
 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLUTIONS TO REVIEW QUESTIONS 

 

AND EXERCISES 

 

FOR PART 2 – THE RELATIONAL MODEL AND LANGUAGES 

(CHAPTERS 4 – 9) 

 



Database Systems: Instructor’s Guide - Part III 

 2 

Solutions to Review Questions and Exercises 

 

 

Chapter 4  The Relational Model ...................................................................................................................... 3 

Chapter 5  Relational Algebra and Relational Calculus.................................................................................... 6 

Chapter 6  SQL: Data Manipulation ............................................................................................................... 22 

Chapter 7  SQL: Data Definition..................................................................................................................... 32 

Chapter 8  Advanced SQL .............................................................................................................................. 42 

Chapter 9  Object-Relational DBMSs ............................................................................................................. 52 

 

 



Database Systems: Instructor’s Guide - Part III 

 3 

 Chapter 4  The Relational Model 

 

Review Questions 

 

4.1 Discuss each of the following concepts in the context of the relational data model: 

 

 (a) Relation  A table with columns and rows. 

 (b) Attribute  A named column of a relation. 

 (c) Domain  The set of allowable values for one or more attributes. 

 (d) Tuple  A row of a relation. 

 (e)  Intension  The structure of a relation together with a specification of the domains 

and any other restrictions on possible values. 

  Extension An instance of the tuples of a relation. 

 (f) Degree   The number of attributes in a relation. 

  Cardinality The number of tuples in a relation. 

 

 Each term defined in Section 4.2.1. 

 

4.2 Describe the relationship between mathematical relations and relations in the relational data 

model? 

 

  Let D1, D2, . . . , Dn be n sets. Their Cartesian product is defined as: 

D1  D2  . . .  Dn = {(d1, d2, . . . , dn) | d1  D1, d2  D2, . . . , dn  Dn} 

 Any set of n-tuples from this Cartesian product is a relation on the n sets. Now let A1, A2, . . ., 

An be attributes with domains D1, D2, . . . , Dn. Then the set {A1:D1, A2:D2, . . . , An:Dn} is 

a relation schema. A relation R defined by a relation schema S is a set of mappings from the 

attribute names to their corresponding domains. Thus, relation R is a set of n-tuples: 

(A1:d1, A2:d2, . . . , An:dn) such that d1  D1, d2  D2, . . . , dn  Dn 

 Each element in the n-tuple consists of an attribute and a value for that attribute. 

 

 Discussed fully in Sections 4.2.2 and 4.2.3. 

 

4.3 Describe the differences between a relation and a relation schema. What is a relational 

database schema? 

 

A relation schema is a named relation defined by a set of attribute and domain name pairs. A 

relational database schema is a set of relation schemas, each with a distinct name. Discussed in 

Section 4.2.3. 

  

4.4 Discuss the properties of a relation. 

 

 A relation has the following properties: 

• has a name that is distinct from all other relation names in the relational schema; 

• each cell contains exactly one atomic (single) value; 



Database Systems: Instructor’s Guide - Part III 

 4 

• each attribute has a distinct name; 

• the values of an attribute are all from the same domain; 

• each tuple is distinct; there are no duplicate tuples; 

• the order of attributes has no significance; 

• the order of tuples has no significance, theoretically. (However, in practice, the order may 

affect the efficiency of accessing tuples.) 

 Discussed fully in Section 4.2.4. 

  

4.5 Discuss the differences between the candidate keys and the primary key of a relation. Explain 

what is meant by a foreign key. How do foreign keys of relations relate to candidate keys? Give 

examples to illustrate your answer. 

 

 The primary key is the candidate key that is selected to identify tuples uniquely within a relation. 

A foreign key is an attribute or set of attributes within one relation that matches the candidate key 

of some (possibly the same) relation. Discussed in Section 4.2.5. 

 

4.6 Define the two principal integrity rules for the relational model. Discuss why it is desirable to 

enforce these rules. 

 

 Two rules are Entity Integrity (Section 4.3.2) and Referential Integrity (Section 4.3.3).  

 

4.7 What is a view? Discuss the difference between a view and a base relation. 

 

 View is the dynamic result of one or more relational operations operating on the base relations to 

produce another relation. Base relation exists as a set of data in the database. A view does not 

contain any data, rather a view is defined as a query on one or more base relations and a query on 

the view is translated into a query on the associated base relations. See Section 4.4. 

 

Exercises 

 

The following tables form part of a database held in a relational DBMS:- 

 

 Hotel  (hotelNo, hotelName, city) 

 Room  (roomNo, hotelNo, type, price) 

 Booking  (hotelNo, guestNo, dateFrom, dateTo, roomNo) 

 Guest  (guestNo, guestName, guestAddress) 

 

where Hotel contains hotel details and hotelNo is the primary key; 

       Room contains room details for each hotel and (roomNo, hotelNo) forms the primary key; 

       Booking contains details of the bookings and (hotelNo, guestNo, dateFrom) forms the primary 

key; 

and    Guest contains guest details and guestNo is the primary key. 

 



Database Systems: Instructor’s Guide - Part III 

 5 

4.8 Identify the foreign keys in this schema. Explain how the entity and referential integrity rules 

apply to these relations. 

 

 For each relation, the primary key must not contain any nulls. 

 

 Room is related to Hotel through the attribute hotelNo. Therefore, the hotelNo in Room should 

either be null or contain the number of an existing hotel in the Hotel relation. In this case study, it 

would probably be unacceptable to have a hotelNo in Room with a null value. 

 

 Booking is related to Hotel through the attribute hotelNo. Therefore, the hotelNo in Booking 

should either be null or contain the number of an existing hotel in the Hotel relation. However, 

because hotelNo is also part of the primary key, a null value for this attribute would be 

unacceptable. Similarly for guestNo. Booking is also related to Room through the attribute 

roomNo. 

 

4.9 Produce some sample tables for these relations that observe the relational integrity rules. 

Suggest some general constraints that would be appropriate for this schema. 

 

 Student should provide some sample tables, observing entity and referential integrity. In 

particular, ensure the uniqueness for the composite primary keys of the Room and Booking tables. 

 

 Some general constraints may be: 

 

• There can be no two bookings for the same room in the same hotel on the same day. 

• For the Booking relation, dateFrom must be before dateTo. 

• Room price must be greater than 0 and less than £200. 

 

4.10 Analyze the RDBMSs that you are currently using. Determine the support the system provides for 

primary keys, alternate keys, foreign keys, relational integrity, and views.  

 

 This is a small student project, the result of which is dependent on the system analyzed. 

 

4.11 Implement the above schema in one of the RDBMSs you currently use. Implement, where 

possible, the primary, alternate, and foreign keys, and appropriate relational integrity 

constraints. 

 

 This is a small student project, the result of which is dependent on the RDBMS used. Ensure that 

keys have been implemented, and that relationships have been implemented if the RDBMS 

supports this. 

 



Database Systems: Instructor’s Guide - Part III 

 6 

Chapter 5  Relational Algebra and Relational Calculus 

 

Review Questions 

 

5.1 What is the difference between a procedural and non-procedural language? How would you 

classify the relational algebra and relational calculus? 

 

 Procedural language: a language that allows user to tell the system what data is needed and 

exactly how to retrieve the data. 

 Non-procedural language: a language that allows user to state what data is needed rather 

than how it is to be retrieved. 

 

 Informally, we may describe the relational algebra as a (high-level) procedural language: it 

can be used to tell the DBMS how to build a new relation from one or more relations in the 

database. Again, informally, we may describe the relational calculus as a non-procedural 

language: it can be used to formulate the definition of a relation in terms of one or more 

database relations. 

 

5.2 Explain the following terms: 

• relationally complete; 

 

A language that can be used to produce any relation that can be derived using the 

relational calculus is said to be relationally complete. 

 

• closure of relational operations. 

 

The relational algebra is a theoretical language with operations that work on one or more 

relations to define another relation without changing the original relation(s). Thus, both 

the operands and the results are relations, and so the output from one operation can 

become the input to another operation. This allows expressions to be nested in the 

relational algebra, just as we can nest arithmetic operations. This property is called 

closure: relations are closed under the algebra, just as numbers are closed under 

arithmetic operations. 

 

5.3 Define the five basic relational algebra operations. Define the Join, Intersection, and Division 

operations in terms of these five basic operations. 

 

 Five basic operations are:  

  

• Selection and Projection (Unary) 

• Cartesian Product, Union, and Set Difference (Binary). 

 

 There is also the Join, Intersection, and Division operations: 

 

• Can rewrite -Join in terms of the basic selection and Cartesian product operations: 

 



Database Systems: Instructor’s Guide - Part III 

 7 

 R 3 F S = F (R  S) 

• Can express the intersection operation in terms of the set difference operation: 

 

  R  S = R - (R - S) 

 

• Can express the division operation in terms of the basic operations: 

 

  T1 = C(R) 

  T2 = C( (S x T1) - R) 

  T = T1 - T2 

 

5.4 Discuss the differences between the five Join operations: Theta join, Equijoin, Natural join, 

Outer join, and Semijoin. Give examples to illustrate your answer.  

 

Theta join 
R F S

  

Produces a relation that contains tuples satisfying the predicate F from 

the Cartesian product of R and S.  

Equijoin 
R F S

  

Produces a relation that contains tuples satisfying the predicate F 

(which only contains equality comparisons) from the Cartesian product 

of R and S.  

Natural join 
R  S  

An Equijoin of the two relations R and S over all common attributes 

x. One occurrence of each common attribute is eliminated.  

(Left) Outer join 
R  S  

A join in which tuples from R that do not have matching values in the 

common attributes of S are also included in the result relation. 

Semijoin 
R F S 

Produces a relation that contains the tuples of R that participate in the 

join of R with S. 

 

5.5 Compare and contrast the tuple relational calculus with domain relational calculus. In 

particular, discuss the distinction between tuple and domain variables. 

 

In the tuple relational calculus, we use variables that range over tuples in a relation. In the 

domain relational calculus, we also use variables but in this case the variables take their values 

from domains of attributes rather than tuples of relations. 

 

5.6 Define the structure of a (well-formed) formula in both the tuple relational calculus and 

domain relational calculus. 

 

 Tuple relational calculus 

 A (well-formed) formula is made out of one or more atoms, where an atom has one of the 

following forms: 

• R(Si), where Si is a tuple variable and R is a relation. 

• Si.a1  Sj.a2, where Si and Sj are tuple variables, a1 is an attribute of the relation over 

which Si ranges, a2 is an attribute of the relation over which Sj ranges, and  is one of the 

comparison operators (,  , ,  , =, ); the attributes a1 and a2 must have domains 

whose members can be compared by  



Database Systems: Instructor’s Guide - Part III 

 8 

• Si.a1  c, where Si is a tuple variable, a1 is an attribute of the relation over which Si 

ranges, c is a constant from the domain of attribute a1, and  is one of the comparison 

operators 

 

We recursively build up formulae from atoms using the following rules: 

• an atom is a formula; 

• if F1 and F2 are formulae, so are their conjunction F1  F2, their disjunction F1  F2, and 

the negation F1; 

• if F is a formula with free variable X, then (X)(F) and (X)(F) are also formulae. 

 

 Domain relational calculus 

 A (well-formed) formula is made out of one or more atoms, where an atom has one of the 

following forms: 

 

• R(d1, d2,…, dn), where R is a relation of degree n and each di is a domain variable. 

• di  dj, where di and dj are domain variables and  is one of the comparison operators (, 

 , ,  , =, ); the domains di and dj must have members that can be compared by  

• di  c, where di is a domain variable, c is a constant from the domain of di, and  is one of 

the comparison operators 

 

5.7 Explain how a relational calculus expression can be unsafe? Illustrate your answer with an 

example. Discuss how to ensure that a relational calculus expression is safe. 

 

 See end of Section 5.2.1. 

 

Exercises 

 

For the following exercises, use the Hotel schema defined at the start of the Exercises at the end of 

Chapter 4. 

 

5.8 Describe the relations that would be produced by the following relational algebra operations: 

 

a) hotelNo (price  50 (Room) ) 

 

This will produce a relation with a single attribute (hotelNo) giving the number of those 

hotels with a room price greater than £50. 

  

b) Hotel.hotelNo = Room.hotelNo(Hotel  Room) 

 

This will produce a join of the Hotel and Room relations containing all the attributes of 

both Hotel and Room (there will be two copies of the hotelNo attribute). Essentially this 

will produce a relation containing all rooms at all hotels. 

 



Database Systems: Instructor’s Guide - Part III 

 9 

c) hotelName (Hotel  Hotel.hotelNo = Room.hotelNo (price  50 (Room)) )  

 

This will produce a join of Hotel and those tuples of Room with a price greater than £50. 

Essentially this will produce a relation containing all hotel names with a room price above 

£50. 

 

d) Guest  (dateTo  ‘1-Jan-2007’ (Booking))  

 

This will produce a (left outer) join of Guest and those tuples of Booking with an end date 

(dateTo) greater than or equal to 1-Jan-2007. All guests who don’t have a booking with 

such a date will still be included in the join. Essentially this will produce a relation 

containing all guests and show the details of any bookings they have beyond 1-Jan-2002. 

 

e) Hotel  Hotel.hotelNo = Room.hotelNo (price  50 (Room)) ) 

 

This will produce a (semi) join of Hotel and those tuples of Room with a price greater 

than £50. Only those Hotel attributes will be listed. Essentially this will produce a relation 

containing all the details of all hotels with a room price above £50. 

 

f) guestName, hotelNo (Booking  Booking.guestNo = Guest.guestNo Guest)   

hotelNo (city = ’London’(Hotel)) 

 

This will produce a relation containing the names of all guests who have booked all hotels 

in London. 

 

5.9 Provide the equivalent tuple relational calculus and domain relational calculus expressions 

for each of the relational algebra queries given in Exercise 4.8. 

 

a) hotelNo (price  50 (Room) ) 

 

TRC: {R.hotelNo | Room(R)  R.price  50} 

DRC: {hotelNo | (rNo, typ, prce) (Room (rNo, hotelNo, typ, prce)  prce  50)} 

 

b) Hotel.hotelNo = Room.hotelNo(Hotel  Room) 

 

TRC: {H, R | Hotel(H)  (R) (Room(R)  (H.hotelNo = R.hotelNo))} 

DRC: {hNo, hName, cty, rNo, hNo1, typ, prce | (Hotel(hNo, hName, cty)  

Room(rNo, hNo1, typ, prce)  (hNo = hNo1))} 

 



Database Systems: Instructor’s Guide - Part III 

 10 

c) hotelName (Hotel  Hotel.hotelNo = Room.hotelNo (price  50 (Room)) )  

 

TRC: {H.hotelName | Hotel(H)  (R) (Room(R)  (H.hotelNo = R.hotelNo)   

(R.price > 50))} 

DRC: {hotelName | (hNo, cty, rNo, hNo1, typ, prce)  

(Hotel(hNo, hotelName, cty)  Room(rNo, hNo1, typ, prce)  (hNo = hNo1)   

(prce > 50))} 

 

d) Guest  (dateTo  ‘1-Jan-2007’ (Booking))  

 

TRC: {G.guestNo, G.guestName, G.guestAddress, B.hotelNo, B.dateFrom,  

B.dateTo, B.roomNo | Guest(G)  (B) (Booking(B)   

(G.guestNo = B.guestNo)  (B.dateTo > ‘1-Jan-2007’))} 

DRC: {guestNo, guestName, guestAddress, hotelNo, dateFrom, dateTo, roomNo |  

(gNo1) (Guest(guestNo, guestName, guestAddress)   

(Booking(hotelNo, gNo1, dateFrom, dateTo, roomNo)   

(guestNo = gNo1)  (dateTo  ‘1-Jan-2007’)))} 

 

e) Hotel  Hotel.hotelNo = Room.hotelNo (price  50 (Room)) ) 

 

TRC: {H.hotelNo, H.hotelName, H.city | Hotel(H)  (R) (Room(R)   

(H.hotelNo = R.hotelNo)  (R.price > 50))} 

DRC: {hotelNo, hotelName, city | (rNo, hNo1, typ, prce)  

(Hotel(hotelNo, hotelName, city)  Room(rNo, hNo1, typ, prce)   

(hotelNo = hNo1)  (prce > 50))} 

 

f) guestName, hotelNo (Booking  Booking.guestNo = Guest.guestNo Guest)   

hotelNo (city = ’London’(Hotel)) 

TRC: {G.guestName | Guest(G) ( (H) (Hotel(H)   

(H.city = ‘London’)  ((B) (Booking(B)   

G.guestNo = B.guestNo  H.hotelNo = B.hotelNo))))} 

DRC: {guestName | (gNo, gName, gAddress, hNo, gNo1, dFrom, dTo, rNo,  

hName, cty, hNo1, typ, prce) ((Hotel(hNo, hName, cty)   

(cty = ‘London’)  Guest(gNo, gName, gAddress)   

Booking(hNo1, gNo1, dFrom, dTo, rNo)   

(gNo = gNo1)  (hNo = hNo1)))} 



Database Systems: Instructor’s Guide - Part III 

 11 

5.10 Describe the relations that would be produced by the following tuple relational calculus 

expressions: 

 

(a) {H.hotelName | Hotel(H)  H.city = ‘London’} 

This will produce a relation containing the names of all hotels in London. 

 

(b)  {H.hotelName | Hotel(H)  (R) (Room(R)  H.hotelNo = R.hotelNo  R.price  

50)}  

 

This will produce a relation containing the names of all hotels that have a room price 

above £50. 

 

(c) {H.hotelName | Hotel(H)  (B) (G) (Booking(B)  Guest(G)  H.hotelNo = 

B.hotelNo   B.guestNo = G.guestNo   G.guestName = ‘John Smith’)} 

 

This will produce a relation containing the names of all hotels that have a booking for 

a guest called John Smith. 

 

(d) {H.hotelName, G.guestName, B1.dateFrom, B2.dateFrom | Hotel(H)  Guest(G)   

  Booking(B1)  Booking(B2)  H.hotelNo = B1.hotelNo   

  G.guestNo = B1.guestNo    B2.hotelNo = B1.hotelNo   

  B2.guestNo = B1.guestNo   B2.dateFrom  B1.dateFrom} 

 

This will produce a relation containing the names of guests who have more than one 

booking at the same hotel, along with the hotel number and the dates of the bookings. 

 

5.11 Provide the equivalent domain relational calculus and relational algebra expressions for each 

of the tuple relational calculus expressions given in Exercise 4.10. 

(a) {H.hotelName | Hotel(H)  H.city = ‘London’} 

DRC: {hotelName | (hNo, cty) (Hotel(hNo, hotelName, cty)  cty = ‘London’)} 

RA:  hotelName (city = ‘London’ (Hotel) ) 

 

(b)  {H.hotelName | Hotel(H)  (R) (Room(R)  H.hotelNo = R.hotelNo  R.price  

50)}  

DRC: {hotelName | (hNo, cty, rNo, hNo1, typ, prce) (Hotel(hNo, hotelName, cty)   

 Room(rNo, hNo1, typ, prce)  (hNo = hNo1)  (prce > 50)) } 

 



Database Systems: Instructor’s Guide - Part III 

 12 

 RA: hotelName (Hotel  Hotel.hotelNo = Room.hotelNo (price  50 (Room)) )  

 

(c) {H.hotelName | Hotel(H)  (B) (G) (Booking(B)  Guest(G)  H.hotelNo = 

B.hotelNo   B.guestNo = G.guestNo   G.guestName = ‘John Smith’)} 

 

DRC: {hotelName | (hNo, cty, gNo, gName, gAddress, hNo1, gNo1, dFrom, dTo,  

rNo)  (Hotel(hNo, hotelName, cty)   

Guest(gNo, gName, gAddress)   

 Booking(hNo1, gNo1, dFrom, dTo, rNo)  (gNo = gNo1)   

(hNo = hNo1)  (gName = ‘John Smith’))} 

 

RA: hotelName (guestName = ‘John Smith’ (Guest)  Guest.guestNo = guestNo ( 

Booking  .Booking.hotelNo = Hotel.hotelNo Hotel)) 

 

(d) {H.hotelName, G.guestName, B1.dateFrom, B2.dateFrom | Hotel(H)  Guest(G)   

  Booking(B1)  Booking(B2)  H.hotelNo = B1.hotelNo   

  G.guestNo = B1.guestNo    B2.hotelNo = B1.hotelNo   

  B2.guestNo = B1.guestNo   B2.dateFrom  B1.dateFrom} 

 

DRC: {hotelName, guestName, dateFrom1, dateFrom2 | (hNo, cty,  

gNo, gAddress, hNo1, gNo1, dTo1, rNo1, hNo2, gNo2, dTo2, rNo2)  

(Hotel(hNo, hotelName, cty)   

Guest(gNo, guestName, gAddress)   

Booking(hNo1, gNo1, dateFrom1, dTo1, rNo1)   

Booking(hNo2, gNo2, dateFrom2, dTo2, rNo2)   

 (hNo = hNo1)  (gNo = gNo1)  (hNo2 = hNo1)  (gNo2 = gNo1)   

(dateFrom1  dateFrom2))} 

 

RA: Booking2(hotelNo, guestNo, dateFrom2, dateTo2, roomNo2)   

hotelNo, guestNo, dateFrom, dateTo, roomNo (Booking) 

hotelName, guestName, dateFrom, dateFrom2 (Hotel  Hotel.hotelNo = hotelNo  

(Guest  Guest.guestNo = guestNo (Booking  Booking.hotelNo = Booking2.hotelNo 

 Booking.guestNo = Booking2.guestNo  dateFrom  dateFrom2 Booking2))) 

 



Database Systems: Instructor’s Guide - Part III 

 13 

5.12 Generate the relational algebra, tuple relational calculus, and domain relational calculus 

expressions for the following queries: 

 

 (a)  List all hotels. 

 

RA: Hotel 

TRC: {H | Hotel(H)} 

 DRC: {hotelNo, hotelName, city | Hotel(hotelNo, hotelName, city)} 

 

 (b) List all single rooms with a price below £20 per night. 

 

RA: type=‘S’   price < 20(Room) 

TRC: {R | Room(R)  R.type = ‘S’   R.price < 20} 

DRC: {roomNo, hotelNo, type, price | (Room(roomNo, hotelNo, type, price)   

  type = ‘S’  price < 20)} 

 (c) List the names and cities of all guests. 

 

RA: guestName, guestAddress(Guest) 

TRC: {G.guestName, G.guestAddress | Guest(G)} 

DRC: {guestName, guestAddress | (guestNo)  

  (Guest(guestNo, guestName, guestAddress))} 

 

 (d) List the price and type of all rooms at the Grosvenor Hotel. 

 

RA: price, type(Room   hotelNo (hotelName = ‘Grosvenor Hotel’(Hotel))) 

TRC: {R.price, R.type  | Room(R)  (H) (Hotel(H)  ( R.hotelNo = H.hotelNo)   

(H.hotelName = ‘Grosvenor Hotel’))} 

DRC: {price, type | (roomNo, hotelNo, hotelNo1, hotelName, city) 

    (Room(roomNo, hotelNo, type, price)  Hotel(hotelNo1, hotelName, city)   

     (hotelNo = hotelNo1)  (hotelName = ‘Grosvenor Hotel’))} 

 



Database Systems: Instructor’s Guide - Part III 

 14 

 (e) List all guests currently staying at the Grosvenor Hotel. 

 

 RA: Guest  guestNo (dateFrom   ‘01-01-15’   dateTo  ‘01-01-15’ ( 

   Booking  hotelNo (hotelName = ‘Grosvenor Hotel’(Hotel)))) 

  (substitute ‘01-01-15’ for today’s date). 

 

 TRC: {G |Guest(G)  ((B)(H) (Booking(B)  Hotel(H)  (B.dateFrom   ‘01-01-15’)   

   (B.dateTo   ‘01-01-15’)  (B.guestNo = G.guestNo)   

   (B.hotelNo = H.hotelNo)  (H.hotelName = ‘Grosvenor Hotel’)))} 

 

 DRC: {guestNo, guestName, guestAddress | (hotelNo, guestNo1, dateFrom, dateTo,  

  hotelNo1, hotelName, city)  

  (Guest(guestNo, guestName, guestAddress)    

  Booking(hotelNo, guestNo1, dateFrom, dateTo)   

  Hotel(hotelNo1, hotelName, city)   (guestNo = guestNo1)   

  (dateFrom   ‘01-01-15’  dateTo  ‘01-01-15’)   

  (hotelNo = hotelNo1)  (hotelName = ‘Grosvenor Hotel’))} 

 

 (f) List the details of all rooms at the Grosvenor Hotel, including the name of the guest 

staying in the room, if the room is occupied. 

 

 RA: (Room   hotelNo (hotelName = ‘Grosvenor Hotel’(Hotel)))   // Outer Join 

   guestName, hotelNo, roomNo( 

   (Guest  guestNo (dateFrom   ‘01-01-15’   dateTo    ‘01-01-15’ ( 

   Booking  hotelNo (hotelName=‘Grosvenor Hotel’(Hotel)))) 

  (substitute ‘01-01-15’ for today’s date). 

 

TRC: {R, G.guestName | (Room(R)  (H)(Hotel(H)   

(R.hotelNo = H.hotelNo)  (H.hotelName = ‘Grosvenor Hotel’)))   

(Guest(G)  ((B)(H) (Booking(B)  Hotel(H)   

(G.guestNo = B.guestNo)  (B.hotelNo = H.hotelNo)    

(H.hotelName = ‘Grosvenor Hotel’)   

(B.dateFrom  ‘01-01-15’  B.dateTo  ‘01-01-15’)))} 

 



Database Systems: Instructor’s Guide - Part III 

 15 

DRC: {roomNo, hotelNo, type, price, guestName |  

(hNo, hName, city, hNo1, gNo1, dFrom, dTo, rNo)  

(Room(roomNo, hotelNo, type, price)  Hotel(hNo1, hName, city)   

(hotelNo = hNo1)  (hName = ‘Grosvenor Hotel’) )   

(Guest(guestNo, guestName, guestAddress)  Hotel(hNo, hName, city)  

Booking(hNo1, gNo1, dFrom, dTo, rNo)   

(guestNo = gNo1)  (hNo1 = hNo)  (hName = ‘Grosvenor Hotel’)   

(dFrom  ‘01-01-15’  dTo  ‘01-01-15’)))}  

 

 (g) List the guest details (guestNo, guestName, and guestAddress) of all guests staying at the 

Grosvenor Hotel. 

 

 RA: guestNo, guestName, guestAddress(Guest  guestNo (dateFrom  ‘01-01-15’   dateTo  ‘01-01-15’ ( 

   Booking  hotelNo (hotelName=‘Grosvenor Hotel’(Hotel))))) 

  (substitute ‘01-01-15’ for today’s date). 

 

 TRC: {G | Guest(G)  ((B) (H) (Booking(B)  Hotel(H)  (B.guestNo = G.guestNo)   

   (B.hotelNo = H.hotelNo)  (H.hotelName = ‘Grosvenor Hotel’)  

   (B.dateFrom  ‘01-01-15’   B.dateTo   ‘01-01-15’) ))} 

 DRC: {guestNo, guestName, guestAddress |  

   ((hNo, gNo, dFrom, dTo, rNo, hNo1, hName, city)  

   (Guest(guestNo, guestName, guestAddress)   

   Booking(hNo, gNo, dFrom, dTo, rNo)  Hotel(hNo1, hName, city)   

   (guestNo = gNo)  (hNo = hNo1)  (hName = ‘Grosvenor Hotel’)  

   (dFrom  ‘01-01-15’   dTo   ‘01-01-15’) ))} 

 

5.13 Using relational algebra, create a view of all rooms in the Grosvenor Hotel, excluding price 

details. What would be the advantages of this view?  

 

  roomNo,  hotelNo,  type(Room  hotelNo (hotelName=‘Grosvenor Hotel’ (Hotel))) 

 

 Security - hides the price details from people who should not see it. 

 Reduced complexity - a query against this view is simpler than a query against the two underlying 

base relations. 

 



Database Systems: Instructor’s Guide - Part III 

 16 

5.14  List all employees. 
 

RA: Employee 

TRC: {E | Employee(E)} 

 DRC:  {empNo, fName, lName, address, DOB, sex, position, deptNo | 

Employee(empNo, fName, lName, address, DOB, sex, position, 

deptNo)} 
 
 

5.15  List all the details of employees who are female. 
 

RA: sex=‘F’(Employee) 

TRC: {E | Employee(E)  E.sex = ‘F’} 

DRC: {empNo, fName, lName, address, DOB, sex, position, deptNo | 

Employee(empNo, fName, lName, address, DOB, sex, position, 

deptNo)  (sex=’F’)} 

 

5.16  List the names and addresses of all employees who are managers. 

 

RA: fName, lName,address(Employee position=‘manager’(Employee)) 

TRC: {E.fName, E.lName, E.address  | Employee(E)    (E.position = ‘Manager’)} 

DRC: {fName, lName, address | Employee(empNo, fName, lName, address, DOB, 

sex, position, deptNo)   (position=’manager’)} 

 

5.17  Produce a list of the names and addresses of all employees who work for the IT department. 
 

RA: fName, lName,address(Employee    

 

TRC:  {E.fName, E.lName, E.address  | Employee(E)   (D) (Dept(D)  (E.deptNo 

= D.deptNo)   (D.deptName = ‘IT’))} 

DRC: {fName, lName, address | (empNo, DOB, sex, position, deptNo, deptNo1, 

deptName, mgrEmpNo) (Empoyee(empNo, fName, lName, address, DOB, 

sex, position, deptNo)  Department (deptNo1, deptName, mgrEmpNo)  

(deptNo = deptNo1)  (deptName = ‘IT’))} 

 
 



Database Systems: Instructor’s Guide - Part III 

 17 

5.18  Produce a list of the names of all employees who work on the SCCS project. 
 

RA:  fName, lName (Employee  empNo (WorksOn projNo ( projName = ‘SCCS’(Project))) 

 

TRC:  {E.fName, E.lName | Employee(E)  (W) (P) (WorksOn(W)  Project(P)  

(P.projName  = ‘SCCS’)  (P.projNo = W.projNo)  (E.empNo = W.empNo)) 

  

DRC:  {fName, lName | (empNo, address, DOB, sex, position, deptNo, projNo, 

projName, deptNo1, empNo1, projNo1, dateWorked, hoursWorked) 

(Employee (empNo, fName, lName, address, DOB, sex, position, deptNo)  

Project (projNo, projName, deptNo1)  WorksOn (empNo1, projNo1, 

dateWorked, hoursWorked)  (empNo = empNo1)  (projNo = projNo1)  

(projName = ‘SCCS’))} 

 
 

5.19  Produce a complete list of all managers who are due to retire this year, in alphabetical order 

of surname. 
 
 

Formulate the following queries in relational algebra. 

 

5.20  Find out how many employees are managed by “James Adam.” 

 

COUNT empNo( Employee Employee.deptNo = deptNo(Department  Department.mgrEmpNo = 

Employee.empNo(fName = ‘James’  lName = ‘Adam’(Employee)) )) 
 

 

5.21  Produce a report of the total hours worked by each employee. 
 

empNoSUMhoursWorked(WorksOn) 
 
 

5.22  For each project on which more than two employees worked, list the project number, project 

name, and the number of employees who work on that project. 

 

 (projName, projNo(Project))   

 

(empCount > 2(R(projNo, empCount)  projNoCOUNT empNo(WorksOn)))) 

 

 

5.23  List the total number of employees in each department for those departments with more than 

10 employees. Create an appropriate heading for the columns of the results table. 

 

 (empCount > 10(R(deptNo, empCount)  deptNoCOUNT empNo(Employee))))) 

 

 



Database Systems: Instructor’s Guide - Part III 

 18 

The following tables form part of a Library database held in an RDBMS: 

 

 Book   (ISBN, title, edition, year) 

 BookCopy (copyNo, ISBN, available) 

 Borrower (borrowerNo, borrowerName, borrowerAddress) 

 BookLoan (copyNo, dateOut, dateDue, borrowerNo) 

 

where Book  contains details of book titles in the library and the ISBN is the key. 

BookCopy  contains details of the individual copies of books in the library and copyNo 

is the key. ISBN is a foreign key identifying the book title. 

Borrower contains details of library members who can borrow books and borrowerNo 

is the key. 

BookLoan contains details of the book copies that are borrowed by library members and 

copyNo/dateOut forms the key. borrowerNo is a foreign key identifying 

the borrower. 

 

Formulate the additional queries in relational algebra, tuple relational calculus, and domain relational 

calculus. 

 

5.24 List all book titles. 

 

RA: title(Book) 

TRC: {B.title | Book(B)} 

 DRC:  {title | (ISBN, edn, yr) (Book(ISBN, title, edn, yr) } 

 

5.25 List all borrower details. 

 

RA: Borrower 

TRC: {B | Borrower(B)} 

 DRC:  {bNo, bName, bAddress | (Borrower(bNo, bName, bAddress) } 

 

5.26 List all book titles published in the year 2012. 

 

RA: title(year=‘2012’(Book)) 

TRC: {B.title | Book(B)  B.year=’2012’} 

 DRC:  {title | (ISBN, edn, yr) (Book(ISBN, title, edn, yr)  yr=’2012’} 



Database Systems: Instructor’s Guide - Part III 

 19 

 

5.27 List all copies of book titles that are available for borrowing. 

RA: copyNo, title(Book  ISBN  (available=‘Y’(BookCopy))) 

TRC: {BC.copyNo, B.title | Book(B)  (BC) (BookCopy(BC)  (B.ISBN = BC.ISBN) 

  (BC.available=‘Y’))} 

 DRC:  {copyNo, title | (ISBN, edn, yr, ISBN, avail) (Book(ISBN, title, edn, yr)  

BookCopy(copyNo, ISBN, avail)  avail=’Y’)} 

 

5.28 List all copies of the book title “Lord of the Rings” that are available for borrowing. 

RA: copyNo(title=‘Lord of the Rings’ (Book)  ISBN  (available=‘Y’(BookCopy))) 

TRC: {BC.copyNo | BookCopy(BC)  (B) (Book(B)  (B.ISBN = BC.ISBN)   

(BC.available=‘Y’)   (B.title= ‘Lord of the Rings’))} 

 DRC:  {copyNo | (ISBN, edn, yr, ISBN, avail) (Book(ISBN, title, edn, yr)  

BookCopy(copyNo, ISBN, avail)  avail=’Y’  title= ‘Lord of the 

Rings’)} 

 

5.29 List the names of borrowers who currently have the book title “Lord of the Rings” on loan. 

 

RA: borrowerName( ( (title=‘Lord of the Rings’ (Book))  ISBN  (available=‘N’(BookCopy)) ) 

 copyNo  (BookLoan)  borrowerNo  (Borrower) ) 

TRC: {BW.borrowerName | Borrower(BW)  (BL) (B) (BC)  (Book(B)   

BookCopy(BC)  BookLoan(BL)  (BC.ISBN = B.ISBN)    

(BW.borrowerNo = BL.borrowerNo)   (BL.copyNo = BC.copyNo)    

(BC.available=‘N’)   (B.title= ‘Lord of the Rings’))} 

 DRC:  {borrowerName | (ISBN, title, edn, yr, copyNo, avail, bNo, bAddress, dOut, 

dDue) (Book(ISBN, title, edn, yr)  BookCopy(copyNo, ISBN, avail)   

   Borrower(bNo, borrowerName, bAddress)  BookLoan(copyNo, dOut, 

dDue, bNo)  avail=’N’  title= ‘Lord of the Rings’)} 

 



Database Systems: Instructor’s Guide - Part III 

 20 

5.30 List the names of borrowers with overdue books. 

 

RA: borrowerName(Borrower  borrowerNo  (dateDue>‘today’s date’(BookLoan))) 

TRC: {BW.borrowerName | Borrower(BW)  (BL) (BookLoan(BL)   

(BW.borrowerNo = BL.borrowerNo)   (BL.dateDue> ‘today’s date’))} 

 DRC:  {borrowerName | (bNo, bAddress, copyNo, dOut, dDue)  

   (Borrower(bNo, borrowerName, bAddress)  BookLoan(copyNo, dOut, 

dDue, bNo)  dDue>‘today’s date’)} 

 

Formulate the following queries in relational algebra. 

 

5.31 How many copies of ISBN “0-321-52306-7” are there? 

 

COUNT copyNo(ISBN = ‘0-321-52306-7’ (BookCopy )) 

 

5.32 How many copies of ISBN “0-321-52306-7” are currently available? 

 

COUNT copyNo(available = ‘Y’  ISBN = ‘0-321-52306-7’ (BookCopy )) 

 

5.33 How many times has the book title with ISBN “0-321-52306-7” been borrowed? 

 

COUNT copyNo((ISBN = ‘0-321-52306-7’ (BookCopy)  copyNo  BookLoan) 

 

5.34 Produce a report of book titles that have been borrowed by “Peter Bloomfield”. 

 

title(Book  ISBN  ((BookCopy  copyNo  BookLoan)  borrowerNo   

(borrowerName = ‘Peter Bloomfield’(Borrower)) )) 

 

5.35 For each book title with more than 3 copies, list the names of library members who have 

borrowed them. 

 

5.36 Produce a report with the details of borrowers who currently have books overdue. 

 

borrowerName, borrowerAddress(Borrower  borrowerNo  (dateDue>‘today’s date’(BookLoan))) 

 

5.37 Produce a report detailing how many times each book title has been borrowed. 

 

 ISBNCOUNT copyNo(BookCopy  copyNo  BookLoan) 

 



Database Systems: Instructor’s Guide - Part III 

 21 

5.38 Analyze the RDBMSs that you are currently using. What types of relational languages does 

the system provide? For each of the languages provided, what are the equivalent operations 

for the eight relational algebra operations defined in Section 5.1? 

 

 This is a small student project, the result of which is dependent on the system analyzed. 

However, it is likely that the supported languages will be based around SQL and QBE, in 

which case, the student should attempt to map the various SQL clauses to the algebra and 

calculus. See also Exercise 5.31. 

  



Database Systems: Instructor’s Guide - Part III 

 22 

Chapter 6  SQL: Data Manipulation 

 

Review Questions 

 

6.1 What are the two major components of SQL and what function do they serve? 

 

 A data definition language (DDL) for defining the database structure. 

 A data manipulation language (DML) for retrieving and updating data. 

 

6.2 What are the advantages and disadvantages of SQL? 

 

 Advantages 

• Satisfies ideals for database language 

• (Relatively) Easy to learn 

• Portability 

• SQL standard exists 

• Both interactive and embedded access 

• Can be used by specialist and non-specialist. 

 

 Disadvantages 

• Impedance mismatch - mixing programming paradigms with embedded access 

• Lack of orthogonality - many different ways to express some queries 

• Language is becoming enormous (SQL-92 is 6 times larger than predecessor) 

• Handling of nulls in aggregate functions 

• Result tables are not strictly relational - can contain duplicate tuples, imposes an ordering on 

both columns and rows. 

 

6.3 Explain the function of each of the clauses in the SELECT statement. What restrictions are 

imposed on these clauses? 

 

 FROM  Specifies the table or tables to be used. 

 WHERE  Filters the rows subject to some condition. 

 GROUP BY Forms groups of rows with the same column value. 

 HAVING Filters the groups subject to some condition. 

 SELECT  Specifies which columns are to appear in the output. 

 ORDER BY  Specifies the order of the output. 

 

 If the SELECT list includes an aggregate function and no GROUP BY clause is being used to 

group data together, then no item in the SELECT list can include any reference to a column unless 

that column is the argument to an aggregate function. 

 

 When GROUP BY is used, each item in the SELECT list must be single-valued per group. 

Further, the SELECT clause may only contain: 

 

• Column names. 

• Aggregate functions.  



Database Systems: Instructor’s Guide - Part III 

 23 

• Constants. 

• An expression involving combinations of the above. 

 

 All column names in the SELECT list must appear in the GROUP BY clause unless the name is 

used only in an aggregate function. 

 

6.4 What restrictions apply to the use of the aggregate functions within the SELECT statement? How 

do nulls affect the aggregate functions? 

 

 An aggregate function can be used only in the SELECT list and in the HAVING clause.  

 

 Apart from COUNT(*), each function eliminates nulls first and operates only on the remaining 

non-null values. COUNT(*) counts all the rows of a table, regardless of whether nulls or duplicate 

values occur. 

 

6.5 Explain how the GROUP BY clause works. What is the difference between the WHERE and 

HAVING clauses? 

 

 SQL first applies the WHERE clause. Then it conceptually arranges the table based on the 

grouping column(s). Next, applies the HAVING clause and finally orders the result according to 

the ORDER BY clause. 

 

 WHERE filters rows subject to some condition; HAVING filters groups subject to some 

condition. 

 

6.6 What is the difference between a subquery and a join? Under what circumstances would you not 

be able to use a subquery? 

 

 With a subquery, the columns specified in the SELECT list are restricted to one table. Thus, 

cannot use a subquery if the SELECT list contains columns from more than one table. 

 

Exercises 

 

For the Exercises 6.7 – 6.28, use the Hotel schema defined at the start of the Exercises at the end of 

Chapter 3. 

 

Simple Queries 

 

6.7 List full details of all hotels. 

 

 SELECT * FROM Hotel; 

 

6.8  List full details of all hotels in London. 

 

 SELECT * FROM Hotel WHERE city = ‘London’; 

 



Database Systems: Instructor’s Guide - Part III 

 24 

6.9  List the names and addresses of all guests in London, alphabetically ordered by name. 

 

 SELECT guestName, guestAddress FROM Guest WHERE address LIKE ‘%London%’  

 ORDER BY guestName; 

 

 Strictly speaking, this would also find rows with an address like: ‘10 London Avenue, New York’. 

 

6.10 List all double or family rooms with a price below £40.00 per night, in ascending order of price. 

 

 SELECT * FROM Room WHERE price < 40 AND type IN (‘D’, ‘F’)  

 ORDER BY price;  

 

 (Note, ASC is the default setting). 

 

6.11 List the bookings for which no dateTo has been specified. 

 

 SELECT * FROM Booking WHERE dateTo IS NULL; 

 

Aggregate Functions 

 

6.12 How many hotels are there? 

 

 SELECT COUNT(*) FROM Hotel; 

 

6.13 What is the average price of a room? 

 

 SELECT AVG(price) FROM Room; 

 

6.14 What is the total revenue per night from all double rooms? 

 

 SELECT SUM(price) FROM Room WHERE type = ‘D’; 

 

6.15 How many different guests have made bookings for August? 

 

 SELECT COUNT(DISTINCT guestNo) FROM Booking  

 WHERE (dateFrom <= DATE’2004-08-01’ AND dateTo >= DATE’2004-08-01’) OR  

  (dateFrom >= DATE’2004-08-01’ AND dateFrom <= DATE’2004-08-31’); 

 

Subqueries and Joins 

 

6.16 List the price and type of all rooms at the Grosvenor Hotel. 

 

 SELECT price, type FROM Room  

 WHERE hotelNo =  

   (SELECT hotelNo FROM Hotel  

   WHERE hotelName = ‘Grosvenor Hotel’); 



Database Systems: Instructor’s Guide - Part III 

 25 

 

6.17 List all guests currently staying at the Grosvenor Hotel. 

 

 SELECT * FROM Guest  

 WHERE guestNo =  

   (SELECT guestNo FROM Booking 

   WHERE dateFrom <= CURRENT_DATE AND  

    dateTo >= CURRENT_DATE AND 

    hotelNo =  

     (SELECT hotelNo FROM Hotel 

     WHERE hotelName = ‘Grosvenor Hotel’)); 

 

6.18 List the details of all rooms at the Grosvenor Hotel, including the name of the guest staying in the 

room, if the room is occupied. 

 

 SELECT r.* FROM Room r LEFT JOIN  

  (SELECT g.guestName, h.hotelNo, b.roomNo FROM Guest g, Booking b, Hotel h 

  WHERE g.guestNo = b.guestNo AND b.hotelNo = h.hotelNo AND 

   hotelName= ‘Grosvenor Hotel’ AND  

   dateFrom <= CURRENT_DATE AND  

   dateTo >= CURRENT_DATE) AS XXX 

 ON r.hotelNo = XXX.hotelNo AND r.roomNo = XXX.roomNo; 

 

6.19 What is the total income from bookings for the Grosvenor Hotel today? 

 

 SELECT SUM(price) FROM Booking b, Room r, Hotel h 

 WHERE (dateFrom <= CURRENT_DATE AND  

  dateTo >= CURRENT_DATE) AND 

  r.hotelNo = h.hotelNo AND r.roomNo = b.roomNo AND  

  hotelName = ‘Grosvenor Hotel’; 

 

6.20 List the rooms that are currently unoccupied at the Grosvenor Hotel. 

 

 SELECT * FROM Room r 

 WHERE roomNo NOT IN  

  (SELECT roomNo FROM Booking b, Hotel h 

  WHERE (dateFrom <= CURRENT_DATE AND  

   dateTo >= CURRENT_DATE) AND  

   b.hotelNo = h.hotelNo AND hotelName = ‘Grosvenor Hotel’); 

 

6.21 What is the lost income from unoccupied rooms at the Grosvenor Hotel? 

 

 SELECT SUM(price) FROM Room r 

 WHERE roomNo NOT IN  

  (SELECT roomNo FROM Booking b, Hotel h 

  WHERE (dateFrom <= CURRENT_DATE AND  



Database Systems: Instructor’s Guide - Part III 

 26 

   dateTo >= CURRENT_DATE) AND  

   b.hotelNo = h.hotelNo AND hotelName = ‘Grosvenor Hotel’); 

 

Grouping 

 

6.22 List the number of rooms in each hotel. 

 

 SELECT hotelNo, COUNT(roomNo) AS count FROM Room 

 GROUP BY hotelNo; 

 

6.23 List the number of rooms in each hotel in London. 

 

 SELECT hotelNo, COUNT(roomNo) AS count FROM Room r, Hotel h 

 WHERE r.hotelNo = h.hotelNo AND city = ‘London’ 

 GROUP BY hotelNo; 

 

6.24 What is the average number of bookings for each hotel in August? 

 

 SELECT AVG(X)  

 FROM ( SELECT hotelNo, COUNT(hotelNo) AS X 

  FROM Booking b 

  WHERE (dateFrom <= DATE’2004-08-01’ AND  

   dateTo >= DATE’2004-08-01’) OR 

         (dateFrom >= DATE’2004-08-01’ AND  

   dateFrom <= DATE’2004-08-31’) 

  GROUP BY hotelNo); 

 

 Yes - this is legal in SQL-92! 

 

6.25 What is the most commonly booked room type for each hotel in London? 

 

 SELECT MAX(X) 

 FROM ( SELECT type, COUNT(type) AS X 

  FROM Booking b, Hotel h, Room r 

  WHERE r.roomNo = b.roomNo AND b.hotelNo = h.hotelNo AND 

    city = ‘London’ 

  GROUP BY type); 

 

6.26 What is the lost income from unoccupied rooms at each hotel today? 

 

 SELECT hotelNo, SUM(price) FROM Room r 

 WHERE roomNo NOT IN  

  (SELECT roomNo FROM Booking b, Hotel h 

  WHERE (dateFrom <= CURRENT_DATE AND  

   dateTo >= CURRENT_DATE) AND  

   b.hotelNo = h.hotelNo) 



Database Systems: Instructor’s Guide - Part III 

 27 

 GROUP BY hotelNo; 

 

Populating Tables 

 

6.27 Insert records into each of these tables. 

 

 INSERT INTO Hotel 

 VALUES (‘H111’, ‘Grosvenor Hotel’, ‘London’); 

 

 INSERT INTO Room 

 VALUES (‘1’, ‘H111’, ‘S’, 72.00); 

 INSERT INTO Guest 

 VALUES (‘G111’, ‘John Smith’, ‘London’); 

 INSERT INTO Booking 

 VALUES (‘H111’, ‘G111’, DATE’2005-01-01’, DATE’2005-01-02’, ‘1’); 

 

6.28 Update the price of all rooms by 5%. 

 

 UPDATE Room SET price = price*1.05; 

 

General 

 

6.29 Investigate the SQL dialect on any DBMS that you are currently using. Determine the compliance 

of the DBMS with the ISO standard. Investigate the functionality of any extensions the DBMS 

supports. Are there any functions not supported? 

 

 This is a small student project, the result of which is dependent on the dialect of SQL being used. 

 

6.30 Show that a query using the HAVING clause has an equivalent formulation without a HAVING 

clause. 

 

 Hint: Allow the students to show that the restricted groups could have been restricted earlier with 

a WHERE clause. 

 

6.31 Show that SQL is relationally complete. 

 

 Hint: Allow the students to show that each of the relational algebra operations can be expressed in 

SQL. 

 
Case Study 2 
 
For Exercises 6.32–6.40, use the Projects schema defined in the Exercises at the end of Chapter 5. 

 
6.32  List all employees in alphabetical order of surname, and then first name. 
 

SELECT * FROM Employee ORDER BY lName, fName; 

 

6.33  List all the details of employees who are female. 



Database Systems: Instructor’s Guide - Part III 

 28 

 

SELECT * FROM Employee WHERE sex = ‘female’; 

 

6.34  List the names and addresses of all employees who are Managers. 
 

SELECT fName, lName, address FROM Employee WHERE position = ‘Manager’; 

 
 

6.35  Produce a list of the names and addresses of all employees who work for the IT department. 
 

SELECT fName, lName, address FROM Employee e, Department d  

WHERE e.deptNo = d.deptNo AND d.deptName = ‘IT’; 

 

 

6.36  Produce a complete list of all managers who are due to retire this year, in alphabetical order 

of surname. 
 
  
 

6.37  Find out how many employees are managed by ‘James Adams’. 
 
 

SELECT COUNT(empNo) FROM Employee  

WHERE deptNo = (SELECT deptNo FROM Employee WHERE fName = ‘James’ AND 

lName = ‘Adams’) AND (fName <> ‘James’ AND lName <> ‘Adams’); 

 

6.38  Produce a report of the total hours worked by each employee, arranged in order of 

department number and within department, alphabetically by employee surname. 
 

SELECT e.lName, e.fName, hoursWorked 

FROM WorksOn w, Employee e, Department d 

WHERE e.deptNo = d.deptNo AND e.empNo = w.empNo 

ORDER BY d.deptNo, e.lName;  

 

6.39  For each project on which more than two employees worked, list the project number, project 

name, and the number of employees who work on that project. 
 

SELECT p.projNo, projName, COUNT(empNo) 

FROM Project p, WorksOn w 

WHERE p.projNo = w.projNo 

GROUP BY p.projNo 

HAVING COUNT(empNo) > 2; 

 
 

6.40  List the total number of employees in each department for those departments with more than 

10 employees. Create an appropriate heading for the columns of the results table. 
 

SELECT COUNT(empNo) AS empCount, deptNo 

FROM Employee 

GROUP BY deptNo 



Database Systems: Instructor’s Guide - Part III 

 29 

HAVING COUNT(empNo) > 10; 

 

Case Study 3 

For Exercises 6.41–6.54, use the Library schema defined in the Exercises at the end of Chapter 5. 

 

6.41 List all book titles. 

 

SELECT title FROM Book; 

 

6.42 List all borrower details. 

 

SELECT * FROM Borrower; 

 

6.43 List all book titles published in the year 2012. 

 

SELECT title  

FROM Book 

WHERE year = ‘2012’; 

 

6.44 List all copies of book titles that are available for borrowing. 

 

SELECT copyNo, title 

FROM BookCopy bc, Book b 

WHERE bc.ISBN = b.ISBN AND bc.available = ‘Y’; 

 

6.45 List all copies of the book title “Lord of the Rings” that are available for borrowing. 

 

SELECT copyNo 

FROM BookCopy bc, Book b 

WHERE bc.ISBN = b.ISBN AND bc.available = ‘Y’ AND title = ‘Lord of the Rings’; 

 

6.46 List the names of borrowers who currently have the book title “Lord of the Rings” on loan. 

 

SELECT borrowerName 

FROM Borrower bw, Book b, BookCopy bc, BookLoan bl 

WHERE bw.borrowerNo = bl.borrowerNo AND bl.copyNo = bc.copyNo 

  AND bc.ISBN = b.ISBN AND bc.available = ‘N’ AND title = ‘Lord of the Rings’; 

 



Database Systems: Instructor’s Guide - Part III 

 30 

6.47 List the names of borrowers with overdue books. 

 

SELECT borrowerName 

From Borrower bw, BookLoan bl 

WHERE bw.borrowerNo = bl.borrowerNo and dateDue > today’s date; 

 

6.48 How many copies of ISBN “0-321-52306-7” are there? 

 

SELECT COUNT(*) 

FROM BookCopy 

WHERE ISBN = ‘0-321-52306-7’; 

 

6.49 How many copies of ISBN “0-321-52306-7” are currently available? 

 

SELECT COUNT(copyNo) 

FROM BookCopy  

WHERE available = ‘Y’ AND ISBN = ‘0-321-52306-7’; 

 

6.50 How many times has the book with ISBN “0-321-52306-7” been borrowed? 

 

SELECT COUNT(*) 

FROM BookCopy bc, BookLoan bl 

WHERE bc.copyNo = bl.copyNo AND ISBN = ‘0-321-52306-7’; 

 

6.51 Produce a report of book titles that have been borrowed by “Peter Bloomfield”. 

 

SELECT DISTINCT title 

FROM Borrower bw, Book b, BookCopy bc, BookLoan bl 

WHERE bw.borrowerNo = bl.borrowerNo AND bl.copyNo = bc.copyNo 

  AND bc.ISBN = b.ISBN AND borrowerName = ‘Peter Bloomfield’; 

 



Database Systems: Instructor’s Guide - Part III 

 31 

6.52 For each book title with more than 3 copies, list the names of library members who have 

borrowed them. 

 

SELECT title, borrowerName 

FROM Borrower bw, Book b, BookCopy bc, BookLoan bl 

WHERE bw.borrowerNo = bl.borrowerNo AND bl.copyNo = bc.copyNo  

AND bc.ISBN = b.ISBN AND EXISTS 

(SELECT ISBN, COUNT(bc1.copyNo) 

FROM BookCopy bc1 

WHERE bc1.ISBN = bc.ISBN 

GROUP BY bc1.ISBN  

HAVING COUNT(bc1.copyNo) > 3); 

 

6.53 Produce a report with the details of borrowers who currently have books overdue. 

 

SELECT borrowerName, borrowerAddress 

From Borrower bw, BookLoan bl 

WHERE bw.borrowerNo = bl.borrowerNo and dateDue > today’s date; 

 

6.54 Produce a report detailing how many times each book title has been borrowed. 

 

SELECT ISBN, COUNT(*) 

FROM BookCopy bc, BookLoan bl 

WHERE bc.copyNo = bl.copyNo 

GROUP BY ISBN;



Database Systems: Instructor’s Guide - Part III 

 32 

 

Chapter 7  SQL: Data Definition 

 

Review Questions 

 

7.1 Describe the eight base data types in SQL. 

 

 The eight base types are: Boolean, character, bit (removed from SQL:2003), exact numeric, 

approximate numeric, datetime, interval, large object. See Section 7.1.2.  

 

7.2 Discuss the functionality and importance of the Integrity Enhancement Feature (IEF). 

 

 Required data:   NOT NULL of CREATE/ALTER TABLE. 

 Domain constraint: CHECK clause of CREATE/ALTER TABLE and CREATE 

    DOMAIN. 

 Entity integrity:   PRIMARY KEY (and UNIQUE) clause of CREATE/ALTER  

    TABLE. 

 Referential integrity:  FOREIGN KEY clause of CREATE/ALTER TABLE. 

 General constraints: CHECK and UNIQUE clauses of CREATE/ALTER TABLE and  

    (CREATE) ASSERTION. 

 

 See Section 7.2. 

 

7.3 Discuss each of the clauses of the CREATE TABLE statement. 

 

The clauses are (see Section 7.3.2): 

• column definition; 

• PRIMARY KEY 

• FOREIGN KEY 

• CHECK constraints 

 

7.4 Discuss the advantages and disadvantages of views. 

 

 See Section 7.4.7. 

 

7.5 Describe how the process of view resolution works. 

 

 Described in Section 7.4.3. 

 

7.6 What restrictions are necessary to ensure that a view is updatable? 

 

 ISO standard specifies the views that must be updatable in a system that conforms to the standard. 

Definition given in SQL standard is that a view is updatable if and only if: 

 



Database Systems: Instructor’s Guide - Part III 

 33 

• DISTINCT is not specified; that is, duplicate rows must not be eliminated from the query 

results. 

• Every element in the SELECT list of the defining query is a column name (rather than a 

constant, expression, or aggregate function) and no column appears more than once. 

• The FROM clause specifies only one table; that is, the view must have a single source table 

for which the user has the required privileges. If the source table is itself a view, then that 

view must satisfy these conditions. This, therefore, excludes any views based on a join, union 

(UNION), intersection (INTERSECT), or difference (EXCEPT).  

• The WHERE clause does not include any nested SELECTs that reference the table in the 

FROM clause. 

• There is no GROUP BY or HAVING clause in the defining query. 

 

 In addition, every row that is added through the view must not violate the integrity constraints of 

the base table (Section 7.4.5). 

 

7.7 What is a materialized view and what are the advantages of a maintaining a materialized view 

rather than using the view resolution process? 

 

 Materialized view is a temporary table that is stored in the database to represent a view, which 

is maintained as the base table(s) are updated. 

 

 Advantages  - may be faster than trying to perform view resolution. 

    - may also be useful for integrity checking and query optimisation. 

 

 See Section 7.4.8. 

 

7.8 Describe the difference between discretionary and mandatory access control. What type of 

control mechanism does SQL support. 

 

 Discretionary – each user is given appropriate access rights (or privileges) on specific database 

objects. 

 Mandatory – each database object is assigned a certain classification level (e.g. Top Secret, 

Secret, Confidential, Unclassified) and each subject (e.g. user, application) is given a designated 

clearance level (Top Secret > Secret > Confidential > Unclassified). 

 

 SQL security mechanism is based on discretionary access control. 

 

7.9 Discuss how the Access Control mechanism of SQL works. 

 

 Each user has an authorization identifier (allocated by DBA). 

 Each object has an owner. Initially, only owner has access to an object but the owner can pass 

privileges to carry out certain actions on to other users via the GRANT statement and take away 

given privileges using REVOKE. 

 



Database Systems: Instructor’s Guide - Part III 

 34 

Exercises 

 

Answer the following questions using the relational schema from the Exercises at the end of Chapter 4. 

 

7.10 Create the Hotel table using the integrity enhancement features of SQL. 

 

 CREATE DOMAIN HotelNumber AS CHAR(4); 

 

 CREATE TABLE Hotel( 

  hotelNo  HotelNumber  NOT NULL, 

  hotelName  VARCHAR(20)  NOT NULL, 

  city  VARCHAR(50)  NOT NULL, 

  PRIMARY KEY (hotelNo)); 

  

7.11 Now create the Room, Booking, and Guest tables using the integrity enhancement features of SQL 

with the following constraints: 

 

  (a) Type must be one of Single, Double, or Family. 

  (b) Price must be between £10 and £100.  

  (c) roomNo must be between 1 and 100.  

  (d) dateFrom and dateTo must be greater than today’s date. 

  (e) The same room cannot be double booked. 

  (f) The same guest cannot have overlapping bookings. 

 

 CREATE DOMAIN RoomType AS CHAR(1) 

  CHECK(VALUE IN (‘S’, ‘F’, ‘D’)); 

 CREATE DOMAIN HotelNumbers AS HotelNumber 

  CHECK(VALUE IN (SELECT hotelNo FROM Hotel)); 

 CREATE DOMAIN RoomPrice AS DECIMAL(5, 2) 

  CHECK(VALUE BETWEEN 10 AND 100); 

 CREATE DOMAIN RoomNumber AS VARCHAR(4) 

  CHECK(VALUE BETWEEN ‘1’ AND ‘100’); 

  

 CREATE TABLE Room( 

  roomNo  RoomNumber  NOT NULL, 

  hotelNo  HotelNumbers  NOT NULL, 

  type   RoomType  NOT NULL DEFAULT ‘S’ 

  price  RoomPrice  NOT NULL, 

  PRIMARY KEY (roomNo, hotelNo), 

  FOREIGN KEY (hotelNo) REFERENCES Hotel  

   ON DELETE CASCADE ON UPDATE CASCADE); 

 

 CREATE DOMAIN GuestNumber AS CHAR(4); 

 

 CREATE TABLE Guest( 

  guestNo  GuestNumber  NOT NULL, 



Database Systems: Instructor’s Guide - Part III 

 35 

  guestName  VARCHAR(20)  NOT NULL, 

  guestAddress VARCHAR(50)  NOT NULL); 

 

 CREATE DOMAIN GuestNumbers AS GuestNumber 

  CHECK(VALUE IN (SELECT guestNo FROM Guest)); 

 CREATE DOMAIN BookingDate AS DATETIME 

  CHECK(VALUE > CURRENT_DATE); 

 

 CREATE TABLE Booking( 

  hotelNo  HotelNumbers  NOT NULL, 

  guestNo GuestNumbers  NOT NULL, 

  dateFrom  BookingDate  NOT NULL, 

  dateTo  BookingDate  NULL, 

  roomNo  RoomNumber  NOT NULL, 

  PRIMARY KEY (hotelNo, guestNo, dateFrom), 

  FOREIGN KEY (hotelNo) REFERENCES Hotel  

   ON DELETE CASCADE ON UPDATE CASCADE, 

  FOREIGN KEY (guestNo) REFERENCES Guest  

   ON DELETE NO ACTION ON UPDATE CASCADE, 

  FOREIGN KEY (hotelNo, roomNo) REFERENCES Room 

   ON DELETE NO ACTION ON UPDATE CASCADE, 

  CONSTRAINT RoomBooked 

  CHECK (NOT EXISTS ( SELECT * 

     FROM Booking b 

     WHERE b.dateTo > Booking.dateFrom AND 

     b.dateFrom < Booking.dateTo AND 

     b.roomNo = Booking.roomNo AND 

     b.hotelNo = Booking.hotelNo)), 

  CONSTRAINT GuestBooked 

  CHECK (NOT EXISTS ( SELECT * 

     FROM Booking b 

     WHERE b.dateTo > Booking.dateFrom AND 

     b.dateFrom < Booking.dateTo AND 

     b.guestNo = Booking.guestNo))); 

 

7.12 Create a separate table with the same structure as the Booking table to hold archive records. 

Using the INSERT statement, copy the records from the Booking table to the archive table 

relating to bookings before 1st January 2013. Delete all bookings before 1st January 2013 from 

the Booking table. 

 

 CREATE TABLE BookingOld( hotelNo  CHAR(4) NOT NULL, 

     guestNo CHAR(4) NOT NULL, 

     dateFrom  DATETIME NOT NULL, 

     dateTo  DATETIME NULL, 

     roomNo  VARCHAR(4) NOT NULL); 

 



Database Systems: Instructor’s Guide - Part III 

 36 

 INSERT INTO BookingOld 

  (SELECT * FROM Booking 

  WHERE dateTo < DATE’2013-01-01’); 

 DELETE FROM Booking 

 WHERE dateTo < DATE’2013-01-01’; 

 

7.13 Create a view containing the hotel name and the names of the guests staying at the hotel. 

 

 CREATE VIEW HotelData(hotelName, guestName) 

 AS  SELECT h.hotelName, g.guestName 

    FROM Hotel h, Guest g, Booking b 

     WHERE h.hotelNo = b.hotelNo AND g.guestNo = b.guestNo AND  

   b.dateFrom <= CURRENT_DATE AND  

   b.dateTo >= CURRENT_DATE; 

 

7.14 Create a view containing the account for each guest at the Grosvenor Hotel. 

 

 CREATE VIEW BookingOutToday 

 AS SELECT g.guestNo,g.guestName,g.guestAddress,r.price*(b.dateTo-b.dateFrom) 

  FROM Guest g, Booking b, Hotel h, Room r 

  WHERE g.guestNo = b.guestNo AND r.roomNo = b.roomNo AND 

   b.hotelNo = h.hotelNo AND h.hotelName = ‘Grosvenor Hotel’ AND 

   b.dateTo = CURRENT_DATE; 

 

7.15 Give the users Manager and Deputy full access to these views, with the privilege to pass the 

access on to other users. 

 

 GRANT ALL PRIVILEGES ON HotelData  

 TO Manager, Director WITH GRANT OPTION; 

 

 GRANT ALL PRIVILEGES ON BookingOutToday  

 TO Manager, Director WITH GRANT OPTION; 

 

7.16 Give the user Accounts SELECT access to these views. Now revoke the access from this user. 

 

 GRANT SELECT ON HotelData TO Accounts; 

 GRANT SELECT ON BookingOutToday TO Accounts; 

 

 REVOKE SELECT ON HotelData FROM Accounts; 

 REVOKE SELECT ON BookingOutToday FROM Accounts; 

 

7.17 Consider the following view defined on the Hotel schema: 

 

CREATE VIEW HotelBookingCount (hotelNo, bookingCount) 

AS SELECT h.hotelNo, COUNT(*) 

 FROM Hotel h, Room r, Booking b 



Database Systems: Instructor’s Guide - Part III 

 37 

 WHERE h.hotelNo = r.hotelNo AND r.roomNo = b.roomNo 

 GROUP BY h.hotelNo; 

  

For each of the following queries, state whether the query is valid and for the valid ones 

should how each of the queries would be mapped onto a query on the underling base tables. 

 

(a) SELECT * 

 FROM HotelBookingCount;  

 

 SELECT h.hotelNo, COUNT(*) 

 FROM Hotel h, Room r, Booking b 

 WHERE h.hotelNo = r.hotelNo AND r.roomNo = b.roomNo 

 GROUP BY h.hotelNo; 

 

(b) SELECT hotelNo 

 FROM HotelBookingCount 

 WHERE hotelNo = ‘H001’; 

 

SELECT h.hotelNo 

 FROM Hotel h, Room r, Booking b 

 WHERE h.hotelNo = r.hotelNo AND r.roomNo = b.roomNo AND  

 h.hotelNo = ‘H001’ 

 GROUP BY h.hotelNo; 

 

(c) SELECT MIN(bookingCount) 

 FROM HotelBookingCount; 

 

 Invalid – bookingCount is based on an aggregate function, so cannot be used within 

another aggregate function. 

 

(d) SELECT COUNT(*) 

 FROM HotelBookingCount; 

 

 Invalid for reason given above.  

 

(e) SELECT hotelNo 

 FROM HotelBookingCount 

 WHERE bookingCount > 1000; 

 

 Invalid – bookingCount is based on an aggregate function, so cannot be used in the 

WHERE clause. 

 

(f) SELECT hotelNo 

 FROM HotelBookingCount  

 ORDER BY bookingCount;  

 



Database Systems: Instructor’s Guide - Part III 

 38 

SELECT h.hotelNo, COUNT(*) AS bookingCount 

 FROM Hotel h, Room r, Booking b 

 WHERE h.hotelNo = r.hotelNo AND r.roomNo = b.roomNo 

 GROUP BY h.hotelNo 

ORDER BY bookingCount; 

 

 

7.19 Assume that we also have a table for suppliers: 

 

Supplier (supplierNo, partNo, price) 

 

and a view SupplierParts, which contains the distinct part numbers that are supplied by at 

least one supplier: 

 

CREATE VIEW SupplierParts (partNo) 

AS SELECT DISTINCT partNo 

 FROM Supplier s, Part p  

 WHERE s.partNo = p.partNo;  

 

Discuss how you would maintain this as a materialized view and under what circumstances 

you would be able to maintain the view without having to access the underlying base tables 

Part and Supplier. 

 

7.20 Investigate the SQL dialect on any DBMS that you are currently using. Determine the system’s 

compliance with the DDL statements in the ISO standard. Investigate the functionality of any 

extensions the DBMS supports. Are there any functions not supported? 

 

 This is a small student project, the result of which is dependent on the dialect of SQL being used. 

 

7.21 Create the DreamHome rental database schema defined in Section 4.2.6 and insert the tuples 

shown in Figure 4.3. 

 

 This is a small student project, the result of which is dependent on the DBMS being used. 

 

7.22 Using the schema you have created above, run the SQL queries given in the examples from 

Chapter 6. 

 

 This is a small student project, the result of which is dependent on the DBMS being used. 

 

7.23 Create the schema for the Hotel schema given at the start of the exercises for Chapter 4 and 

insert some sample tuples. Now run the SQL queries that you produced for Exercises 6.7 – 

6.28. 

 

 This is a small student project, the result of which is dependent on the DBMS being used. 

 



Database Systems: Instructor’s Guide - Part III 

 39 

Case Study 2 

 

7.24  Create the Projects schema using the integrity enhancement features of SQL with the 

following constraints: 

(a) sex must be one of the single characters ‘M’ or ‘F’. 

(b) position must be one of ‘Manager’, ‘Team Leader’, ‘Analyst’, or ‘Software Developer’. 

(c) hoursWorked must be an integer value between 0 and 40. 

 

CREATE SCHMEA Projects; 

CREATE DOMAIN TableKey AS CHAR(5); 

CREATE DOMAIN Name AS VARCHAR(20); 

CREATE DOMAIN Address AS VARCHAR(40); 

CREATE DOMAIN EmpDate AS DATE; 

CREATE DOMAIN Sex AS CHAR(1) CHECK(VALUE IN (‘M’, ‘F’)); 

CREATE DOMAIN Position AS VARCHAR2(20) CHECK(VALUE IN (Manager’, ‘Team 

Leader’, ‘Analyst’, ‘Software Developer’)); 

CREATE DOMAIN DeptNo AS CHAR(5) CHECK (VALUE IN (SELECT deptNo FROM 

Department)); 

CREATE DOMAIN EmpNo AS CHAR(5) CHECK (VALUE IN (SELECT empNo FROM 

Employee)); 

CREATE DOMAIN hoursWorked AS SMALLINT CHECK(VALUE BETWEEN 0 AND 

40); 

 

CREATE TABLE Employee ( 

 empNo  TableKey NOT NULL, 

 fName  Name NOT NULL, 

 lName   Name NOT NULL, 

 address  Address, 

 DOB  EmpDate NOT NULL, 

 sex  Sex NOT NULL, 

 position  Position NOT NULL, 

 deptNo  DeptNo  NOT NULL, 

 PRIMARY KEY  (empNo) 

FOREIGN KEY  (deptNo) REFERENCES Department ON DELETE NO ACTION 

ON UPDATE NO ACTION); 

 

CREATE TABLE Department ( 

 deptNo  TableKey NOT NULL, 

 deptName Name NOT NULL, 

 mgrEmpNo EmpNo NOT NULL, 

 PRIMARY KEY (deptNo), 

 FOREIGN KEY  (empNo)  REFERENCES Employee ON DELETE NO 

ACTION, ON UPDATE NO ACTION); 

 

CREATE TABLE Project ( 

 projNo  TableKey NOT NULL, 

 projName  Name NOT NULL, 

 deptNo  DeptNo NOT NULL, 

 PRIMARY KEY (projNo), 

 FOREIGN KEY (deptNo) REFERENCES Department ON DELETE NO ACTION 

ON UPDATE NO ACTION); 

 

CREATE TABLE WorksOn ( 

 empNo  EmpNo NOT NULL, 

 projNo  ProjNo NOT NULL, 

 dateWorked EmpDate NOT NULL, 



Database Systems: Instructor’s Guide - Part III 

 40 

 hoursWorked HoursWorked NOT NULL, 

 PRIMARY KEY  (empNo, projNo, dateWorked), 

 FOREIGN KEY  (empNo) REFERENCES Employee ON DELETE NO ACTION, 

ON UPDATE NO ACTION, 

 FOREIGN KEY  (projNo) REFERENCES Project ON DELETE NO ACTION ON 

UPDATE NO ACTION); 

 
  

7.25  Create a view consisting of the Employee and Department tables without the address, DOB, 

and sex attributes. 
 

 

CREATE VIEW EmpDept (empNo, fName, lName, position, deptNo, deptName, 

mgrEmpNo) 

AS SELECT e.empNo, e.fName, e.lName, e.position, e.deptNo, d.deptName, d.mgrEmpNo 

FROM Employee e, Department d 

WHERE e.deptNo = d.deptNo; 
 

 

7.26  Create a view consisting of the attributes empNo, fName, lName, projName, and hoursWorked 

attributes. 
 

CREATE VIEW EmpWorksOn (empNo, fName, lName, projName, hoursWorked) 

AS SELECT e.empNo, e.fName, e.lName, p.projName, w.hoursWorked 

FROM Employee e, Project p, WorksOn w 

WHERE e.empNo = w.empNo 

AND p.projNo = w.projNo; 
 

7.27  Consider the following view defined on the Projects schema: 

CREATE VIEW EmpProject(empNo, projNo, totalHours) 

AS SELECT w.empNo, w.projNo, SUM(hoursWorked) 

FROM Employee e, Project p, WorksOn w 

WHERE e.empNo _ w.empNo AND p.projNo _ w.projNo 

GROUP BY w.empNo, w.projNo; 

(a) SELECT * 

FROM EmpProject; 

(b) SELECT projNo 

FROM EmpProject 

WHERE projNo _ ‘SCCS’; 

(c) SELECT COUNT(projNo) 

FROM EmpProject 

WHERE empNo _ ‘E1’; 

(d) SELECT empNo, totalHours 

FROM EmpProject 

GROUP BY empNo; 

 

 

General 

7.28 Consider the following table: 

 

Part (partNo, contract, partCost) 

 

which represents the cost negotiated under each contract for a part (a part may have a different 

price under each contract). Now consider the following view ExpensiveParts, which 

contains the distinct part numbers for parts that cost more than £1000: 

 

CREATE VIEW ExpensiveParts (partNo) 



Database Systems: Instructor’s Guide - Part III 

 41 

AS SELECT DISTINCT partNo 

 FROM Part 

 WHERE partCost > 1000;  

 

Discuss how you would maintain this as a materialized view and under what circumstances 

you would be able to maintain the view without having to access the underlying base table 

Part. 

 

If a row is inserted into Part with a partCost less than or equal to £1000, the view would not 

have to be updated. If a partNo is inserted into Part that is already in the view, no new record 

has to be inserted into the view (because of the DISTINCT keyword). Similarly for update. If 

a partNo is deleted from Part have to access the underlying base table to check if there is 

another partNo with same value, to determine whether row should be deleted from the view. 

 



Database Systems: Instructor’s Guide - Part III 

 42 

Chapter 8  Advanced SQL 

Review Questions 

 

8.1  Explain the term “impedance mismatch.” Briefly describe how SQL now overcomes the 

impedance mismatch. 

 

The term impedence mismatch refers to the mixing of different programming paradigms 

between SQL, a declarative language, and procedural and object-orieinted programming 

languages. SQL overcomes the impedance mismatch through extensions such as the 

SQL/PSM (Persistend Stored Modules) extension and Oracle’s PL/SQL (Procedural 

Language/SQL). 

 

8.2  Describe the general structure of a PL/SQL block. 

 

A PL/SQL block has up to three parts: 

 

• An optional declaration part, in which variables, constants, cursors, and exceptions 

are defined and possibly initialized; 

• A mandatory executable part, in which the variables are manipulated; 

• An optional exception part, to handle any exceptions raised during execution. 

 

8.3  Describe the control statements in PL/SQL. Give examples to illustrate your answers. 

 

PL/SQL supports the usual conditional, iterative, and sequential flow-of-control mechanisms 

including: 

 

Conditional IF statement  

IF (position = ‘Manager’) THEN 

salary := salary*1.05; 

ELSE 

salary := salary*1.03; 

END IF; 

 

Conditional CASE statement 

CASE lowercase(x)  

WHEN ‘a’ THEN x := 1; 

WHEN ‘b’ THEN x := 2; 

y := 0; 

WHEN ‘default’ THEN x := 3; 

 END CASE; 

 

Iteration statement (LOOP) 

x:=1; 

myLoop: 

LOOP 

x := x+1; 



Database Systems: Instructor’s Guide - Part III 

 43 

IF (x > 3) THEN 

EXIT myLoop; --- exit loop immediately 

END LOOP myLoop; 

--- control resumes here 

y := 2; 

 

Iteration statement (WHILE and REPEAT) 

WHILE (condition) LOOP  

<SQL statement list> 

END LOOP [labelName]; 

 

Iteration statement (FOR) 

DECLARE 

numberOfStaff NUMBER; 

SELECT COUNT(*) INTO numberOfStaff FROM PropertyForRent 

WHERE staffNo = ‘SG14’; myLoop1: 

FOR iStaff IN 1 .. numberOfStaff LOOP 

..... 

END LOOP 

myLoop1; 

 

8.4  Describe how the PL/SQL statements differ from the SQL standard. Give examples to 

illustrate your answers. 

 

PL/SQL (Procedural Language/SQL) is Oracle’s procedural extension to SQL. 

There are two versions of PL/SQL: one is part of the Oracle server, and the other is a separate 

engine embedded in a number of Oracle tools. They are very similar toeach other and have the 

same programming constructs, syntax, and logic mechanisms, although PL/SQL for Oracle 

tools has some extensions to suit the requirementsof the particular tool (for example, PL/SQL 

has extensions for Oracle Forms). 

PL/SQL has concepts similar to modern programming languages, such as variable and 

constant declarations, control structures, exception handling, and modularization. PL/SQL is a 

block-structured language: blocks can be entirely separate or nested within one another. The 

basic units that constitute a PL/SQL program are procedures, functions, and anonymous 

(unnamed) blocks. 

 

8.5  What are SQL cursors? Give an example of the use of an SQL cursor. 

 

PL/SQL uses cursors to allow the rows of a query result to be accessed one at a time. In 

effect, the cursor acts as a pointer to a particular row of the query result. The cursor can be 

advanced by 1 to access the next row. A cursor must be declared and opened before it can be 

used, and it must be closed to deactivate it after it is no longer required. Once the cursor has 

been opened, the rows of the query result can be retrieved one at a time using a FETCH 

statement, as opposed to a SELECT statement. 

 

An example is shown in Figure 8.3. 



Database Systems: Instructor’s Guide - Part III 

 44 

 

8.6  What are database triggers and what could they be used for? 

 

A trigger defines an action that the database should take when some event occurs in the 

application. A trigger may be used to enforce some referential integrity constraints, to enforce 

complex constraints, or to audit changes to data. 

 

8.7  Discuss the differences between BEFORE, AFTER, and INSTEAD OF triggers. Give examples 

to illustrate your answers. 

 

The BEFORE keyword indicates that the trigger should be executed before an insert is 

applied. It could be used to prevent a member of staff from managing more than 100 

properties at the same time. 

 

The AFTER keyword indicates that the trigger should be executed after the database table is 

updated. It could be used to create an audit record. 

 

SQL also supports INSTEAD OF triggers, which provide a transparent way of modifying 

views that cannot be modified directly through SQL DML statements (INSERT, UPDATE, 

and DELETE). These triggers are called INSTEAD OF triggers because, unlike other types of 

trigger, the trigger is fired instead of executing the original SQL statement. 

 

8.8  Discuss the differences between row-level and statement-level triggers. Give examples to 

illustrate your answers. 

 

There are two types of trigger: row-level triggers (FOR EACH ROW) that execute for each 

row of the table that is affected by the triggering event, and statement-level triggers (FOR 

EACH STATEMENT) that execute only once even if multiple rows are affected by the 

triggering event. An example of a row-level trigger is shown in Example 8.2. An example of a 

statement-level trigger to set a new sequence number for an update is seen in the middle of 

Figure 8.5(b). 

 

8.9  Discuss the advantages and disadvantages of database triggers. 

 

Advantages of triggers include: 

 

• Elimination of redundant code: Instead of placing a copy of the functionality of the 

trigger in every client application that requires it, the trigger is stored only once in the 

database. 

• Simplifying modifications: Changing a trigger requires changing it in one place only; all 

the applications automatically use the updated trigger. Thus, they are only coded once, 

tested once, and then centrally enforced for all the applications accessing the database. 

The triggers are usually controlled, or at least audited, by a skilled DBA. The result is that 

the triggers can be implemented efficiently. 

• Increased security: Storing the triggers in the database gives them all the benefits of 

security provided automatically by the DBMS. 



Database Systems: Instructor’s Guide - Part III 

 45 

• Improved integrity: Triggers can be extremely useful for implementing some types of 

integrity constraints, as we have demonstrated earlier. Storing such triggers in the 

database means that integrity constraints can be enforced consistently by the DBMS 

across all applications. 

• Improved processing power: Triggers add processing power to the DBMS and to the 

database as a whole. 

• Good fit with the client-server architecture: The central activation and processing of 

triggers fits the client-server architecture well (see Chapter 3). A single request from a 

client can result in the automatic performing of a whole sequence of checks and 

subsequent operations by the database server. In this way, performance is potentially 

improved as data and operations are not transferred across the network between the client 

and the server. 

 

Triggers also have disadvantages, which include: 

 

• Performance overhead: The management and execution of triggers have a performance 

overhead that have to be balanced against the advantages cited previously. 

• Cascading effects: The action of one trigger can cause another trigger to be fired, and so 

on, in a cascading manner. Not only can this cause a significant change to the database, 

but it can also be hard to foresee this effect when designing the trigger. 

• Cannot be scheduled: Triggers cannot be scheduled; they occur when the event that they 

are based on happens. 

• Less portable: Although now covered by the SQL standard, most DBMSs implement 

their own dialect for triggers, which affects portability. 

 

Exercises 

 
8.10 Create a stored procedure for each of the queries specified in Exercises 6.7–6.11. 
 

List full details of all hotels. 

 

DECLARE  

 vHotelNo Hotel.hotelNo%TYPE; 

 vHotelName Hotel.hotelName%TYPE; 

 vCity  Hote.city%TYPE; 

  

 CURSOR hotelCursor IS 

 SELECT * FROM Hotel; 

 

BEGIN 

 OPEN hotelCursor; 

 LOOP 

 

 FETCH hotelCursor 

  INTO vHotelNo, vHotelName, vCity; 

 EXIT WHEN hotelCursor%NOTFOUND; 

 



Database Systems: Instructor’s Guide - Part III 

 46 

 dbms_output.put_line(‘Hotel Number: ’ || vHotelNo); 

 dbms_output.put_line(‘Hotel Name: ’ || vHotelName); 

 dbms_output.put_line(‘City: ’ || vCity); 

 END LOOP 

 

 IF hotelCursor%ISOPEN THEN CLOSE hotelCursor END IF; 

 

EXCEPTION 

 WHEN OTHERS THEN 

  dbms_output.put_line(‘Error detected’); 

  IF hotelCursor%ISOPEN THEN CLOSE hotelCursor; END IF; 

END; 

 

  List full details of all hotels in London. 

 

DECLARE  

 vHotelNo Hotel.hotelNo%TYPE; 

 vHotelName Hotel.hotelName%TYPE; 

 vCity  Hote.city%TYPE; 

  

 CURSOR hotelCursor IS 

 SELECT * FROM Hotel  

 WHERE city = ‘London’; 

 

BEGIN 

 OPEN hotelCursor; 

 LOOP 

 FETCH hotelCursor 

  INTO vHotelNo, vHotelName, vCity; 

 EXIT WHEN hotelCursor%NOTFOUND; 

 

 dbms_output.put_line(‘Hotel Number: ’ || vHotelNo); 

 dbms_output.put_line(‘Hotel Name: ’ || vHotelName); 

 dbms_output.put_line(‘City: ’ || vCity); 

 END LOOP 

 

 IF hotelCursor%ISOPEN THEN CLOSE hotelCursor END IF; 

 

EXCEPTION 

 WHEN OTHERS THEN 

  dbms_output.put_line(‘Error detected’); 

  IF hotelCursor%ISOPEN THEN CLOSE hotelCursor; END IF; 

END; 

  

 

 



Database Systems: Instructor’s Guide - Part III 

 47 

 

 List the names and addresses of all guests in London, alphabetically ordered by name. 

  

DECLARE  

 vGuestName Guest.guestName%TYPE; 

 vGuestAddress Guest.guestAddress%TYPE; 

   

 CURSOR guestCursor IS 

 SELECT guestName, guestAddress  

 FROM Guest WHERE address LIKE ‘%London%’  

 ORDER BY guestName; 

 

BEGIN 

 OPEN guestCursor; 

 LOOP 

 FETCH guestCursor 

  INTO vGuestName, vGuestAddress; 

 EXIT WHEN guestCursor %NOTFOUND; 

 

 dbms_output.put_line(‘Guest Name: ’ || vGuestName); 

 dbms_output.put_line(‘Guest Address: ’ || vGuestAddress); 

 END LOOP 

 

 IF guestCursor %ISOPEN THEN CLOSE guestCursor END IF; 

 

EXCEPTION 

 WHEN OTHERS THEN 

  dbms_output.put_line(‘Error detected’); 

  IF guestCursor %ISOPEN THEN CLOSE guestCursor; END IF; 

END; 

 

 List all double or family rooms with a price below £40.00 per night, in ascending order of price. 

 

DECLARE  

 vRoomNo Room.roomNo%TYPE; 

 vHotelNo Room.hotelNo%TYPE; 

 vType  Room.roomType%TYPE; 

 vPrice  Room.price%TYPE; 

   

 CURSOR roomCursor IS 

 SELECT * FROM Room  

 WHERE price < 40  

 AND type IN (‘D’, ‘F’)  

 ORDER BY price; 

 

BEGIN 



Database Systems: Instructor’s Guide - Part III 

 48 

 

 OPEN roomCursor; 

 LOOP 

 FETCH roomCursor 

  INTO vRoomNo, vHotelNo, vType, vPrice; 

 EXIT WHEN roomCursor %NOTFOUND; 

 

 dbms_output.put_line(‘Room Number: ’ || vRoomNo); 

 dbms_output.put_line(‘Hotel Number: ’ || vHotelNo); 

 dbms_output.put_line(‘Type: ’ || vType); 

 dbms_output.put_line(‘Price: ’ || vPrice); 

 END LOOP 

 

 IF roomCursor %ISOPEN THEN CLOSE roomCursor END IF; 

 

EXCEPTION 

 WHEN OTHERS THEN 

  dbms_output.put_line(‘Error detected’); 

  IF roomCursor %ISOPEN THEN CLOSE roomCursor; END IF; 

END; 

 

 List the bookings for which no dateTo has been specified. 

 

DECLARE  

 vHotelNo Booking.hotelNo%TYPE; 

 vGuestNo Booking.guestNo%TYPE; 

 vDateFrom Booking.dateFrom%TYPE; 

 vRoomNo Booking.roomNo%TYPE; 

  

 CURSOR bookingCursor IS 

 SELECT * FROM Booking  

 WHERE dateTo IS NULL; 

 

BEGIN 

 OPEN bookingCursor; 

 LOOP 

 FETCH bookingCursor 

  INTO vHotelNo, vGuestNo, vDateFrom, vRoomNo; 

 EXIT WHEN bookingCursor %NOTFOUND; 

 

 dbms_output.put_line(‘Hotel Number: ’ || vHotelNo); 

 dbms_output.put_line(‘Guest Number: ’ || vGuestNo); 

 dbms_output.put_line(‘Date From: ’ || vDateFrom); 

 dbms_output.put_line(‘Room Number: ’ || vRoomNo); 

 END LOOP 

 



Database Systems: Instructor’s Guide - Part III 

 49 

 IF bookingCursor %ISOPEN THEN CLOSE bookingCursor END IF; 

 

EXCEPTION 

 WHEN OTHERS THEN 

  dbms_output.put_line(‘Error detected’); 

  IF bookingCursor %ISOPEN THEN CLOSE bookingCursor; END IF; 

END; 
 
 
 

8.11  Create a database trigger for the following situations: 

(a)  The price of all double rooms must be greater than £100. 

 

CREATE TRIGGER DouleRoomPrice 

BEFORE INSERT ON Room 

FOR EACH ROW 

WHEN (new.type = ‘D’ AND new.price < 100) 

BEGIN 

 raise_application_error(-20000, ‘Price for double room must be over 100); 

END; 

 

(b)  The price of double rooms must be greater than the price of the highest single room. 

 

CREATE TRIGGER RoomPrice 

BEFORE INSET ON Room 

FOR EACH ROW 

WHEN (new.type = ‘D’) 

DECLARE vMaxSingleRoomPrice  NUMBER; 

BEGIN 

 SELECT MAX(price) INTO vMaxSingleRoomPrice 

 FROM Room 

 WHERE type = ‘S’; 

 IF (new.price < vMaxSingleRoomPrice) 

  raise_application_error(-20000, ‘Double room price must be higher than 

higest single room price ‘||vMaxSingleRoomPrice); 

 END IF; 

END; 

 

(c)  A booking cannot be for a hotel room that is already booked for any of the specified 

dates. 

 

CREATE TRIGGER BookingDate 

BEFORE INSERT ON Booking 

FOR EACH ROW 

DECLARE vBookingCount  NUMBER; 

 

BEGIN 



Database Systems: Instructor’s Guide - Part III 

 50 

 SELECT COUNT(*) INTO vBookingCount 

 FROM Booking 

 WHERE hotelNo = new.hotelNo 

 AND dateFrom <= new.dateFrom 

 AND dateTo >= new.dateTo; 

 IF (vBookingCount > 0) 

  raise_application_error(-20000, ‘Room ‘ || new.roomNo || ‘ is already 

booked during these dates’); 

 END IF; 

END; 

 

(d)  A guest cannot make two bookings with overlapping dates. 

 

CREATE TRIGGER BookingGuest 

BEFORE INSERT ON Booking 

FOR EACH ROW 

DECLARE vBookingCount  NUMBER; 

 

BEGIN 

 SELECT COUNT(*) INTO vBookingCount 

 FROM Booking 

 WHERE guestNo = new.guestNo 

 AND dateFrom <= new.dateFrom 

 AND dateTo >= new.dateTo; 

 IF (vBookingCount > 0) 

  raise_application_error(-20000, ‘Guest ‘ || new.guestNo || ‘ is already 

booked during these dates’); 

 END IF; 

 

END; 

 

(e)  Maintain an audit table with the names and addresses of all guests who make 

bookings for hotels in London (do not store duplicate guest details). 

 

CREATE TRIGGER BookingAfterInsert 

AFTER INSERT ON Booking 

FOR EACH ROW 

DECLARE 

 vGuestName Guest.guestName%TYPE; 

 vGuestAddress Guest.guestAddress%TYPE; 

BEGIN 

 SELECT g.guestName INTO vGuestName, g.guestAddress into vGuestAddress 

 FROM Guest g, Hotel h 

 WHERE g.guestNo = new.bookingNo 

 AND h.hotelNo = new.hotelNo 

 AND h.city = ‘London’; 



Database Systems: Instructor’s Guide - Part III 

 51 

 IF (vGuestName IS NOT NULL AND vGuestAddress IS NOT NULL)  

 

INSERT INTO GuestAudit 

VALUES (vGuestName, vGuestAddress); 

 END iF; 

END; 

 

8.12  Create an INSTEAD OF database trigger that will allow data to be inserted into the following 

view: 

 

CREATE VIEW LondonHotelRoom AS 

SELECT h.hotelNo, hotelName, city, roomNo, type, price 

FROM Hotel h, Room r 

WHERE h.hotelNo _ r.hotelNo AND city _ ‘London’ 

 

CREATE TRIGGER UpdateLondonHotelRoom 

INSTEAD OF INSERT ON LondonHotelRoom 

FOR EACH ROW 

 

BEGIN 

 INSERT INTO Hotel (hotelNo, hotelName, city)  

VALUES (new.hotelNo, new.hotelName, ‘London’); 

 INSERT INTO Room (roomNo, hotelNo, type, price)  

VALUES (new.roomNo, new.hotelNo, new.type, new.price); 

END; 

 

8.13  Analyze the RDBMS that you are currently using and determine the support the system 

provides for SQL programming constructs, database triggers, and recursive queries. 

Document the differences between each system and the SQL standard. 

 

 This is a small student project, the result of which is dependent on the system analyzed. 

 

 

 

 

 

 

 

 

 

 



Database Systems: Instructor’s Guide - Part III 

 52 

 

Chapter 9  Object-Relational DBMSs 

 

Review Questions 

9.1 Discuss the general characteristics of advanced database applications. 

 

Designs of this type have some common characteristics: 

• Design data is characterized by a large number of types, each with a small number of 

instances. Conventional databases are typically the opposite.  

• Designs may be very large, perhaps consisting of millions of parts, often with many 

interdependent subsystem designs. 

• The design is not static but evolves through time. When a design change occurs, its 

implications must be propagated through all design representations. The dynamic nature 

of design may mean that some actions cannot be foreseen at the beginning. 

• Updates are far-reaching because of topological or functional relationships, tolerances, 

and so on. One change is likely to affect a large number of design objects. 

• Often, many design alternatives are being considered for each component, and the correct 

version for each part must be maintained. This involves some form of version control and 

configuration management. 

• There may be hundreds of staff involved with the design, and they may work in parallel 

on multiple versions of a large design. Even so, the end product must be consistent and 

coordinated. This is sometimes referred to as cooperative engineering. 

See Section 9.1. 

 

9.2 Discuss why the weaknesses of the relational data model and relational DBMSs may make them 

unsuitable for advanced database applications. 

 

 Weaknesses discussed in Section 9.2. 

 

9.3 Discuss the difficulties involved in mapping objects created in an object-oriented 

programming language to a relational database. 

 

Discussion should centre around the loss of semantic information in mapping a hierarchical 

structure to a flat relational structure. Also discussion of the reverse process of recreating the 

original structure from flat relations, which requires additional software to be written. Both 

cases result in a loss of performance. See Section 9.3. 

 

9.4 What functionality would typically be provided by an ORDBMS? 

 

 Many different answers here – see, for example, Section 9.4.  

Expect standard DBMS functionality, plus object management capabilities (types, inheritance, 

etc), plus ability to extend query optimizer and define new index types. 

 



Database Systems: Instructor’s Guide - Part III 

 53 

9.5 What are the advantages and disadvantages of extending the relational data model? 

 

Advantages 

Apart from the advantages of resolving many of the weaknesses of the relational data model 

cited in Section 9.2, the main advantages of extending the relational data model come from 

reuse and sharing. Reuse comes from the ability to extend the DBMS server to perform 

standard functionality centrally, rather than have it coded in each application. If we can embed 

this functionality in the server, it saves having to define it in each application that needs it, and 

consequently allows the functionality to be shared by all applications. These advantages also 

give rise to increased productivity both for the developer and for the end-user. 

 

Another obvious advantage is that the extended relational approach preserves the significant 

body of knowledge and experience that has gone into developing relational applications. This 

is a significant advantage, as many organizations would find it prohibitively expensive to 

change. If the new functionality is designed appropriately, this approach should allow 

organizations to take advantage of the new extensions in an evolutionary way without losing 

the benefits of current database features and functions. Thus, an ORDBMS could be 

introduced in an integrative fashion, as proof-of-concept projects.  

 

Disadvantages 

The ORDBMS approach has the obvious disadvantages of complexity and associated 

increased costs. Further, there are the proponents of the relational approach that believe the 

essential simplicity and purity of the relational model are lost with these types of extensions. 

There are also those that believe that the RDBMS is being extended for what will be a 

minority of applications that do not achieve optimal performance with current relational 

technology.  

 

In addition, object-oriented purists are not attracted by these extensions either. They argue that 

the terminology of object-relational systems is revealing. Instead of discussing object models, 

terms like user-defined data types are used. The terminology of object-orientation abounds 

with terms like abstract types, class hierarchies, and object models. However, ORDBMS 

vendors are attempting to portray object models as extensions to the relational model with 

some additional complexities. This potentially misses the point of object-orientation, 

highlighting the large semantic gap between these two technologies. Object applications are 

simply not as data-centric as relational-based ones. Object-oriented models and programs 

deeply combine relationships and encapsulated objects to more closely mirror the ‘real world’. 

This defines broader sets of relationships than those expressed in SQL, and involves 

functional programs interspersed in the object definitions. In fact, objects are fundamentally 

not extensions of data, but a completely different concept with far greater power to express 

‘real-world’ relationships and behaviors. 

 

In Chapter 6, we noted that the objectives of a database language included having the 

capability to be used with minimal user effort, and having a command structure and syntax 

that must be relatively easy to learn. Unfortunately, the size of the new SQL:2011 standard is 

daunting, and it would seem that these two objectives are no longer being fulfilled or even 

being considered by the standards bodies. 



Database Systems: Instructor’s Guide - Part III 

 54 

 

See Section 9.4 under Advantages and Disadvantages. 

 

9.6 What are the main features of the SQL:2011 standard? 

 

 New main features are: 

o type constructors for row types and reference types; 

o user-defined types (distinct types and structured types) that can participate in 

supertype/subtype relationships; 

o user-defined procedures, functions, and methods; 

o type constructors for collection types (arrays and multisets); 

o support for large objects; 

o recursion. 

See start of Section 9.5. 

 

9.7 Discuss how reference types and object identity can be used. 

 

Until SQL:1999, the only way to define relationships between tables was using the primary 

key/foreign key mechanism, which in SQL2 could be expressed using the referential table 

constraint clause REFERENCES, as discussed in Section 7.2.4. Since SQL:1999, reference 

types can be used to define relationships between row types and uniquely identify a row 

within a table. A reference type value can be stored in one table and used as a direct reference 

to a specific row in some base table that has been defined to be of this type (similar to the 

notion of a pointer type in ‘C’ or C++). In this respect, a reference type provides a similar 

functionality as the object identifier (OID) of object-oriented DBMSs, which we discuss in 

Chapter 27. Thus, references allow a row to be shared among multiple tables and enable users 

to replace complex join definitions in queries with much simpler path expressions. References 

also give the optimizer an alternative way to navigate data instead of using value-based joins. 

See Section 9.5.6. 

 

9.8 Compare and contrast procedures, functions, and methods. 

 

 User-defined routines discussed in Section 9.5.4. 

 

9.9 What is a trigger? Provide an example of a trigger. 

 

A trigger is an SQL (compound) statement that is executed automatically by the DBMS as a 

side effect of a modification to a named table. It is similar to an SQL routine, in that it is a 

named SQL block with declarative, executable, and condition-handling sections. However, 

unlike a routine, a trigger is executed implicitly whenever the triggering event occurs, and a 

trigger does not have any arguments. The act of executing a trigger is sometimes known as 

firing the trigger. See Section 9.5.12. 

 



Database Systems: Instructor’s Guide - Part III 

 55 

9.10 Discuss the collection types available in SQL:2011. 

 

Collections are type constructors that are used to define collections of other types. Collections 

are used to store multiple values in a single column of a table and can result in nested tables 

where a column in one table actually contains another table. The result can be a single table 

that represents multiple master-detail levels. Thus, collections add flexibility to the design of 

the physical database structure. SQL:2011 supports ARRAY and MULTISET collections. See 

Section 9.5.9. 

 

9.11 What are the security problems associated with the introduction of user-defined methods and 

suggest some solutions to these problems? 

 

 If the user-defined function (UDF) causes some fatal runtime error, then if the UDF code is 

linked into the ORDBMS server, the error may have the consequential effect of crashing the 

server. Clearly, this is something that the ORDBMS has to protect against. One approach is to 

have all UDFs written in an interpreted language, such as SQL or Java. However, we have 

already seen that SQL:2011 allows an external routine, written in a high-level programming 

language such as ‘C’/C++, to be invoked as a UDF. In this case, an alternative approach is to 

run the UDF in a different address space to the ORDBMS server, and for the UDF and server 

to communicate using some form of interprocess communication (IPC). In this case, if the 

UDF causes a fatal runtime error, the only process affected is that of the UDF..  

 

Exercises 

9.12 Investigate one of the advanced database applications discussed in Section 9.1, or a similar 

one that handles complex, interrelated data. In particular, examine its functionality, and the 

data types and operations it uses. Map the data types and operations to the object-oriented 

concepts discussed in Appendix K. 

 

 This is a small student project, the result of which is dependent on the application investigated. 

However, expect the student to cover not just standard concepts such as objects, attributes, 

classes, superclasses, but also concepts such as overloading, complex objects, dynamic binding. 

 

9.13 Analyze one of the relational DBMSs that you currently use. Discuss the object-oriented 

features provided by the system. What additional functionality do these features provide? 

 

 This is a small student project, the result of which is dependent on the system analyzed. 

 

9.14 Analyze the RDBMSs that you are currently using. Discuss the object-oriented facilities 

provided by the system. What additional functionality do these facilities provide? 

 

This is a small student project, the result of which is dependent on the system analyzed. 

 

9.15 Consider the relational schema for the Hotel case study given in the Exercises at the end of 

Chapter 4. Redesign this schema to take advantage of the new features of SQL:2011. Add 

user-defined functions that you consider appropriate. 

 



Database Systems: Instructor’s Guide - Part III 

 56 

 One possible solution as follows: 

 

 CREATE DOMAIN RoomType AS CHAR(1) 

  CHECK(VALUE IN (‘S’, ‘F’, ‘D’)); 

 CREATE DOMAIN HotelNumbers AS HotelNumber 

  CHECK(VALUE IN (SELECT hotelNo FROM Hotel)); 

 CREATE DOMAIN RoomPrice AS DECIMAL(5, 2) 

  CHECK(VALUE BETWEEN 10 AND 100); 

 CREATE DOMAIN RoomNumber AS VARCHAR(4) 

  CHECK(VALUE BETWEEN ‘1’ AND ‘100’); 

  

 CREATE DOMAIN HotelNumber AS CHAR(4); 

 CREATE DOMAIN GuestNumber AS CHAR(4); 

 CREATE DOMAIN BookingDate AS DATETIME 

  CHECK(VALUE > CURRENT_DATE); 

  

 CREATE TYPE HotelType AS ( 

  hotelNo  HotelNumber  NOT NULL, 

  hotelName  VARCHAR(20)  NOT NULL, 

  city  VARCHAR(50)  NOT NULL) 

 REF IS SYSTEM GENERATED 

 INSTANTIABLE 

 FINAL; 

 

 CREATE TABLE Hotel OF HotelType( 

  REF IS hotelID SYSTEM GENERATED, 

  PRIMARY KEY (hotelNo)); 

 

 CREATE TABLE Room ( 

  roomNo  RoomNumber  NOT NULL, 

  hotelID  REF(HotelType)  SCOPE Hotel 

    REFERENCES ARE CHECKED ON DELETE CASCADE, 

  type   RoomType  NOT NULL DEFAULT ‘S’ 

  price  RoomPrice  NOT NULL, 

  PRIMARY KEY (roomNo, hotelID)); 

 

 CREATE TYPE GuestType AS ( 

  guestNo GuestNumber  NOT NULL, 

  guestName  VARCHAR(20)  NOT NULL, 

  guestAddress VARCHAR(50)  NOT NULL); 

 REF IS SYSTEM GENERATED 

 INSTANTIABLE 

 FINAL; 

 

 CREATE TABLE Guest OF GuestType( 

  REF IS guestId SYSTEM GENERATED, 



Database Systems: Instructor’s Guide - Part III 

 57 

  PRIMARY KEY (guestNo)); 

 

 CREATE TABLE Booking ( 

  hotelID  REF(HotelType)  SCOPE Hotel 

    REFERENCES ARE CHECKED ON DELETE CASCADE, 

  guestID  REF(GuestType)  SCOPE Guest 

    REFERENCES ARE CHECKED ON DELETE CASCADE, 

  dateFrom  BookingDate  NOT NULL, 

  dateTo  BookingDate  NULL, 

  roomNo  RoomNumber  NOT NULL, 

  PRIMARY KEY (hotelID, guestID, dateFrom), 

  FOREIGN KEY (hotelID) REFERENCES Hotel  

   ON DELETE CASCADE ON UPDATE CASCADE, 

  FOREIGN KEY (guestID) REFERENCES Guest  

   ON DELETE NO ACTION ON UPDATE CASCADE, 

  FOREIGN KEY (hotelID, roomNo) REFERENCES Room 

   ON DELETE NO ACTION ON UPDATE CASCADE, 

  CONSTRAINT RoomBooked 

  CHECK (NOT EXISTS (SELECT * 

     FROM Booking b 

     WHERE b.dateTo > Booking.dateFrom AND 

     b.dateFrom < booking.dateTo AND 

     AND b.roomNo = Booking.roomNo AND 

     b.hotelID = Booking.hotelID)), 

  CONSTRAINT GuestBooked 

  CHECK (NOT EXISTS (SELECT * 

     FROM Booking b 

     WHERE b.dateTo > Booking.dateFrom AND 

     b.dateFrom < Booking.dateTo AND 

     AND b.guestID = Booking.guestID))); 

 

9.16 Create SQL:2011 statements for the queries given in Chapter 6, Exercise 6.7 - 6.28. 

 

Depends on the solution to the previous question. For example, using the above schema, the 

solution to 6.16 would be: 

 

 SELECT price, type 

 FROM Room r 

 WHERE r–>hotelID–>hotelName = ‘Grosvenor Hotel’; 

 

9.17 Create an insert trigger that sets up a mailshot table recording the names and addresses of all 

guests who have stayed at the hotel during the days before and after New Year for the past two 

years. 

 

The aim of this question is to show the difficulty of creating a trigger that does not necessarily 

need to be tied to a modification to a table. 



Database Systems: Instructor’s Guide - Part III 

 58 

 

CREATE TRIGGER InsertMailshotTable 

AFTER INSERT ON Booking 

BEGIN  

INSERT INTO Mailshot 

  (SELECT g.guestNo, g.guestName, g.guestAddress 

  FROM Guest g, Booking b1, Booking b2 

  WHERE g.guestNo = b1.guestNo AND b1.guestNo = b2.guestNo AND 

 ((b1.dateFrom<=DATE’2014-12-31’ AND b1.dateTo>=DATE’2014-12-31’) OR  

(b1.dateFrom >= DATE’2014-12-31’ AND b1.dateFrom <= DATE’2015-01-02’))    

AND 

((b1.dateFrom <= DATE’2013-12-31’ AND b1.dateTo>=DATE’2013-12-31’) OR  

(b1.dateFrom >= DATE’2013-12-31’ AND b1.dateFrom <= DATE’2014-01-02’)) 

AND 

NOT EXISTS (SELECT * FROM Mailshot m 

   WHERE m.guestNo = g.guestNo); 

END; 

 

9.18 Repeat Exercise 9.16 for the multinational engineering case study in the Exercises of Chapter 

24. 

 

Look for solution that uses the features of SQL:2011 such as types with inheritance, and object 

references (see also the solution to Exercise 9.22 below). 

 

9.19 Create an object-relational schema for the DreamHome case study documented in Appendix 

A. Add user-defined functions that you consider appropriate. Implement the queries listed in 

Appendix A using SQL:2011. 

 

Look for solution that uses the features of SQL:2011 such as types with inheritance, SETs, and 

object references (see also the solution to Exercise 9.22 below). 

 

9.20 Create an object-relational schema for the University Accommodation Office case study 

documented in Appendix B.1. Add user-defined functions that you consider appropriate. 

 

Look for solution that uses the features of SQL:2011 such as types with inheritance, SETs, and 

object references (see also the solution to Exercise 9.22 below). 

 

9.21 Create an object-relational schema for the EasyDrive School of Motoring case study 

documented in Appendix B.2. Add user-defined functions that you consider appropriate. 

 

Look for solution that uses the features of SQL:2011 such as types with inheritance, SETs, and 

object references (see also the solution to Exercise 9.22 below). 

 

9.22 Create an object-relational schema for the Wellmeadows case study documented in Appendix 

B.3. Add user-defined functions that you consider appropriate. 

 



Database Systems: Instructor’s Guide - Part III 

 59 

Partial solution: 

 

CREATE TYPE WardType AS ( 

 wardNo  VARCHAR(4)  NOT NULL, 

 wardName  VARCHAR(20)  NOT NULL, 

 location  VARCHAR(20)  NOT NULL, 

 totalBeds  INTEGER, 

 telExtn   VARCHAR(4) NOT NULL, 

 consultant REF(ConsultantType), 

 FUNCTION assignChargeNurse(W WardType RESULT, N NurseType)  

RETURNS WardType 

  ... 

  RETURN; 

 END, 

); 

 

CREATE TYPE QualificationType AS ( 

 qType   VARCHAR(5)  NOT NULL, 

 qDate   DATE,  

 institution  VARCHAR(30), 

); 

  

CREATE TYPE WorkExperienceType AS ( 

 orgName  VARCHAR  NOT NULL, 

 sDate   DATE,  

 fDate   DATE,  

 position  VARCHAR(10) 

); 

  

CREATE TYPE NameType AS ( 

 fName   VARCHAR(15)  NOT NULL, 

 lName   VARCHAR(15)  NOT NULL 

); 

 

CREATE TYPE StaffType AS ( 

   PRIVATE 

 DOB DATE_CHECK(DOB < CURRENT_DATE), 

   PUBLIC 

 staffNo   VARCHAR(5)  NOT NULL,  

 name   NameType, 

 sAddress  VARCHAR(50)  NOT NULL, 

 telNo   VARCHAR(13)  NOT NULL, 

 sex   CHAR   NOT NULL,  

 NIN   VARCHAR(9)  NOT NULL,  

 position  VARCHAR(10)  NOT NULL,  

 salary   DECIMAL(6,2)  NOT NULL,  



Database Systems: Instructor’s Guide - Part III 

 60 

 sScale   INTEGER  NOT NULL,  

 weekHrs  INTEGER  NOT NULL,  

 contType  CHAR   NOT NULL,  

 typePay  CHAR   NOT NULL,  

 qualification  SET(QualificationType), 

 workExp  SET(WorkExperienceType) 

FUNCTION getAge (P PersonType) RETURNS INTEGER 

  RETURN /* code to calculate age from date_of_birth */ 

END, 

FUNCTION setAge (P PersonType RESULT, DOB: DATE) RETURNS PersonType 

  RETURN /* set date_of_birth */ 

END 

) NOT FINAL; 

 

CREATE TYPE NurseType UNDER StaffType ( 

 FUNCTION makeRequisition(...); 

 BEGIN 

  ... 

 END 

); 

 

CREATE TYPE ConsultantType UNDER Staff Type ( 

 FUNCTION cancelAppointment(...); 

 BEGIN 

  ... 

 END 

); 

 

CREATE TABLE Ward OF WardType( 

oid REF(WardType) VALUES ARE SYSTEM GENERATED, 

PRIMARY KEY(wardNo)); 

CREATE TABLE Nurse OF NurseType( 

oid REF(NurseType) VALUES ARE SYSTEM GENERATED, 

PRIMARY KEY(staffNo)); 

CREATE TABLE Consultant OF ConsultantType( 

oid REF(ConsultantType) VALUES ARE SYSTEM GENERATED, 

PRIMARY KEY(staffNo)); 

 

9.23 You have been asked by the Managing Director of DreamHome to investigate and prepare a 

report on the applicability of an object-relational DBMS for the organization. The report 

should compare the technology of the RDBMS with that of the ORDBMS, and should address 

the advantages and disadvantages of implementing an ORDBMS within the organization, and 

any perceived problem areas. The report should also consider the applicability of an object-

oriented DBMS, and a comparison of the two types of systems for DreamHome should be 

included. Finally, the report should contain a fully justified set of conclusions on the 

applicability of the ORDBMS for DreamHome. 



Database Systems: Instructor’s Guide - Part III 

 61 

 

A well-presented report is expected. Justification must be given for any recommendations 

made. 

 


