1(—a) = —a.
(e) By commutativity and associativity of multiplication,

(a/b)(be) = a(b™'b)c = ac = c(d"*d)a = (c/d)(ad),

hence the first equality follows from 1.2.1(h). For the second equality, by
commutativity and associativity of multiplication and 1.2.1(i),

(a/b)(c/d) = (ab™")(ed™") = (ac)(b™"d™") = (ac)(bd) ™" = (ac)/(bd).

(f) Using commutativity and associativity of multiplication, the distribu-
tive law, and 1.2.1(i),

a/b+c/d=ab  (dd™") +cd (bb7Y) = ad(b"'dY) + be(b 1Y)
= ad(bd) ™ + be(bd) " (ad + be)/ (bd).
2. Let » = m/n and s = p/q where m, n, p, ¢ € N and ng # 0. By
Exercise 1, r = s = (mgq £ pn)/(ng) and rs = (mp)/(nq), which are

rational. Since 1/s = (pg~!)~! = p~lq = q/p, r/s is the product of
rational numbers hence is rational.

3. If s := r/z € Q, then, by Exercise 2, x = r/s € Q, a contradiction.
Therefore, r/x € I. The remaining parts have similar proofs.

4. (a) By commutativity and associativity of multiplication and the dis-
tributive law,
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(b) Replace y in part (a) by —y.

(c) Replace x and y in part (a) by 27! and y~!, respectively.
—1n—2 1 !
5. The left side of (a) is o r L (b),
n n n n"

(2n)! = [2n(2n —2)(2n —4)---4-2][2n - 1)(2n —3)---3 - 1]
=2"[n(n-1)(n—-2)---2-1][(2n —1)(2n — 3)---3 - 1].

’ (k . 1) " (Z) Tk +T)!(k 0 n’!f)”‘f’

_kn!+(n—k+1)n!
 (n—k+ 1)k

_(n+1
N k
7. Let a, denote the difference of the two sides of the equation in (a).
Combining fractions in the resulting summation leads to

- n — 2k
a":];)(n—i—Q)(k:—i—l)(n—k—i—l)'

Making the index change j = n — k results in

n

2j—n

“":j;)(nw)(jﬂ)(n—jﬂ) o

Therefore, a,, = 0. Part (b) is proved similarly.
8. flk)=k>—(k—1)3=3k*-3k+1.

Section 1.3
1. (a) If a > 0 and b < 0, then —(ab) = a(—b) > 0 hence ab < 0.
(b) If a > 0 and 1/a < 0, then 1 = a(1/a) < 0. The converse is similar.
(c) Follows from a/b — ¢/d = (ad — bc) /bd.
2. Multiply the given inequalities by z, using (d) of 1.3.2.

3. Part (a) follows from a double application of 1.3.2(d). Part (b) follows
from (a) by noting that —y < —z and 0 < —b < —a. Part (c¢) follows
from (a).

4. If 0 < x < y, then multiplying the inequality by 1/(zy) and using (d)
of 1.3.2 shows that 1/y < 1/z. If z < y < 0, then 0 < —y < —z hence,
by the first part, 1/(—z) < 1/(—y) so 1/x > 1/y.
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5.

10.

11.

12.

13.

14.
15.

If-l<z<yorxz<y<-—1,then (y+ 1)(z+1) > 0 hence

Y T y_r >0
y+1 z4+1 (y+1)(z+1)

If r < 1<y, then (y+1)(z+ 1) < 0 and the inequality is reversed.

(a) By Exercise 1.2.4, y" — 2" = (y — z) Z y" 72771, Each term of the

sum is positive and less than y" 77!
part (a) follows.

(b) The inequality is equivalent to
nn+ Dzy+ny+nr+z+1<nn+Day+ny+ne+y+1,
which reduces to z < y.

The given inequality implies that mz > naz —n and m < n. Therefore,
n>(n—m)x > x.

ca=ta+(1—tha<tb+(1—-t)b=0b.

. If the inequality holds, take z =y =1toget a > —2andz =1,y = —1

to get a < 2. Conversely, suppose that 0 < a < 2. The inequality
then holds trivially if zy > 0, and if 2y < 0 then 2% + y? + ary =
(x +y)? + (2 — a)(—zy) > 0. A similar argument works for the case
—2<a<0.

If @ > b then z := (a —b)/2 > 0 and a > b+ z, contradicting the
hypothesis.

Note that b > 0. Suppose @ > b. Then = := (1 + a/b)/2 > 1 and
bx = (a+b)/2 < a, contradicting the hypothesis.

The inequality is equivalent to a < % + x for all x > 0. Assume a > 0. If
a > 1 then = 1/2 violates the condition. If 0 < a < 1, then z :=a/4 < 1
so a > x + x > x? + z, again, violating the condition. Therefore, a < 0.
(a) Follows from 0 < (z — y)? = 2 — 22y + y°.

1) 0< (x—y)2+ (y—2)2+ (2 —2)% = 2(x® + 9% + 2%) — 2(xy + yz + x2).
(c) By expansion, the inequality is equivalent to 2zyzw < (yz)? + (zw)?,
which follows from (a).

(d) Follows from (a).
Expand (z — a)? > 0 and divide by z.
(a) Write x — y = (x — z) + (2 — y) and apply the triangle inequality.

) |lz—Ll<eiff —-e<ax—L<e.
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16. (a) Let S = {x1,...,x,}, where z; < --- < . Then min{S} = z; and

max{—S} = —x;. Part (b) is proved in a similar manner.
(¢) Let x = max(SUT) and assume without loss of generality that z € S.
Then x = max S and t < x for all ¢t € T hence maxT < x. Therefore,
x = max{max S, max T'}. Part (d) is proved similarly.
17. (a) For the equalities, consider the cases > 0 and = < 0.
(b) Follows from (a).
(c¢) Add and subtract the equations x =y — z and |z| =y + 2.
(d) Use (b) and the triangle inequality.
(e) (x—y)” = max{y —z, 0} <y.

18. If a <z <b, then z < |b| and —z < —a < |a|, hence |z| < max{|al|, |b|}.

19. Consider cases x > y and = < y.

20. Set z := max{a, b}. By Exercises 16 and 19, = 1(a + b + |a — b|) and
max{a, b, ¢} = max{z,c} = 3(z+c+|z—c|). Substituting the expression
for x gives the formula for max{a, b, c}. The corresponding formula for
min{a, b,c} may be found similarly or may be derived from (a).

21. Assume without loss of generality that S; = S\{a1,...,a;}, somin Sy =
ap+1. Bach of the remaining sets S; contains at least one of aq,...,a
hence min S; < ap < ag41, verifying the assertion.

Section 1.4
l.ze€-A=-—-xr€ A= —x <supA =z > —sup A. Therefore, —sup A
is a lower bound for —A hence —sup A < inf(—A). Similarly, a € A =
—a € —A= —a>inf(—A) = a < —inf(—A), so —inf(—A) is an upper
bound for A hence sup A < —inf(—A) or —sup A > inf(—A)
2. (a) sup =12, inf =—12. (b) sup=1, inf=—1.
(c) sup=3/2, inf=-3/2. (d) sup =0, inf=-2.
3. (a) sup = 3, inf = 2, (b) sup = 3, inf = —2
. 3+V5 .
(c) sup = 10/3, inf = 3. (d) sup = 5 inf = —o0.
(e) sup = 400, inf = —oc. (f) sup = 2, inf = 3/2.

2 2
(g) sup = 3+2\[, inf = \[ (h) sup = 3, inf = 0.
1 2 1 2 1 6
(i) sup:§—|—%, inf = 3~ % () SUP:§+%’ inf = —1/8.
(k) sup =4, inf = —2. (1) sup =2, inf = —
(m) sup =4/3, inf = —1. (n) sup = 3/2, inf = —5/4.



10.

11.

If B is bounded above then any upper bound of B is an upper bound
of A hence sup A < sup B. The inequality still holds if B is unbounded
above. A similar argument establishes the other inequality.

Let z, y € A. Then +(x—y) < sup A—inf A hence |z —y| < sup A—inf A.
Since |z|—|y| < |z—yl, |z|—|y| < sup A—inf A so |z| < sup A—inf A+]y|.
Since x was arbitrary, we have sup|A| < sup A — inf A + |y| hence
sup |A] — sup A + inf A < |y|. Since y was arbitrary it follows that
sup |A| —sup A + inf A < inf |A].

(a) a e Aand b € B = a+b < supA+supB = sup(A+ B) <
sup A + sup B. The infimum case is similar.

(b) Since > 0, za < zsup A for all a € A, hence sup (zA) < zsup A.
Replacing by 1/ proves the inequality in the other direction.

(c) For any a € A and b € B, ab > inf Ainf B, so inf AB > inf Ainf B.
If infA = 0, choose a sequence a,, in A with a,, — 0. Fix any b € B.
Then inf AB < a,b — 0 so inf AB < inf Ainf B in this case. Now
suppose infA # 0. Then ab > inf AB = a < b~ linf AB = inf A >
b=linf AB = binfA > inf AB = b > [infA]"linf AB = inf B <
[inf A]~!inf AB = inf Ainf B > inf AB.

(d)a€ A= a" < (supA)” = supA” < (supA)". Also, a = (a")'/" <
(sup Ar)l/r hence sup A < (sup A”)'/".

() a € A= infA <a= 1/infA > 1/a = 1/infA > supA~L
Also, 1/a < supA~! = a > 1/(supA~') = infA > 1/(sup A1), or
1/(inf A) < sup A™*

. Let r denote the infimum. By the approximation property for suprema,

there exists © € A such that sup A —r < x < sup A. Suppose x < sup A.
Choose y € A such that x < y < sup A. Then y — x < r, a contradiction.
Therefore, sup A = x € A.

. For all z,y € A, x < y+r hence supA < y+r or supA —r < y.

Therefore, sup A — r < inf A or sup A —inf A < r.

. Let a < band let r € (a — v/2,b — v/2) be rational. Then r + /2 € (a,b)

is irrational.

If 4 < --- < 7, are rationals in (a,b) then there exists a rational in
(rn,b). Therefore, the number of rationals in (a,b) must be infinite. A
similar argument applies to irrationals.

Choose n € N such that n(b —a) > 1 and let m = [2"a| + 1. Then
2"a <m < 2"a+ 1 < 27b, the last inequality because 2™ > n. Therefore,
a<m/2" <b.



12.

13.

14.

15.

16.
17.

18.
19.

20.

(a) Un:=|z|=|-z|,thenz—-1<n<zand —z—1<n < —z.
Adding these inequalities gives —2 < 2n < 0 so n = 0. The converse is
trivial.

(b)Ifn:=|z]=—|—z],thenx —1<n<zand z <n < x+1. Thisis
possible only if z = n. The converse is trivial.

(c) By definition —z — 1 < |—z] < —uz.

(d) Addingm—z—-1< | m—z| <m-ztoxr—1< |z] <z gives
m—2<|z]+|[m—zx] <m.

(a) Let s = >0 gxj and ¢t = 37 ;lz;]. Then s — 1 < [s] < s and
s—(n+1) <t<s. Adding the first inequality to —s < -t <n+1—s
gives —1 < |s] —t <n+1, hence 0 < [s] —t <.

(b) By (a), |s] —t = k for some k = 0,1,...n. By definition of |s],
s—1<k+t<s.

Let z := (bm)l/” and y := (bl/")m. By definition, x is the unique positive
solution of ™ = b™. Since y" = [(bl/")m} = [(bl/")n} =b", x=y.

Use Exercise 1.2.4 with « = a'/" and y = b'/™.

Use Exercise 15.

Let £ < x < w for all x € A. By the Archimedean principle, there
exist positive integers m and n such that —m < £ < u < n. Set N =
max{m,n}.

This follows from 1.4.11.
Let t =a+byv2 and y = ¢+ dv?2, a, b, ¢, d € Q. Then, for example,

zy = (ac+ 2bd) + (bc + ad)V2 € Q(v2) and
1)y = (c — dV2)(c® + 2d%) € Q(V2).

The set {x € Q(v/2) : 22 < v/3} is bounded above but has no least upper
bound in Q(v/2) hence Q(v/2) is not complete.

For any a € N, if r := y/n+a + /n € Q, then squaring both sides of
Vn+a =r—/n shows that y/n € Q and hence that n = j2 for some
j € N (1.4.11). Then v/n+a € Q hence n + a = k? for some k € N.
Therefore, a = k* — j2 = (k— j)(k+j). If a = 11, then k — j = 1 and
j+k=11s0n =25.If a = 21, then either k —j=1and j+ k=21 or
k—j=3and j+ k= 7. The first choice leads to j = 10 and n = 100,
and the second to j = 2 and n = 4.



21. Let r = (yn+1)(yn +p+1)~L Ifn = (p—1)%/4, then n+p = (p+1)?/4,
hence r € Q. Conversely, let r € Q. Since

r?(n+p)=2(r—)vVn+n+(1-r)>

\/n is rational and hence n is a perfect square, say n = m?, m € N
(1.4.11). Since

Vitp=rt(Vn+l)—1=r"t(m+1)-1,

/i + p is rational hence n + p = k? for some k € N. Therefore p =
k* —m? = (k — m)(k +m). Since p is prime, k — m = 1 and k +m = p.
Thus m = (p — 1)/2, hence n = (p — 1) /4.

Section 1.5

1. Let P(n) be the assertion that a < z, < Zp41 < b. Since 21 —a < 1,

21 —a <41 —a<lhence zy =a+ (x1 —a) <a++/x;1 —a=uxz9 <b.
Therefore, P(1) holds. Assume P(n) holds. Then

0<Vz, —a</zny1—a<l

soa<a++r,—a<a+ /Ty —a<a+1,whichis P(n+1). A sim-

ilar argument proves the other inequality.

2. Let P(n) be the statement that a set with n members has a largest
and a smallest element. Clearly P(1) and P(2) are true. Let n > 2 and
assume that P(n) holds. If S is a set with n 4+ 1 members then removing
a member a from S produces a set T" with n members. Let m be the
smallest and M the largest element of 7. Then min{m, a} is the smallest
and max{M, a} the largest element of S. Therefore P(n + 1) holds.

3. Let f(n) denote the sum on the left side of the equation and g(n) the
sum on the right. Then f(1) =1/2 = g(1). Now let n > 1. Then

2n—+2 k41 2n k41
(-1 (-1 1 1
1 — = _— = —
[t = 1) = 3 — k M+l 2n+2
k=1 k=1
2n+2 1 2n 1 1 1 1

g+ 1) —glm) = 3 -

= + — .
Wos it kK 2n+2 2n+1 n+1

Since the right sides are equal, f(n) = g(n) = f(n+1) = g(n +1).

4. Let S(n) denote the sum on the left side of the equation and g(n) the
expression on the right. In each part, one easily checks that S(1) = g(1).
Now let n > 1 and assume that S(n — 1) = g(n — 1). Then the last term
of the sum S(n) is S(n) — S(n — 1) = S(n) — g(n — 1). This shows that
the induction step S(n) = g(n) holds iff the last term of the sum S(n) is
g(n) — g(n — 1). For example,



nn+1) (n—1)n

() n=—%— -,
3 n’ 2 2
() n® = l(n+1)* = (n—1)7,
1
f _
O vt Yhovn
5. 2—35n3 — 15n2—|— 5N
999 999
999 - 1000 999 - 1000 - 1999
(@) Y k+ Z K = + c = 333,333, 000.
k=1
299 500 - 501 - 1001
(b) > 4k —1) =4 g — 500 = 167,166,500,
k=1
251 951 - 252 - 503 251 - 252
(c) Y (4k —3)(4k — 1) = 16 - 16 +3-251.
= 6 2
— 85,348, 785

7. For n > 1, let Q(n) be the statement P(n — 1+ ng). Then Q(1) = P(no)
is true. Assume Q(n) = P(n—1+mny) is true. Then Q(n+1) = P(n+ng)
is true. By mathematical induction, Q(n) = P(n — 1 4 ng) is true for all
n > 1, that is, P(n) is true for every n > ng.

8. In each case, let f(n) be the left side of the inequality and g(n) the right
side, and let P(n) : f(n) < g(n). Let ng be the base value of n for which
P(n) is true. It is straightforward to check that in each case f(ng) < g(no).
Assume P(n) holds for some n > ng, so that f(n)/g(n) < 1. Then

f(n+1) 2n+3  f(n) 1

@) D) = 2 gy T <

b )f(n—i—l) n*+2n+1  f(n)  2n+1 L
g(n+1) on+1 - 2g(n) on+1
fln+1) _2vt 2 f(n)

()g(n—Fl) (n+1)!_n+1g(n)<1
fnt1) 33 f(n)

@O D) "Dl nrigm <&

(@) f(n+1) 2" (n+1)! _ f(n) 2 -1
gln+1)  (n+1)t  g(n) (1+1/n)n "
fin+1) 8" n+1)!  f(n) 4

o oy S O i R

9. Check that 6 < In(6!). For the induction step, use (n + 1)! = (n + 1)nl.
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10.

11.

12.

13.

14.

15.

The inequality clearly holds for n = 0. Suppose (1 + )™ > 1 + na for
some n > 0. Then (1 +2)"" = (1+2)"(1+2) > (1 +nx)(1+2x) =
1+ (n+1z+nz?>1+(n+ 1)

For n > 1, let Q(n) be the statement that P(k — 1 + ng) is true for
k= 1,...,n. Then Q(1) = P(ng) is true. Assume Q(n) is true, so
P(k — 1+ ng) is true for &k = 1,...,n, equivalently, P(j) is true for
ng < j < n—1+ng. By hypothesis, P(n+ nyg) is true hence P(j) is true
for ng < j <mn-+mng. Thus P(k—1+ng) is true for k = 1,...n+ 1, that
is, Q(n + 1) is true. By mathematical induction, Q(n) is true for every
n > 1 hence P(n) is true for every n > ng.

Obvious for n = 2. Let n > 2 and suppose the prime factorization holds
for all integers m with 2 < m < n. If n+1 is prime, we're done. Otherwise
n+ 1 = mk where 2 < m, k < n. By hypothesis, m and k£ have prime
factorizations hence so does the product.

Let g,, denote the expression on the right in the assertion. One checks
directly that go = g1 = 1. Let n > 2 and assume that f; = g; for all
2 < j <n. Then

In+1 — fn+1 = Ggn+1 — fn - fn—l = 09n+1 — 9Yn — Gn-1

(an+2 o anJrl o an) 4 i (bn+2 o anrl o bn)

V5
(b —b—1)=0.

)
< Sl

b’ﬂ
2
=—(@"—a-1)+—%
v3 )t
Let b,, denote the right side of the equation. One checks directly that

by, = ay for n =0,1. Let n > 2 and assume that b; = a; for 2 < j < n.
We show that b1 = a,41 or, equivalently, 2b,11 = by, + by—1:

1y, o
3901 ' 302

= (=" (ag — a) [;1 + 1} + g(ao + 2a;)

bp +by1 =

}(ao —ap) + %(ao + 2a1)

3.2n—2 2 3
2(=1)"*(ag —ay) 2
= —= 2
3 Ton +3(a0+2a1)
= an_;’_l.

The set of all nonnegative integers of the form m —qgn, ¢ € Z, is nonempty
(Archimedean principle) hence has a smallest member r = m — gn (well
ordering principle). If > n, then 0 < r—n =m—(¢+ )n < r,
contradicting the minimal property of r. Therefore, m = gn 4+ r has the
required form. If also m = ¢n+1', ¢ € Z, v € {0,...,n — 1}, then
lg —¢'In=|r —r'| <n hence ¢ =qand ' =r.

11



16. Clearly, n = 1 has a decimal representation. Assume all integers g < n
have decimal representations. By the division algorithm, n+1 = 10g + d,
d € {0,1,...,9}. Since ¢ < n, ¢ has a decimal representation, say
q=dpdy—1...do. Then

D
n41=> d10"" +d=dydy, ;... dod.
k=0

Therefore, by induction, all positive integers have decimal representations.
To see that the representation is unique, suppose that

p q
n=> dpl0" = e;10%, dj, e; €{0,1,...,9}.
k=0 k=0

Then . .
eo—do =Y dpl0" = e 10%,
k=1 k=1

which is divisible by 10. Therefore ey = dy and Y ,_, d10F =
Z:l er10%. Arguing similarly, we see that e; = d;. Continuing in
this manner, eventually p = q and e; =d;, 0 < j <p.

Section 1.6
~d-e—(b-c)(b-d) __ _b-c—(a-b)d-e)

—labb-d @ Y T-(abb-a &

l. x=c

2. By 1.6.3,
lz+yll3 = [lzl[3+yl3+2(2-y) and [le—yl3 = [lz|5+|lyll3 -2(z-y).
Adding and subtracting gives (a) and (b).
(c) By the triangle inequality,
lzll2 = llz —y +yll2 < [z - yll2 + [ly]]2

hence [[z]s —[lyll2 < ||z — yll2. Similarly, [|ylls —[|z[]2 < [|lz - y|l2.
(d) Use induction.

n k
3. By 1.6.3, ||z +xo +--- + x| 3 = Z T x; = ij x;.
i,j=1 j=1

4. For the triangle inequality, we have

n k
& +yll =Y |y +y;l < D lagl + lys| = [zl + [lylh

Jj=0 Jj=0

12



and

|+ ylloo = max{|z1 + 91, .., [2n + ynl}
< max{|zi| + [yl [znl| + [ynl}
< max{|z1],..., |za|} + max{|yil, ..., |yn|}
= [[®[loc + [|Yl|oo

The remaining properties are clear.
I |2|2, yll2 < 7 and 0 <t < 1, then, by 1.6.4,
[t + (1 = )yllz < [[tz[l2 + ||(1 = Dyll2 = tl|z|l2 + (1 = )|[yl]2 < 7.

The other sets in the exercise are not convex.

n 1/2 n
. (Zw?) <+/n max |xj|§\/ﬁZ|mj\§n3/2.maX |51
= j=1,....n = j=1,....,n

1/2 n 1/2
= n3/2( ~max x?) < n3/2< x?) .
j=1

j=1,...,n
J

. The hypotheses imply that

Zw? = Zy? =1 and Z(l‘j + ;)% = 4.
Jj=1 j=1 j=1

It follows that Y7, x;y; = 1 and Y7, (; — y;)> = 0. The same does
not hold for || - ||oc (take & = (—=1,1) and y = (1,1)) or for || - ||y (take
z = (1,0) and y = (0, 1)).

. Use the law of cosines.

. Direct calculation. For (f) show that ||a x b||? = ||al|? ||b||? cos® 6.

13



Chapter 2 Solutions
Section 2.1

1. Some possibilities:

(a) ap =[la+b+ (=1)"(b—a)]/2.

(—
(b) an = [a+b+ (~1LFV2I(b - a)]/2,
an = [a+b+ (a—b)[sin(nr/2) — cos(nm/2)] /2.
() an = [a-+b+ (=D)L= (@ b)]/2.
(d) an = 3(b+c—2a)z2 + 1(b— )z, + a, z, :=sin [(n — 1)7/2].
(€) an =34 (=1)L+D21 L [(—1)" —1]/2.
2. x1=a,xp=a+b—x,_1,n > 1.
3. (a) Since |(4n—1)/(2n+7) —2| = 15/(2n+7) < 8/n, choose any integer
N > 8/e.
(b) If n > 6, |(2n%2 —n)/(n? +3) — 2| = |n +6]/(n? + 3) < 2n/n? = 2/n.
Therefore, choose N > min{6,2/c}.
() |(5v/n+7)/(By/n+2)—5/3] =11/(9v/n + 6) < 11/4/n, so choose

any integer N > (11/¢)%.
(d) Forn > 2, (n—1)/(v/n+1) > (n/2)/2/n = \/n/4, so choose any
integer N > 16M2.

() [(2+1/n)3 =8| =[(2+1/n)? +2(2+1/n) + 4] /n < 19/n, so choose
any integer N > 19/e.

(f)\/m ) 1 1 h ot
_ = —, SO ChoO0Se any 1mmteger
n+1 VntlWnt2+vntl) n v mes
N > 1/e.

4. The disjoint intervals (—3/2,—1/2) and (1/2,3/2) each contain infinitely
many terms of the sequence. Therefore, no limit can exist.

5. Let r =pq~ 1, p, ¢ € Z, ¢ > 0. For all n > ¢, n!r € Z hence sin(nlrr) = 0.

6. The general term in the sequence may be written n?~1(1 +n~2)P, which
tendsto 1if p=1,0if p < 1, and +o0 if p > 1.

7. Let A={x1,...,zp} and A; = {n : a,, = x;}. One of these sets, say A,
must have infinitely many members. Since |z1 — a| < |21 — an| + |an, — a
and a, — a, letting n — +o0o through A; shows that 1 = a. We may
therefore choose € > 0 so that I := (a —e,a+¢) contains no x; for j > 2.
Let N € N such that a, € I for all n > N. For such n, a, = a.
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8.

10.
11.
12.

13.

14.

15.

(a) b, = (3an + 2b, — 3ay)/2 — (¢ — 3a)/2.
(b) Let ¢, = 3anby, + 5a2 — 2b,,. Then

by = (cn — 5a2)/(3an —2) = (1 —20)/(6 —2) = —19/4.
(a) 2. (b) m. (c) k/2. (d) b/2v/a. (e) 1. (f) 1/2a. (g) —ka" .
(h) a/k. (i) 0. (j)O0. (k) 1/2. (1) 1.
If |a,| < M for all n, then |a,b,| < M|b,| — 0.
Use —r <a, — b, <rand 2.14.

vna, = (nay)(1/v/n) = a-0 = 0. For a counter example to the converse
take a, = (—1)"/n or 1/n3/%,

If a = 0, given € > 0 choose N such that a, < ek for alln > N
Suppose a > 0. Then there exists N such that a, > 0 for all n > N. By
Exercise 1.4.15,

k -1
/% = /¥ =, =l L ak ka0 o,

j=1

since the expression inside the parentheses tends to
k
Zalfj/ka(jfl)/k =ka'"V* > 0.
Jj=1

1/k
Therefore, an/ — ql/k,

(a) Suppose first that r > 1. Set h,, = /™ — 1. Then h,, > 0, and by
the binomial theorem, r = (1 + h,,)"™ > nh,,. Therefore, by the squeeze
principle, h,, — 0. If r < 1 consider 1/r.

(b) Set h,, = n'/™ —1. Then n = (1+h,,)" > n(n—1)h2 /2, hence h,, — 0.
(¢) Set h,, = (r +n*)Y/™ — 1. By the binomial theorem, for n > k

nn—1)--(n—k)hErL  (n— k)kFipk+t
(k+1)! S T

r+n*=0+h,)" >

hence h,, — 0.

(d) Use the inequality 2z/m <sinz < z, 0 <z < 7/2, and the squeeze
principle.

Follows from the identities * = 2+ — 27, 27 = (Jz| + x)/2, and 2~ =

(|2 = z)/2.
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16.

17.

18.

Let s =1/|r| and h = s — 1. By the binomial theorem,

s"=(h+1)" = i (Z) hE.

k=0

Since s > 1, each term in the sum is positive hence, for n > m,

s> < n )hm+l — TL(?’Z— 1)(n—m) hm+1 (n_m)m+1 m+1.

m+1 (m+1)! (m+1)!
Therefore,
m m 1)! !
0<\nmr"|=L< ntm+ D (m+1)

sn (7’L _ m)m+lhm+1 Tl(l _ m/n)m+1hm+l !

Since the term on the right tends to 0 as n — +o00, the squeeze principle
implies that n™r™ — 0.

ap < Tap_1 < 720p_o < -+ < ™ ta; — 0. For the example, take
a, = 24/

n = .

Suppose first that a € R. Given € > 0, choose N such that |a, —a| < £/2

for all n > N. For such n,

atoctan | (a1 —a)+---+(ay —a)
n n
L@ -+t (a0
n
< (a1 —a)+---+(ay —a) +n—NE.
- n n 2

The second term on the right in the last inequality is less than /2. Also,
there exists N’ > N such that the first term is less than /2 for all
n > N'. For such n, |(a1 + -+ an)/n —al < e.

Now suppose a,, — +00. Let M > 0 and choose N such that a,, > 4M
for all n > N. For such n,
a1+...+an a1+...+aN aN+1+...+an

- -
n n

Z N

Choose N’ > N such that
N 1
z > -~ and mttan >—-M
n 2 n
for all n > N’. For such n, (a1 + -+ an)/n >2M — M = M.

The converse is false: consider a, = (—1)".
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19.

20.

21.

22.

23.

Choose N such that a,, —a < ¢ for all n > N. For such n,
0 < min{ay,...,an} —a<a, —a<e.
Therefore, min{ay,...,a,} — a. The converse is false: consider a,, =
1+ (=1)™
Given ¢ > 0, choose N such that |a,|/n < e for all n > N. Then
by :=n"'max{ai,...,a,} = max{ay,, B},

where

an =n"'max{ai,...,an}, Bn=n"'max{anii,...,an}

Choose N’ > N such that |a,| < € for all n > N’. For such n we also
have —e < 3, < ¢, hence —e < b, < ¢.

If {a,} is bounded below by ¢ then
e/n < ap/n <max{ai,...,an}/n.

Hence if (1/n)max{ai,...,a,} — 0, then a,/n — 0. The example
an, = 1 —n shows that the converse is not generally true.

(a7 + -+ o)™ = [ fo)" o (/o) + 1] and
1< [(@a/an)" + -+ (po1 /o)™ + 1] < Y7 1
Suppose that ¢ < f(z) — 2z < d for all z, so ¢+ jz < f(jz) < djz.
Summing and using Exercise 1.5.4,
nc+an(n+1)/2 < if(jx) <nd+znn+1)/2
j=1
hence

c/n+z(1+1/n)/2 < (1/n?) Zn:f (jz) <d/n+xz(1+1/n)/2.

j=1

Letting n — +00, we obtain (a). Part (b) is proved similarly.

. . Api1 n
Let ¢ = a1 /ag and 7 = —1/2. By induction, =+ = ¢ hence
Qn
An+1 ar 1/3 2/3
Opt1 = ntl) ap = apgct T g/ = ao/ ‘11/
ap ag
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