
Chapter 2

Linear Second-Order
Equations

2.1 Theory of the Linear Second-Order Equa-
tion

In Problems 1 - 5, verification that the given functions are solutions of the
differential equation is a straightforward differentiation, which we omit.

1. The general solution is y(x) = c1 sin(6x) + c2 cos(6x). For the initial
conditions, we need y(0) = c2 = −5 and y′(0) = 6c1 = 2. Then c1 = 1/3
and the solution of the initial value problem is

y(x) =
1
3

sin(6x) − 5 cos(6x).

2. The general solution is y(x) = c1e
4x + c2e

−4x. For the initial conditions,
compute

y(0) = c1 + c2 = 12 and y′(0) = 4c1 − 4c2 = 3.

Solve these algebraic equations to obtain c1 = 51/8 and c2 = 45/8. The
solution of the initial value problem is

y(x) =
51
8

e4x +
45
8

e−4x.

3. The general solution is y(x) = c1e
−2x + c2e

−x. For the initial conditions,
we have

y(0) = c1 + c2 = −3 and y′(0) = −2c1 − c2 = −1.

Solve these to obtain c1 = 4, c2 = −7. The solution of the initial value
problem is

y(x) = 4e−2x − 7e−x.

47
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48 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

4. The general solution is y(x) = c1e
3x cos(2x) + c2e

3x sin(2x). Compute

y′(x) = 3c1e
3x cos(2x) − 2c1e

3x sin(2x)

+ 3c2e
3x sin(2x) + 2c2e

3x cos(2x).

From the initial conditions,

y(0) = c1 = −1 and y′(0) = 3c1 + 2c2 = 1.

Then c2 = 2 and the solution of the initial value problem is

y(x) = −e3x cos(2x) + 2e3x sin(2x).

5. The general solution is y(x) = c1e
x cos(x)+ c2e

x sin(x). Then y(0) = c1 =
6. We find that y′(0) = c1 + c2 = 1, so c2 = −5. The initial value problem
has solution

y(x) = 6ex cos(x) − 5ex sin(x).

6. The general solution is

y(x) = c1 sin(6x) + c2 cos(6x) +
1
36

(x − 1).

7. The general solution is

y(x) = c1e
4x + c2e

−4x − 1
4
x2 +

1
2
.

8. The general solution is

y(x) = c1e
−2x + c2e

−x +
15
2

.

9. The general solution is

y(x) = c1e
3x cos(2x) + c2e

3x sin(2x) − 8ex.

10. The general solution is

y(x) = c1e
x cos(x) + c2e

x sin(x) − 5
2
x2 − 5x − 4.

11. For conclusion (1), begin with the hint to the problem to write

y′′
1 + py′

1 + qy1 = 0,

y′′
2 + py′

2 + qy2 = 0.

Multiply the first equation by y2 and the second by −y1 and add the
resulting equations to obtain

y′′
1 y2 − y′′

2 y1 + p(y′
1y2 − y′

2y1) = 0.
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2.1. THEORY OF THE LINEAR SECOND-ORDER EQUATION 49

Since W = y1y2 − y2y1, then

W ′ = y1y
′′
2 − y′′

1 y2,

so
W ′ + pW = y1y

′′
2 − y′′

1 y2 + p(y1y
′
2 − y′

1y2) = 0.

Therefore the Wronskian satisfies the linear differential equation W ′ +
pW = 0. This has integrating factor e

R
p(x) dx and can be written(

We
R

p(x) dx
)′

= 0.

Upon integrating we obtain the general solution

W = ce−
R

p(x) dx.

If c = 0, then this Wronskian is zero for all x in I. If c �= 0, then W �= 0
for x in I because the exponential function does not vanish for any x.

Now turn to conclusion (2). Suppose first that y2(x) �= 0 on I. By the
quotient rule for differentiation it is routine to verify that

y2
2

d

dx

(
y1

y2

)
= −W (x).

If W (x) vanishes, then the derivative of y1/y2 is identically zero on I, so
y1/y2 is constant, hence y1 is a constant multiple of y1, making the two
functions linearly dependent. Conversely, if the two functions are linearly
independent, then one is a constant multiple of the other, say y1 = cy2,
and then W (x) = 0.

If there are points in I at which y2(x) = 0, then we have to use this
argument on the open intervals between these points and then make use
of the continuity of y2 on the entire interval. This is a technical argument
we will not pursue here.

12.

W (x) =
∣∣∣∣x2 x3

2x 3x2

∣∣∣∣ = x4.

Then W (0) = 0, while W (x) �= 0 if x �= 0. However, the theorem only
applies to solutions of a linear second-order differential equation on an
interval containing the point at which the Wronskian is evaluated. x2 and
x3 are not solutions of such a second-order linear equation on an open
interval containing 0.

13. It is routine to verify by substitution that x and x2 are solutions of the
given differential equation. The Wronskian is

W (x) =
∣∣∣∣x x2

1 2x

∣∣∣∣ = −x2,
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50 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

which vanishes at x = 0, but at no other points. However, the theorem
only applies to solutions of linear second order differential equations. To
write the given differential equation in standard linear form, we must write

y′′ − 2
x

y′ +
2
x2

y = 0,

which is not defined at x = 0. Thus the theorem does not apply.

14. If y1 and y2 have relative extrema at some point x0 within the interval,

y′
1(x0) = y′

2(x0) = 0.

Then

W (x0) =
∣∣∣∣y1(x0) y2(x0)

0 0

∣∣∣∣ = 0.

Therefore y1 and y2 are linearly dependent.

15. Suppose ϕ′(x0) = 0. Then ϕ is the unique solution of the initial value
problem

y′′ + py′ + qy = 0; y(x0) = y′(x0) = 0

on I. But the functions that is identically zero on I is also a solution of
this problem. Therefore ϕ(x) = 0 for all x in I.

2.2 The Constant Coefficient Case

1. The characteristic equation is λ2−λ−6 = 0, with roots −2, 3. The general
solution is

y = c1e
−2x + c2e

3x.

2. The characteristic equation is λ2 − 2λ + 10 = 0, with roots 1 ± 3i. The
general solution is

y = c1e
x cos(3x) + c2e

x sin(3x).

3. The characteristic equation is λ2 + 6λ + 9 = 0, with repeated root −3.
The general solution is

y = c1e
−3x + c2xe−3x.

4. The characteristic equation is λ2 − 3λ = 0, with roots 0, 3. The general
solution is

y = c1 + c2e
3x.

5. The characteristic equation is λ2 + 10λ + 26 = 0, with roots −5 ± i. The
general solution is

y = c1e
−5x cos(x) + c2e

−5x sin(x).
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2.2. THE CONSTANT COEFFICIENT CASE 51

6. The characteristic equation is λ2 + 6λ − 40 = 0, with roots −10, 4. The
general solution is

y = c1e
−10x + c2e

4x.

7. The characteristic equation is λ2 +3λ+18 = 0, with roots −3/2±3
√

7i/2.
The general solution is

y = e−3x/2

[
c1 cos

(
3
√

7x

2

)
+ c2 sin

(
3
√

7x

2

)]
.

8. The characteristic equation is λ2 + 16λ + 64 = 0, with repeated root −8.
The general solution is

y = e−8x(c1 + c2x).

9. The characteristic equation is λ2 − 14λ + 49 = 0, with repeated root 7.
The general solution is

y = e7x(c1 + c2x).

10. The characteristic equation is λ2 − 6λ + 7 = 0, with roots 3 ± √
2i. The

general solution is

y = e3x[c1 cos(
√

2x) + c2 sin(
√

2x)].

In each of Problems 11 through 20, the solution is obtained by finding the
general solution of the differential equation and then solving for the constants
to satisfy the initial conditions. We provide the details only for Problems 11
and 12, the other problems proceeding similarly.

11. The characteristic equation is λ2 + 3λ = 0, with roots 0,−3. The general
solution of the differential equation is y = c1 + c2e

−3x. To find a solution
satisfying the initial conditions, we need

y(0) = c1 + c2 = 3 and y′(0) = −3c2 = 6.

Then c1 = 5 and c2 = −2, so the solution of the initial value problem is
y = 5 − 2e−3x.

12. The characteristic equation is λ2 + 2λ − 3 = 0, with roots 1,−3. The
general solution of the differential equation is

y(x) = c1e
x + c2e

−3x.

Now we need

y(0) = c1 + c2 = 6 and y′(0) = c1 − 3c2 = −2.

Then c1 = 4 and c2 = 2, so the solution of the initial value problem is

y(x) = 4ex + 2e−3x.
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52 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

13. y = 0 for all x

14. y = e2x(3 − x)

15.

y =
1
7
[9e3(x−2) + 5e−4(x−2)]

16.

y =
√

6
4

ex
[
e
√

6x − e−
√

6x
]

17. y = ex−1(29 − 17x)

18.

y = −4(5 −
√

23)e5(x−2)/7 sin

(√
23
2

(x − 2)

)

19.

y = e(x+2)/2

[
cos

(√
15
2

(x + 2)

)
+

5√
15

sin

(√
15
2

(x + 2)

)]

20.
y = ae(−1+

√
5)x/2 + be(−1−√

5)x/2,

where

a =
(9 + 7

√
5)

2
√

5
e−2+

√
5

and

b =
(7
√

5 − 9)
2
√

5
e−2−√

5

21. (a) The characteristic equation is λ2 − 2αλ + α2 = 0, with repeated roots
λ = α. The general solution is

y(x) = ϕ(x) = (c1 + c2x)eαx.

(b) The characteristic equation is λ2 − 2αλ + (α2 − ε2) = 0, with roots
α ± ε. The general solution is

yε(x) = ϕε(x) = eαx(c1e
εx + c2e

−εx).

(c) In general,
lim
ε→0

yε(x) = eαx(c1 + c2) �= y(x).
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2.2. THE CONSTANT COEFFICIENT CASE 53

22. (a) We find

y = ψ(x) = eαx(c + (d − ac)x).

(b) We obtain

yε = ψε(x) =
1
2ε

eαx
[
(d − ac + εc)eεx + (ac − d + εc)e−εx

]
.

(c) Using l’Hospital’s rule, take the limit

lim
ε→0

ψε(x) =

1
2
eαx lim

ε→0

[
(d − ac + εc)xeεx − (ac − d + εc)xe−εx + ce(εx + ce−εx)

]
= eαx(c + (d − ac)x) = ψ(x).

23. The characteristic equation has roots

λ1 =
1
2
(−a +

√
a2 − 4b), λ2 =

1
2
(−a −

√
a2 − 4b).

As we have seen, there are three cases.

If a2 = 4b, then

y = e−ax/2(c1 + c2x) → 0 as x → ∞,

because a > 0.

If a2 > 4b, then a2 − 4b < a2 and λ1 and λ2 are both negative, so

y = c1e
λ1x + c2e

λ2x → 0 as x → ∞.

Finally, if a2 < 4b, then the general solution has the form

y(x) = e−ax/2(c1 cos(βx) + c2 sin(βx)),

where β =
√

4b − a2/2. Because a > 0, this solution also has limit zero as
x → ∞.

24. We will use the fact that, for any positive integer n,

i2n = (i2)n = (−1)n and i2n+1 = i2ni = (−1)ni.

Now suppose a is real and split the exponential series into two series, one
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54 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

for even values of the summation index, and the other for odd values:

eia =
∞∑

n=0

1
n!

inan

=
∞∑

n=0

1
(2n)!

i2na2n +
∞∑

n=0

1
(2n + 1)!

i2n+1a2n+1

=
∞∑

n=0

(−1)n

2n!
a2n +

∞∑
n=0

(−1)n

n!
ia2n+1

=
∞∑

n=0

(−1)n

n!
a2n + i

∞∑
n=0

(−1)n

(2n + 1)!
a2n+1

= cos(a) + i sin(a).

2.3 The Nonhomogeneous Equation

1. Two independent solutions of y′′ + y = 0 are y1 = cos(x) and y2 = sin(x).
The Wronskian is

W (x) =
∣∣∣∣ cos(x) sin(x)
− sin(x) cos(x)

∣∣∣∣ = 1.

To use variation of parameters, seek a particular solution of the differential
equation of the form

y = u1y1 + u2y2.

Let f(x) = tan(x). We found that we can choose

u1(x) = −
∫

y2(x)f(x)
W (x)

dx = −
∫

tan(x) sin(x) dx

= −
∫

sin2(x)
cos(x)

dx

= −
∫

1 − cos2(x)
cos(x)

dx

=
∫

cos(x) dx −
∫

sec(x) dx

= sin(x) − ln | sec(x) + tan(x)|

and

u2(x) =
∫

y1(x)f(x)
W (x)

dx =
∫

cos(x) tan(x) dx

=
∫

sin(x) dx = − cos(x).
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2.3. THE NONHOMOGENEOUS EQUATION 55

The general solution can be written

y = c1 cos(x) + c2 sin(x) + sin(x) cos(x)
− cos(x) ln | sec(x) + tan(x)| − sin(x) cos(x)
= c1 cos(x) + c2 sin(x) − cos(x) ln | sec(x) + tan(x)|

2. Two independent solutions of the associated homogeneous equation are
y1(x) = e3x and y2(x) = ex. These have Wronskian W (x) = −2e4x. Then

u1(x) = −
∫

2ex cos(x + 3)
−2e4x

dx

=
∫

e−3x cos(x + 3) dx

= − 3
10

e−3x cos(x + 3) +
1
10

e−3x sin(x + 3)

and

v(x) =
∫

2e3x cos(x + 3)
−2e4x

dx

=
∫

e−x cos(x + 3) dx

=
1
2
e−x cos(x + 3) − 1

2
e−x sin(x + 3).

The general solution is

y(x) = c1e
3x + c2e

x

− 3
10

cos(x + 3) +
1
10

sin(x + 3)

+
1
2

cos(x + 3) − 1
2

sin(x + 3).

This can be written

y(x) = c1e
3x + c2e

x

+
1
5

cos(x + 3) − 2
5

sin(x + 3).

For Problems 3 through 6 we will omit some of the details and give an outline
of the solution.

3. y1 = cos(3x) and y2 = sin(3x) are linearly independent solutions of the
associated homogeneous equation. Their Wronskian is W = 3. With
f(x) = 12 sec(3x), carry out the integrations in the equations for u1 and
u2 to obtain the general solution

y(x) = c1 cos(3x) + c2 sin(3x) + 4x sin(3x) +
4
3

cos(3x) ln | cos(3x)|.
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56 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

4. y1 = e3x and y2 = e−x, with Wronskian −4e−2x. With f(x) = 2 sin2(x) =
1 − cos(2x), obtain u1 and u2 to write the general solution

y(x) = c1e
3x + c2e

−x − 1
3

+
7
65

cos(2x) +
4
65

sin(2x).

5. y1 = ex and y2 = e2x, with Wronskian W = e3x. With f(x) = cos(e−x),
carry out the integrations to obtain u1 and u2 to write the general solution

y(x) = c1e
x + c2e

2x − e2x cos(e−x)

6. y1 = e3x and y2 = e2x, with Wronskian W = −e5x. Use the identity
8 sin2(4x) = 4 cos(8x) − 4 to help find u1 and u2 and write the general
solution

y = c1e
3x + c2e

2x +
2
3

+
58

1241
cos(8x) +

40
1241

sin(8x).

In Problems 7 - 16 we use the method of undetermined coefficients in writing
the general solution. For Problems 7 and 8 all the details are included, while
for Problems 9 through 16 the important details of the solution are outlined.

7. Two independent solutions of the associated homogeneous equation are
y1 = e2x and y2 = e−x. Since 2x2 + 5 is a second degree polynomial, we
attempt such a polynomial as a particular solution:

yp(x) = Ax2 + Bx + C.

Substitute this into the (nonhomogeneous) differential equation to obtain

2A − (2Ax + B) − 2(Ax2 + Bx + C) = 2x2 + 5.

Then

2A − B − 2C = 5,

−2A − 2B = 0,

−2A = 2.

Then A = −1, B = 1 and C = −4. The general solution is

y = c1e
2x + c2e

−x − x2 + x − 4.

8. We find y1 = e3x and y2 = e−2x. Since f(x) = 8e2x, which is not a
constant multiple of y1 or y2, try yp(x) = Ae2x to obtain

y = c1e
3x + c2e

−2x − 2e2x.
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9. y1 = ex cos(3x) and y2 = ex sin(3x). With f(x) a second degree polyno-
mial, try yp(x) = Ax2 + Bx + C to obtain

y = ex[c1 cos(3x) + c2 sin(3x)] + 2x2 + x − 1.

10. y1 = e2x cos(x) and y2 = e2x sin(x). With f(x) = 21e2x, try yp(x) = Ae2x

to obtain
y = e2x[c1 cos(x) + c2 sin(x)] + 21e2x.

11. y1 = e2x and y2 = e4x. With f(x) = 3ex, try yp(x) = Aex, noting that
ex is not a solution of the associated homogeneous equation. Obtain the
general solution

y = c1e
2x + c2e

4x + ex.

12. y1 = e−3x and y2 = xe−3x. Because f(x) = 9 cos(3x), try yp(x) =
A cos(x)+B sin(x), obtaining both a cos(3x) and a sin(3x) term, to obtain

y = e−3x[c1 + c2x] +
1
2

sin(3x).

Although the general solution does not contain a cos(3x) term, this does
not automatically follow and in general both the sine and cosine term
must be included in our attempt at yp(x).

13. y1 = ex and y2 = e2x. With f(x) = 10 sin(x), try yp(x) = A cos(x) +
B sin(x) to obtain

y = c1e
x + c2e

2x + 3 cos(x) + sin(x).

14. y1 = 1 and y2 = e−4x. With f(x) = 8x2 + 2e3x, try yp(x) = Ax2 + Bx +
C + De3x, since e3x is not a solution of the homogeneous equation. This
gives us the general solution

y = c1 + c2e
−4x − 2

3
x3 − 1

2
x2 − 1

4
x − 2

3
e3x.

15. y1 = e2x cos(3x) and y2 = e2x sin(3x). Since neither e2x nor e3x is a
solution of the homogeneous equation, try yp(x) = Ae2x + Be3x to obtain
the general solution

y = e2x[c1 cos(3x) + c2 sin(3x)] +
1
3
e2x − 1

2
e3x.

16. y1 = ex and y2 = xex. Because f(x) is a first degree polynomial plus a
sin(3x) term, try

yp(x) = Ax + B + C sin(3x) + D cos(3x)
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to obtain the general solution

y = ex[c1 + c2x] + 3x + 6 +
3
2

cos(3x) − 2 sin(3x).

Notice that the solution contains both a sin(3x) term and a cos(3x) term,
even though f(x) has just a sin(3x) term.

In Problems 17 through 24, we first find the general solution of the differential
equation, then solve for the constants to satisfy the initial conditions. Problems
17 through 22 are well suited to the method of undetermined coefficients, while
Problems 23 and 24 can be solved fairly directly by variation of parameters.

17. y1 = e2x and y2 = e−2x. Since e2x is a solution of the homogeneous
equation, try yp(x) = Axe2x + Bx + C to obtain the general solution

y = c1e
2x + c2e

−2x − 7
4
xe2x − 1

4
x.

Now
y(0) = c1 + c2 = 1 and y′(0) = 2c1 − 2c2 − 7

4
= 3.

Then c1 = 7/4 and c2 = −3/4. The solution of the initial value problem
is

y = −7
4
e2x − 3

4
e−2x − 7

4
xe2x − 1

4
x.

18. Two independent solutions of the homogeneous equation are y1 = 1 and
y2 = e−4x. For a particular solution we might try A+B cos(x)+C sin(x),
but A is a solution of the homogeneous equation, so try yp(x) = Ax +
B cos(x) + C sin(x). The general solution is

y(x) = c1 + c2e
−4x − 2 cos(x) + 8 sin(x) + 2x.

Now
y(0) = c1 + c2 − 2 = 3 and y′(0) = −4c2 + 8 + 2 = 2.

These lead to the solution of the initial value problem:

y = 3 + 2e−4x − 2 cos(x) + 8 sin(x) + 2x.

19. We find the general solution

y(x) = c1e
−2x + c2e

−6x +
1
5
e−x +

7
12

.

Solve for the constants to obtain the solution

y(x) =
3
8
e−2x − 19

120
e−6x +

1
5
e−x +

7
12
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20. The general solution is

y(x) = c1 + c2e
3x − 1

5
e2x(cos(x) + 3 sin(x)).

The solution of the initial value problem is

y =
1
5

+ e3x − 1
5
e2x[cos(x) + 3 sin(x)].

21. The general solution is

y(x) = c1e
4x + 2e−2x − 2e−x − e2x.

The initial value problem has the solution

y = 2e4x + 2e−2x − 2e−x − e2x.

22. The general solution is

y = ex/2

[
c1 cos

(√
3

2
x

)
+ c2 sin

(√
3

2
x

)]
+ 1

To make it easier to fit the initial conditions specified at x = 1, we can
also write this general solution as

y = ex/2

[
d1 cos

(√
3

2
(x − 1)

)
+ d2 sin

(√
3

2
(x − 1)

)]
+ 1.

Now

y(1) = e1/2d1 + 1 = 4 and y′(1) =
1
2
e1/2d1 +

√
3

2
e1/2d2 = −2.

Solve these to get d1 = 3e−1/2 and d2 = −7e−1/2/
√

3. The solution of the
initial value problem is

y = e(x−1)/2

[
3 cos

(√
3

2
(x − 1)

)
− 7√

3
sin

(√
3

2
(x − 1)

)]
+ 1.

23. We find the general solution

y(x) = c1e
x + c2e

−x − sin2(x) − 2.

The initial value problem has the solution

y = 4e−x − sin2(x) − 2.

24. The general solution is

y(x) = c1 cos(x) + c2 sin(x) − cos(x) ln | sec(x) + tan(x)|.
The solution of the initial value problem is

y = 4 cos(x) + 4 sin(x) − cos(x) ln | sec(x) + tan(x)|.
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Figure 2.1: Solutions to Problem 1, Section 2.4.

2.4 Spring Motion

1. The solution with initial conditions y(0) = 5, y′(0) = 0 is

y1(t) = 5e−2t[cosh(
√

2t) +
√

2 sinh(
√

2t)].

With initial conditions y(0) = 0, y′(0) = 5, we obtain

y2(t) =
5√
2
e−2t sinh(

√
2t).

Graphs of these solutions are shown in Figure 2.1.

2. With y(0) = 5 and y′ = 0, y1(t) = 5e−2t(1 + 2t); with y(0) = 0 and
y′(0) = 5, y2(t) = 5te−2t. Graphs are given in Figure 2.2.

3. With y(0) = 5 and y′ = 0,

y1(t) =
5
2
e−t[2 cos(2t) + sin(2t)].

With y(0) = 0 and y′(0) = 5, y2(t) = 5
2e−t sin(2t). Graphs are given in

Figure 2.3.

4. The solution is

y(t) = Ae−t[cosh(
√

2t) +
√

(2) sinh(
√

2t)].

Graphs for A = 1, 3, 6, 10,−4 and −7 are given in Figure 2.4.
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Figure 2.2: Solutions to Problem 2, Section 2.4.

5. The solution is
y(t) =

A√
2
e−2t sinh(

√
(2)t)

and is graphed for A = 1, 3, 6, 10,−4 and −7 in Figure 2.5.

6. The solution is y(t) = Ae−2t(1 + 2t) and is graphed for A = 1, 3, 6,
10,−4,−7 in Figure 2.6.

7. The solution is y(t) = Ate−2t, graphed for A = 1, 3, 6, 10,−4 and −7 in
Figure 2.7.

8. The solution is
y(t) =

A

2
e−t[2 cos(2t) + sin(2t)],

graphed in Figure 2.8 for A = 1, 3, 6, 10,−4 and −7.

9. The solution is
y(t) =

A

2
e−t sin(2t)

and is graphed for A = 1, 3, 6, 10,−4 and −7 in Figure 2.9.

10. From Newton’s second law of motion,

y′′ = sum of the external forces = −29y − 10y′

so the motion is described by the solution of

y′′ + 10y′ + 29y = 0; y(0) = 3, y′(0) = −1.
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Figure 2.3: Solutions to Problem 3, Section 2.4.
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Figure 2.4: Solutions to Problem 4, Section 2.4.
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Figure 2.5: Solutions to Problem 5, Section 2.4.
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Figure 2.6: Solutions to Problem 6, Section 2.4.
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Figure 2.7: Solutions to Problem 7, Section 2.4.
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Figure 2.8: Solutions to Problem 8, Section 2.4.
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Figure 2.9: Solutions to Problem 9, Section 2.4.

The solution in this underdamped problem is

y(t) = e−5t[3 cos(2t) + 7 sin(2t)].

If the condition on y′(0) is y′(0) = A, this solution is

y(t) = e−5t

[
3 cos(2t) +

(
A + 15

2

)
sin(2t)

]
.

Graphs of this solution are shown in Figure 2.10 for A = −1,−2,−4, 7,−12
cm/sec (recall that down is the positive direction).

11. For overdamped motion the displacement is given by

y(t) = e−αt(A + Beβt),

where α is the smaller of the roots of the characteristic equation and is
positive, and β equals the larger root minus the smaller root. The factor
A + Beβt can be zero at most once and only for some t > 0 if −A/B > 1.
The values of A and B are determined by the initial conditions. In fact,
if y0 = y(0) and v0 = y′(0), we have

A + B = y0 and − α(A + B) + βB = v0.

We find from these that

−A

B
= 1 − βy0

v0 + αy0
.
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Figure 2.10: Solutions to Problem 10, Section 2.4.

No condition on only y0 will ensure that −A/B ≤ 1. If we also specify that
v0 > −αy0, we ensure that the overdamped bob will never pass through
the equilibrium point.

12. For critically damped motion the displacement has the form

y(t) = e−αt(A + Bt),

with α > 0 and A and B determined by the initial conditions. From the
linear factor, the bob can pass through the equilibrium at most once, and
will do this for some t > 0 if and only if B �= 0 and AB < 0. Now note
that y0 = A and v0 = y′(0) = −αA + B. Thus to ensure that the bob
never passes through equilibrium we need AB > 0, which becomes the
condition (v0 + αy0)y0 > 0. No condition on y0 alone can ensure this.
We would also need to specify v0 > −αy0, and this will ensure that the
critically damped bob never passes through the equilibrium point.

13. For underdamped motion, the solution has the appearance

y(t) = e−ct/2m[c1 cos(
√

4km − c2t/2m) + c2 sin(
√

4km − c2t/2m)]

having frequency

ω =
√

4km − c2

2m
.

Thus increasing c decreases the frequency of the the motion, and decreas-
ing c increases the frequency.
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14. For critical damping,

y(t) = e−ct/2m(A + Bt).

For the maximum displacement at time t∗ we need y′(t∗) = 0. This gives
us

t∗ =
2mB − cA

Bc
.

Now y(0) = A and y′(0) = B − Ac/2m. Since we are given that y(0) =
y′(0) �= 0, we find that

t∗ =
4m2

2mc + c2

and this is independent of y(0). The maximum displacement is

y(t∗) =
y(0)

c
(2m + c)e−2m/(2m+c).

15. The general solution of the overdamped problem

y′′ + 6y′ + 2y = 4 cos(3t)

is

y(t) = e−3t[c1 cosh(
√

7t) + c2 sinh(
√

7t)]

− 28
373

cos(3t) +
72
373

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 give us

c1 =
2266
373

and c2 =
6582

373
√

7
.

Now the solution is

ya(t) =
1

373
[e−3t[2266 cosh(

√
7t)+

6582√
7

sinh(
√

7t)]−28 cos(3t)+72 sin(3t)].

(b) The initial conditions y(0) = 0, y′(0) = 6 give us c1 = 28/373 and
c2 = 2106/373 and the unique solution

yb(t) =
1

373
[e−3t[29 cosh(

√
7t) + 2106√

7
sinh(

√
7t)] − 28 cos(3t) + 72 sin(3t)].

These solutions are graphed in Figure 2.11.

16. The general solution of the critically damped problem

y′′ + 4y′ + 4y = 4 cos(3t)
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Figure 2.11: Solutions to Problem 15, Section 2.4.
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Figure 2.12: Solutions to Problem 16, Section 2.4.
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is
y(t) = e−2t[c1 + c2t] − 20

169
cos(3t) +

48
169

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 give us the unique solution

ya(t) =
1

169
[e−2t[1034 + 1924t] − 20 cos(3t) + 48 sin(3t)].

(b) The initial conditions y(0) = 0, y′(0) = 6 give us the unique solution

yb(t) =
1

169
[e−2t[20 + 910t] − 20 cos(3t) + 48 sin(3t)].

These solutions are graphed in Figure 2.12.

17. The general solution of the underdamped problem

y′′(t) + y′ + 3y = 4 cos(3t)

is

y(t) = e−t/2

[
c1 cos

(√
11t

2

)
+ c2 sin

(√
11t

2

)]
− 24

45
cos(3t) +

12
45

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 yield the unique solution

ya(t) =
1
15

[
e−t/2

[
98 cos

(√
11t

2

)
+

74√
11

sin

(√
11t

2

)]
− 8 cos(3t) + 4 sin(3t)

]
.

(b) The initial conditions y(0) = 0, y′(0) = 6 yield the unique solution

yb(t) =
1
15

[
e−t/2

[
8 cos

(√
11t

2

)
+

164√
11

sin

(√
11t

2

)]
− 8 cos(3t) + 4 sin(3t)

]
.

These solutions are graphed in Figure 2.13.

2.5 Euler’s Equation

In Problems 1 - 3, details are given with the solution. Solutions for Problems 4
through 10, just the general solution is given. All solutions are for x > 0.

1. Let x = et to obtain
Y ′′ + Y ′ − 6Y = 0

which we can read directly from the original differential equation without
further calculation. Then

Y (t) = c1e
2t + c2e

−3t.

In terms of x,

y(x) = c1e
2 ln(x) + c2e

−3 ln(x) = c1x
2 + c2x

−3.
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Figure 2.13: Solutions to Problem 17, Section 2.4.

2. The differential equation transforms to

Y ′′ + 2Y ′ + Y = 0,

with general solution

Y (t) = c1e
−t + c2te

−t.

Then
y(x) = c1x

−1 + c2x
−1 ln(x) =

1
x

(c1 + c2 ln(x)).

3. Solve
Y ′′ + 4Y = 0

to obtain
Y (t) = c1 cos(2t) + c2 sin(2t).

Then
y(x) = c1 cos(2 ln(x)) + c2 sin(2 ln(x)).

4. y(x) = c1x
2 + c2x

−2

5. y(x) = c1x
4 + c2x

−4

6. y(x) = x−2(c2 cos(3 ln(x)) + c2 sin(3 ln(x))

7. y(x) = c1x
−2 + c2x

−3
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8. y(x) = x2(c1 cos(7 ln(x)) + c2 sin(7 ln(x))

9. y(x) = x−12(c1 + c2 ln(x))

10. y(x) = c1x
7 + c2x

5

11. The general solution of the differential equation is

y(x) = c1x
3 + c2x

−7.

We need

y(2) = 1 = c123 + c22−7 and y′(2) = 0 = 3c122 − 7c22−8.

Solve for c1 and c2 to obtain the solution of the initial value problem

y(x) =
7
10

(x

2

)3

+
3
10

(x

2

)−7

12. The solution of the initial value problem is

y(x) = −3 + 2x2

13. y(x) = x2(4 − 3 ln(x))

14. y(x) = −4x−12(1 + 12 ln(x))

15. y(x) = 3x6 − 2x4

16.
y(x) =

11
4

x2 +
17
4

x−2

17. The transformation x = et transforms the Euler equation x2y′′ + axy′ +
by = 0 into

Y ′′ + (a − 1)Y ′ + bY = 0,

with characteristic equation

λ2 + (a − 1)λ + b = 0,

with roots λ1 and λ2. If we substitute y = xr directly into Euler’s equa-
tion, we obtain

r(r − 1)xr + arxr + bxr = 0,

or, after dividing by xr,

r2 + (a − 1)r + b = 0.

This equation for r is the same as the quadratic equation for λ, so its roots
are r1 = λ1 and r2 = λ2. Therefore both the transformation method,
and direct substitution of y = xr into Euler’s equation, lead to the same
solutions.
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18. If x < 0, use the transformation x = −et, so t = ln(−x) = ln |x|. Note
that

dt

dx
=

1
−x

(−1) =
1
x

,

just as in the case that x > 0. With y(x) = y(−et) = Y (t), proceeding as
in the text with chain rule derivatives. First

y′(x) =
dY

dt

dt

dx
=

1
x

Y ′(t)

and, similarly,

y′′(x) =
d

dx

(
1
x

Y ′(t)
)

= − 1
x2

Y ′(t) +
1
x

dt

dx
Y ′′(t)

= − 1
x2

Y ′(t) +
1
x2

Y ′′(t).

Then,
x2y′′(x) = Y ′′(t) − Y ′(t)

just as in the case that x is positive. Therefore Euler’s equation transforms
to

Y ′′ + (A − 1)Y ′ + BY = 0,

and in effect we obtain the solution of Euler’s equation for negative x by
replacing x with |x|. For example, suppose we want to solve

x2y′′ + xy′ + y = 0

for x < 0. We know that, for x > 0, this Euler equation transforms to

Y ′′ + Y = 0,

so Y (t) = c1 cos(t) + c2 sin(t) and

y(x) = c1 cos(ln(x)) + c2 sin(ln(x))

for x > 0. For x < 0, the solution is

y(x) = c1 cos(ln(|x|)) + c2 sin(ln(|x|)).
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