Chapter 2—Motion in One Dimension

MULTIPLE CHOICE

a. -6.0 m/s b. -4.0 m/s c. -2.0 m/s d. -8.0 m/s

ANS: C PTS: 2 DIF: Average 2. A bullet is fired through a board, 14.0 cm thick, with its line of motion perpendicular to the face of the board. If it enters with a speed of 450 m/s and emerges with a speed of 220 m/s, what is the bullet's acceleration as it passes through the board? a500 km/s² b550 km/s² c360 km/s² d520 km/s² ANS: B PTS: 3 DIF: Challenging 3. The position of a particle moving along the x axis is given by $x = 6.0t^2 - 1.0t^3$, where x is in meters and t in seconds. What is the position of the particle when it achieves its maximum speed in the positive x direction? a. 24 m b. 12 m c. 32 m d. 16 m e. 2.0 m ANS: D PTS: 3 DIF: Challenging 4. The velocity of a particle moving along the x axis is given for $t > 0$ by $v_x = (32.0t - 2.00t^3)$ m/s, where is in s. What is the acceleration of the particle when (after $t = 0$) it achieves its maximum displacement in the positive x direction? a64.0 m/s² b. zero c. 128 m/s² d. 32.0 m/s² e32.0 m/s² ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the x axis is given for $t > 0$ by $x = (t^3 - 3t^2 + 6t)$ m, where t is in s. Where is the particle when it achieves its minimum speed (after $t = 0$)? a. 3 m b. 4 m c. 8 m d. 2 m		e. 8.0 m/s				
board. If it enters with a speed of 450 m/s and emerges with a speed of 220 m/s, what is the bullet's acceleration as it passes through the board? a. -500 km/s^2 b. -550 km/s^2 c. -360 km/s^2 d. -520 km/s^2 e. -275 km/s^2 ANS: B PTS: 3 DIF: Challenging 3. The position of a particle moving along the x axis is given by $x = 6.0t^2 - 1.0t^3$, where x is in meters and t in seconds. What is the position of the particle when it achieves its maximum speed in the positive x direction? a. 24 m b. 12 m c. 32 m d. 16 m e. 2.0 m ANS: D PTS: 3 DIF: Challenging 4. The velocity of a particle moving along the x axis is given for $t > 0$ by $v_x = (32.0t - 2.00t^3)$ m/s, where t is in s. What is the acceleration of the particle when (after $t = 0$) it achieves its maximum displacement in the positive x direction? a. -64.0 m/s^2 b. z ero c. 128 m/s^2 d. 32.0 m/s^2 e. -32.0 m/s^2 ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the x axis is given for $t > 0$ by $x = (t^3 - 3t^2 + 6t)$ m, where t is in s. Where is the particle when it achieves its minimum speed (after $t = 0$)? a. 3 m b. 4 m c. 8 m		ANS: C	PTS:	2	DIF:	Average
 3. The position of a particle moving along the <i>x</i> axis is given by x = 6.0t² - 1.0t³, where <i>x</i> is in meters and <i>t</i> in seconds. What is the position of the particle when it achieves its maximum speed in the positive <i>x</i> direction? a. 24 m b. 12 m c. 32 m d. 16 m e. 2.0 m ANS: D PTS: 3 DIF: Challenging 4. The velocity of a particle moving along the <i>x</i> axis is given for t > 0 by v_x = (32.0t - 2.00t³) m/s, where the is in s. What is the acceleration of the particle when (after t = 0) it achieves its maximum displacement in the positive <i>x</i> direction? a64.0 m/s² b. zero c. 128 m/s² d. 32.0 m/s² e32.0 m/s² ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the <i>x</i> axis is given for t > 0 by x = (t³ - 3t² + 6t) m, where the is in s. Where is the particle when it achieves its minimum speed (after t = 0)? a. 3 m b. 4 m c. 8 m 	2.	board. If it enters with acceleration as it pass a500 km/s ² b550 km/s ² c360 km/s ² d520 km/s ²	h a spe	ed of 450 m/s a	nd eme	
 t in seconds. What is the position of the particle when it achieves its maximum speed in the positive x direction? a. 24 m b. 12 m c. 32 m d. 16 m e. 2.0 m ANS: D PTS: 3 DIF: Challenging 4. The velocity of a particle moving along the x axis is given for t > 0 by v_x = (32.0t - 2.00t²) m/s, where is in s. What is the acceleration of the particle when (after t = 0) it achieves its maximum displacement in the positive x direction? a64.0 m/s² b. zero c. 128 m/s² d. 32.0 m/s² e32.0 m/s² ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the x axis is given for t > 0 by x = (t³ - 3t² + 6t) m, where t is in s. Where is the particle when it achieves its minimum speed (after t = 0)? a. 3 m b. 4 m c. 8 m 		ANS: B	PTS:	3	DIF:	Challenging
 4. The velocity of a particle moving along the x axis is given for t > 0 by v_x = (32.0t - 2.00t³) m/s, where x is in s. What is the acceleration of the particle when (after t = 0) it achieves its maximum displacement in the positive x direction? a64.0 m/s² b. zero c. 128 m/s² d. 32.0 m/s² e32.0 m/s² ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the x axis is given for t > 0 by x = (t³ - 3t² + 6t) m, where t is in s. Where is the particle when it achieves its minimum speed (after t = 0)? a. 3 m b. 4 m c. 8 m 	3.	t in seconds. What is direction? a. 24 m b. 12 m c. 32 m d. 16 m				
is in s. What is the acceleration of the particle when (after $t = 0$) it achieves its maximum displacement in the positive x direction? a. -64.0 m/s^2 b. zero c. 128 m/s^2 d. 32.0 m/s^2 e. -32.0 m/s^2 ANS: A PTS: 3 DIF: Challenging 5. The position of a particle as it moves along the x axis is given for $t > 0$ by $x = (t^3 - 3t^2 + 6t)$ m, where t is in s. Where is the particle when it achieves its minimum speed (after $t = 0$)? a. 3 m b. 4 m c. 8 m		ANS: D	PTS:	3	DIF:	Challenging
 5. The position of a particle as it moves along the x axis is given for t > 0 by x = (t³ - 3t² + 6t) m, where t is in s. Where is the particle when it achieves its minimum speed (after t = 0)? a. 3 m b. 4 m c. 8 m 	4.	is in s. What is the act in the positive x direct a64.0 m/s ² b. zero c. 128 m/s ² d. 32.0 m/s ²	ccelerat			
is in s. Where is the particle when it achieves its minimum speed (after $t = 0$)? a. 3 m b. 4 m c. 8 m		ANS: A	PTS:	3	DIF:	Challenging
	5.	is in s. Where is the pa. 3 mb. 4 mc. 8 m				

1. The position of a particle moving along the x axis is given by $x = (21 + 22t - 6.0t^2)$ m, where t is in s.

What is the average velocity during the time interval t = 1.0 s to t = 3.0 s?

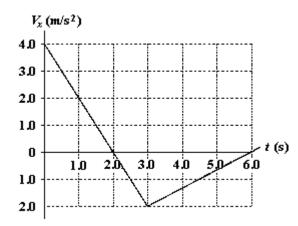
e. 7 m

ANS: B

PTS: 2

DIF: Average

6. The position of a particle as it moves along the *x* axis is given by $x = 15e^{-2t}$ m, where *t* is in s. What is the acceleration of the particle at t = 1.0 s?


- a. 22 m/s
- b. 60 m/s
- c. 8.1 m/s
- d. 15 m/s
- e. 35 m/s

ANS: C

PTS: 2

DIF: Average

7. V_x is the velocity of a particle moving along the x axis as shown. If x = 2.0 m at t = 1.0 s, what is the position of the particle at t = 6.0 s?

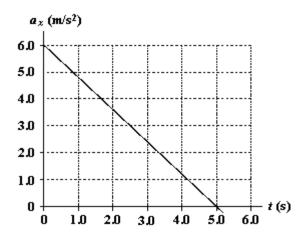
- a. -2.0 m
- b. +2.0 m
- c. +1.0 m
- d. -1.0 m
- e. 6.0 m

ANS: D

PTS: 2

DIF: Average

8. A particle moving along the x axis has a position given by $x = (24t - 2.0t^3)$ m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero?

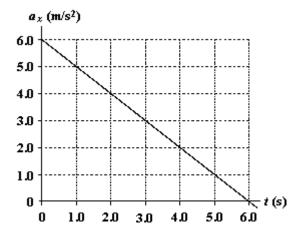

- a. 24 m/s^2
- b. zero
- c. 12 m/s^2
- d. 48 m/s^2
- e. 36 m/s^2

ANS: A

PTS: 2

DIF: Average

9. At t = 0, a particle is located at x = 25 m and has a velocity of 15 m/s in the positive x direction. The acceleration of the particle varies with time as shown in the diagram. What is the velocity of the particle at t = 5.0 s?


- a. +15 m/s
- b. -15 m/s
- c. +30 m/s
- d. 0
- e. -1.2 m/s

ANS: C

PTS: 2

DIF: Average

10. At t = 0, a particle is located at x = 25 m and has a velocity of 15 m/s in the positive x direction. The acceleration of the particle varies with time as shown in the diagram. What is the position of the particle at t = 5.0 s?

- a. 175 m
- b. 125 m
- c. 138 m
- d. 154 m
- e. 165 m

ANS: D

PTS: 3

DIF: Challenging

- 11. A particle confined to motion along the x axis moves with constant acceleration from x = 2.0 m to x = 8.0 m during a 2.5-s time interval. The velocity of the particle at x = 8.0 m is 2.8 m/s. What is the acceleration during this time interval?
 - a. 0.48 m/s^2
 - b. 0.32 m/s^2
 - c. 0.64 m/s^2

	ANS: B	PTS:	3	DIF:	Challenging
12.		_			ocity of 4.0×10^6 m/s and a constant acceleration of after it has traveled a distance of 80 cm?
	ANS: A	PTS:	2	DIF:	Average
13.	1				a velocity of 20 cm/s when its position is $x = 10$ he acceleration of the particle?
	ANS: A	PTS:	2	DIF:	Average
14.		_	~ ~	•	ges its velocity from 40 m/s to 80 m/s in a distance e vehicle during this time?
	ANS: C	PTS:	2	DIF:	Average
15.		_			on along the x axis goes from $x = 10$ m to $x = 50$ m. n/s. What is the acceleration of the particle?
	ANS: D	PTS:	2	DIF:	Average
16.	An automobile manu What is the magnitude a. 9.9 m/s² b. 8.9 m/s² c. 6.6 m/s² d. 5.6 m/s² e. 4.6 m/s²				et will, starting from rest, travel 0.40 km in 9.0 s. required to do this?
	ANS: A	PTS:	2	DIF:	Average

 $\begin{array}{ll} d. & 0.80 \; m/s^2 \\ e. & 0.57 \; m/s^2 \end{array}$

17.	An automobile traveling along a straight road increases its speed from 30.0 m/s to 50.0 m/s in a distance of 180 m. If the acceleration is constant, how much time elapses while the auto moves this distance? a. 6.00 s b. 4.50 s c. 3.60 s d. 4.00 s e. 9.00 s							
	ANS: B	PTS:	2	DIF:	Average			
18.		a veloc			releration increases its <i>x</i> coordinate by 80 m in a and of this time. Determine the acceleration of the			
	ANS: C	PTS:	2	DIF:	Average			
19.	An electron, starting is the magnitude of ta. 2.5 km/s ² b. 0.80 km/s ² c. 1.6 km/s ² d. 1.3 km/s ² e. 3.2 km/s ²			with a	constant acceleration, travels 2.0 cm in 5.0 ms. What			
	ANS: C	PTS:	1	DIF:	Easy			
20.	-				0 s with an acceleration of +2.0 cm/s ² . For the next What is the position of the particle at the end of this			
	ANS: B	PTS:	2	DIF:	Average			
21.					upward acceleration of 10 m/s². At an altitude of the maximum altitude it achieves?			
	ANS: D	PTS:	3	DIF:	Challenging			

22.	vertically (from the		the ball)	speed of 20 m/s. Two seconds later, a stone is thrown with an initial speed of 24 m/s. At what height s each other?
	ANS: A	PTS: 3	DIF:	Challenging
23.				velocity of 18 m/s when it reaches one fourth of its he initial (launch) speed of the object?
	ANS: D	PTS: 3	DIF:	Challenging
24.		above the ground. Ho		an initial velocity of 20 m/s downward. The top of a time elapses between the instant of release and the
	ANS: A	PTS: 2	DIF:	Average
25.	ground. At the same	instant $(t = 0)$, a second	nd objec	0) speed of 10 m/s from a height of 60 m above the et is propelled vertically upward from ground level ground will the two objects pass each other? Challenging
26.				ically with an acceleration of 20 m/s² for 6.0 s until hat maximum height above the ground will the
	ANS: A	PTS: 3	DIF:	Challenging

- 27. A rock is thrown downward from an unknown height above the ground with an initial speed of 10 m/s. It strikes the ground 3.0 s later. Determine the initial height of the rock above the ground. a. 44 m
 - b. 14 m c. 74 m

 - d. 30 m
 - e. 60 m

ANS: C PTS: 2 DIF: Average

- 28. A ball thrown vertically from ground level is caught 1.9 s later when it is at its highest point by a person on a balcony which is 18 m above the ground. Determine the initial speed of the ball.
 - a. 19 m/s
 - b. 4.7 m/s
 - c. 10 m/s
 - d. 34 m/s
 - e. 17 m/s

PTS: 2 ANS: A DIF: Average

- 29. An object is thrown vertically upward such that it has a speed of 25 m/s when it reaches two thirds of its maximum height above the launch point. Determine this maximum height.
 - a. 64 m
 - b. 48 m
 - c. 32 m
 - d. 96 m
 - e. 75 m

ANS: D PTS: 2 DIF: Average

- 30. The velocity at the midway point of a ball able to reach a height y when thrown with velocity v_i at the origin is:
 - a. 2

 - e. gy

ANS: C PTS: 2 DIF: Average

- 31. When Jim and Rob ride bicycles, Jim can only accelerate at three quarters the acceleration of Rob. Both start from rest at the bottom of a long straight road with constant upward slope. If Rob takes 5.0 minutes to reach the top, how much earlier should Jim start to reach the top at the same time as Rob?
 - a. 25 s
 - b. 40 s
 - c. 46 s
 - d. 55 s
 - e. 75 s

ANS: C PTS: 3 DIF: Challenging

- 32. When starting from rest at the bottom of a straight road with constant upward slope, Joan bicycles to the top 50.0 s ahead of Sally, whose travel time is 5.00 minutes. What is the ratio of Joan's acceleration to Sally's acceleration?
 - a. 0.694
 - b. 0.833
 - c. 1.20
 - d. 1.44
 - e. 6.00
 - ANS: D
- PTS: 2
- DIF: Average
- 33. To help Kim practice for the Special Olympics, Sally runs beside him for half the required distance. She runs the remaining distance at her regular speed and arrives 90 seconds ahead of Kim. What is the ratio of Sally's regular speed to Kim's speed? Use t_{Kim} for Kim's total time.
 - a. $\frac{t_{15m}}{90 \text{ s}}$
 - b. $\frac{t_{15m}}{t_{15m} 90 \text{ s}}$
 - c. $\frac{t_{K5m}}{t_{K5m} 180 \text{ s}}$
 - d. $\frac{t_{\text{KSM}}}{180 \text{ s}}$
 - e. $\frac{t_{Kim} 90 \text{ s}}{t_{Kim} 180 \text{ s}}$
 - ANS: C
- PTS: 2
- DIF: Average
- 34. The position of a particle moving along the y axis has a position given by

$$y = 0.20\text{m} + \left(8.0 \, \frac{\text{m}}{\text{s}}\right) t - \left(10 \, \frac{\text{m}}{\text{s}^2}\right) t^2$$

Is there any time interval during which the particle is not moving?

- a. Yes, from 0.60 s to 1.00 s.
- b. Yes, from 0.795 s to 0.805 s.
- c. Yes, at the time t = 0.80 s.
- d. No, the velocity is never zero.
- e. No, an instant is not the same as a time interval.
- ANS: E
- PTS: 1
- DIF: Easy
- 35. A particle moving along the x axis has a position given by $x = 54t 2.0t^3$ m. At the time t = 3.0 s, the speed of the particle is zero. Which statement is correct?
 - a. The particle remains at rest after t = 3.0 s.
 - b. The particle no longer accelerates after t = 3.0 s.
 - c. The particle can be found at positions x < 0 m only when t < 0 s.
 - d. All of the above are correct.
 - e. None of the above is correct.
 - ANS: E
- PTS: 2
- DIF: Average

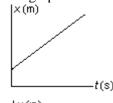
- 36. Two identical balls are at rest side by side at the bottom of a hill. Some time after ball A is kicked up the hill, ball B is given a kick up the hill. Ball A is headed downhill when it passes ball B headed up the hill. At the instant when ball A passes ball B,
 - a. it has the same position and velocity as ball B.
 - b. it has the same position and acceleration as ball B.
 - c. it has the same velocity and acceleration as ball B.
 - d. it has the same displacement and velocity as ball B.
 - e. it has the same position, displacement and velocity as ball B.

ANS: B

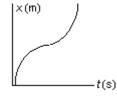
PTS: 1

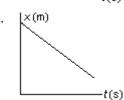
DIF: Easy

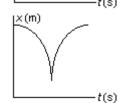
37. The position of an object at equal time intervals is shown below:



Which graph below correctly represents position versus time for this object?


a.


c.


e.

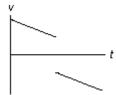
b.

d.

ANS: E

PTS: 1

DIF: Easy


- 38. Two identical balls are at rest and side by side at the top of a hill. You let one ball, A, start rolling down the hill. A little later you start the second ball, B, down the hill by giving it a shove. The second ball rolls down the hill along a line parallel to the path of the first ball and passes it. At the instant ball B passes ball A:
 - a. it has the same position and the same velocity as A.
 - b. it has the same position and the same acceleration as A.
 - c. it has the same velocity and the same acceleration as A.
 - d. it has the same displacement and the same velocity as A.
 - e. it has the same position, displacement and velocity as A.

ANS: B

PTS: 2

DIF: Average

39. The graph below shows the velocity versus time graph for a ball. Which explanation best fits the motion of the ball as shown by the graph?

- a. The ball is falling, is caught, and is thrown down with greater velocity.
- b. The ball is rolling, stops, and then continues rolling.
- c. The ball is rising, hits the ceiling, and falls down.

	d. e.			alling, hits tl ising, is cauş				•
	AN	NS:	C	PTS:	1	I	OIF:	Easy
40.	afte are a. b. c. d.	er he 2: 10 9.0 9.0 1.0		m/s ² . m/s ² . m/s ² . m/s ² .				h at a velocity of 10 m/s. One tenth of a second, the magnitudes of his velocity and acceleration
	AN	NS:	A	PTS:	1	Ι	OIF:	Easy
41.				grams in whi Thich statem			ent the	e positions of an object at equal time intervals ar
	A B C D E	•						
	c. d.	C land	nas decrea slows dov speeds up	eatest speed asing speed. vn and then so and then slo ter speed tha	speeds ows dov	up.	accele	eration.
	AN	NS:	D	PTS:	2	Ι	OIF:	Average
42.	bac fro a. b. c. d. e.	ck Jo m th Joa Mi Joa Mi	oan is ahe ne origin? nn has run ke has run nn has run ke has ru ke has ru	ad of Mike. a greater din a greater din a greater din a greater din a greater d	Which stance istance, istance istance	and her di and his d but her di , but his d , and his d	splace isplace isplace isplace	run to the other end, then head back. On the warrect about the distances run and the displacement is greater than Mike's. ement is greater than Joan's. ement is less than Mike's. ement is less than Joan's. cement is less than Joan's.
43.		The The The The	s at the ha eir veloci eir veloci eir accele eir veloci	Ifway point ties and acceties are equal rations are e	coming eleratio I but th qual bu eleratio	g down. A ns are equ neir accele ut their vel ns are bot	t that al. ration locitie h equa	s are equal and opposite. s are equal and opposite. al and opposite.
	AN	NS:	C	PTS:	1	Ι	OIF:	Easy
44.				rth at 30 m/s has traveled				nen travels south at 40 m/s for 15 minutes. The to

- a. 18 km; 18 km S.
- b. 36 km; 36 km S.
- c. 36 km; 36 km N.
- d. 90 km; 18 km N.
- e. 90 km; 36 km N.

ANS: D

PTS: 2

DIF: Average

- 45. A skier leaves a ski jump with a horizontal velocity of 29.4 m/s. The instant before she lands three seconds later, the magnitudes of the horizontal and vertical components of her velocity are:
 - a. 0; 29.4 m/s.
 - b. 29.4 m/s; 0.
 - c. 29.4 m/s; 29.4 m/s.
 - d. 29.4 m/s; 41.6 m/s.
 - e. 41.6 m/s; 41.6 m/s.

ANS: C

PTS: 2

DIF: Average

- 46. The equation that solves a problem is $\left(18 \, \frac{\text{m}}{\text{s}}\right)^2 \left(0 \, \frac{\text{m}}{\text{s}}\right)^2 = 2 \left(3.0 \, \frac{\text{m}}{\text{s}^2}\right) (3.0 \, \text{m})$. The problem is:
 - a. What is the initial velocity of a car that goes from rest to 18 m/s in 3.0 s?
 - b. What is the final velocity of a car that goes from rest to 18 m/s in 3.0 s?
 - c. What is the initial velocity of a car that accelerates at 18 m/s for 3.0 s?
 - d. What is the final velocity of a car that accelerates at 3.0 m/s² over a 6.0 m distance?
 - e. What is the final velocity of a car that accelerates at 3.0 m/s² over a 3.0 m distance?

ANS: E

PTS: 2

DIF: Average

- 47. The equation that solves a problem is $6.4 \text{ m} = 20 \text{ m} + 3.0 \frac{\text{m}}{\text{s}} (2.0 \text{ s}) 4.9 \frac{\text{m}}{\text{s}^2} (2.0 \text{ s})^2$. The problem is:
 - a. How far above its initial position does a rock travel in 2.0 s when thrown up from a point 40 m above the ground?
 - b. How far below its initial position does a rock travel in 2.0 s when thrown up from a point 40 m above the ground?
 - c. What is the position relative to the ground of a rock thrown up at 3.0 m/s from a roof 20 m above the ground 2.0 s after it is released?
 - d. What is the change in position relative to the ground of a rock thrown up at 3.0 m/s from a roof 20 m above the ground 2.0 s after it is released?
 - e. What is the position relative to the ground of a rock thrown up at 3.0 m/s from a roof 20 m above the ground if its maximum height is 33.6 m?

ANS: C

PTS: 2

DIF: Average

- 48. Dallas says that any change in velocity is directly proportional to the time interval over which the change took place. Dana says that is true only when the acceleration is constant. Which one, if either, is correct?
 - a. Dana, because it is true only when the acceleration is constant.
 - b. Dallas, because we can define $a_{x, \text{avg}}$ so that $\Delta v_x = a_{x, \text{avg}} \Delta t$.
 - c. Dallas, because $a_{x, \text{avg}}$ always is equal to $\frac{a_{x,i} + a_{x,f}}{2}$.
 - d. All the above are correct.
 - e. Only (a) and (b) above are correct.

ANS: A

PTS: 2

DIF: Average

1Q	The area under a	graph of v ve	t from t -	t_i to $t = t_f$ represents
47.	THE area under a	i gradii di Vx vs	. <i>t</i> 110111 <i>t</i> –	li to $l - lf$ represents

- a. x_i .
- b. x_f .
- c. $x_f x_i$.
- d. $\frac{1}{2}(x_i + x_f)$
- e. $x_i + x_f$.

ANS: C

PTS: 1

DIF: Easy

50. The area under a graph of a_x vs. t from $t = t_i$ to $t = t_f$ represents

- a. $x_f x_i$.
- b. $v_f v_i$.
- c. x_{avg} .
- d. v_{avg} .
- e. a_{avg} .

ANS: B

PTS: 1

DIF: Easy

51. In 20 minutes, Kara ran 2.40 km on a treadmill facing due east. Relative to the gym, what were her displacement and average velocity during this time interval?

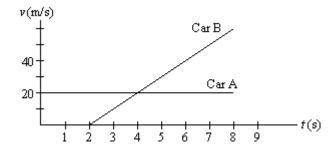
- a. 0; 0
- b. 0; 2.00 m/s
- c. 2.40 km, east; 0
- d. 2.40 km, east; 2.00 m/s, east
- e. 2.40 km, west; 2.00 m/s, west

ANS: A

PTS: 1

DIF: Easy

52. A swimmer swims 20 laps in a north-south facing pool in 7.00 minutes. Her first lap is toward the north. Her displacement and average velocity are


- a. 0; 0.
- b. 0; 2.38 m/s, south.
- c. 0; 2.38 m/s, north.
- d. 1 000 m, south; 2.38 m/s, south.
- e. 1 000 m, north; 2.38 m/s, north.

ANS: A

PTS: 1

DIF: Easy

53. Driver A is cruising along enjoying the fall colors. Driver B starts her car at the instant he passes her. Their velocities are shown as functions of time in the graph below. At what instants in time on the graph are drivers A and B side by side?

a. 0 s, 2 s

	distance x in time t . Cart B, of mass $4m$, starts from rest and travels in a straight line with acceleration								
	$\frac{a}{2}$. At time t it has traversed the distance								
	a. $\frac{x}{4}$.								
	b. $\frac{x}{2}$.								
	c. x.								
	d. 2x.e. 4x.								
	ANS: B	ΓS: 2	DIF:	Average					
55.	Cart A, of mass m, starts	s from rest and travel	ls in a st	traight line with a	acceleration a. It rea	aches velocity			
	v in time t. Cart B, of ma	ass $4m$, starts from re	est and t	ravels in a straig	ht line with acceler	ation $\frac{a}{2}$. At			
	time t it has reached velo	ocity							
	a. $\frac{v}{4}$.								
	b. $\frac{v}{2}$.								
	c. v. d. 2v.								
	e. 4 <i>v</i> .								
	ANS: B	ΓS: 2	DIF: A	Average					
56.	The small circles in the intervals. Assume the bo	-		positions along	the x axis of a body	at equal time			
	<i>t</i> = 0 1	2 3 , 4, 5 •	6 ●	7 ●	8 9 ● •				
	This diagram is most lik a. a swimmer swimmin b. an exercise on a row c. a person on a treadn d. a tennis ball during e. a runner who tripped	ng laps. ving machine. nill.	inued ra	acing.					
	ANS: E	ΓS: 2	DIF:	Average					
57.	A problem may be solve formulate representation the orders given below, a. pictorial representat	ns in an order that ass	sists in u k best n	understanding the nost often is	physical principle	••			

DIF: Average

54. Cart A, of mass m, starts from rest and travels in a straight line with acceleration a. It traverses a

b. 0 s, 4 s c. 2 s, 4 s d. 2 s, 6 s e. 4 s, 6 s

ANS: D

PTS: 2

- representation.
- b. pictorial representation, mental representation, mathematical representation, tabular representation.
- c. mathematical representation, pictorial representation, tabular representation, mental representation.
- d. mathematical representation, tabular representation, mental representation, pictorial representation.
- e. mental representation, pictorial representation, tabular representation, mathematical representation.

ANS: E PTS: 1 DIF: Easy

- 58. The speed of an object is given by $v = 5.00t^2 + 4.00t$ where v is in m/s and t is in s.What is the acceleration of the object at t = 2.00 s?
 - a. 5.00 m/s^2
 - b. 9.00 m/s^2
 - c. 10.0 m/s^2
 - d. 14.0 m/s^2
 - e. 20.0 m/s^2

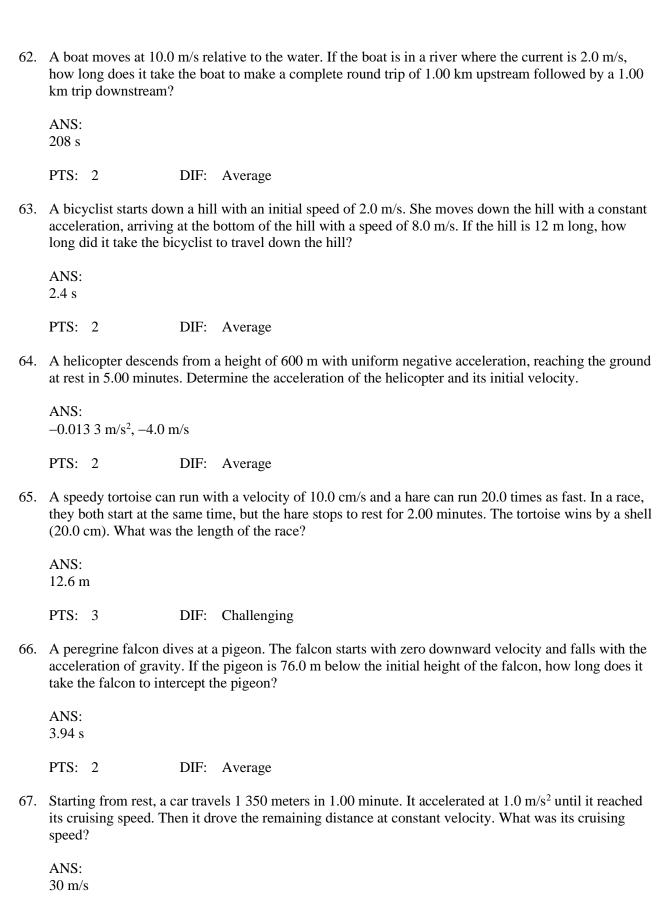
ANS: E PTS: 2 DIF: Average

- 59. A particle is moving at constant velocity. Its position at t = 1.0 s is 3.0 m and its position at t = 4.0 s is 15.0 m. What is the slope of the position-time graph for this particle?
 - a. 0, since this is a constant velocity situation.
 - b. 4.0 m/s
 - c. 4.0 m/s^2
 - d. 9.0 m/s
 - e. 12 m/s^2

ANS: B PTS: 2 DIF: Average

- 60. A particle is moving with a constant acceleration of 4.0 m/s^2 . Its speed at t = 1.0 s is 4.0 m/s and at t = 3.0 s it is 12.0 m/s. What is the area under the position-time graph for the interval from t = 1.0 s to t = 3.0 s?
 - a. 8.0 m/s
 - b. 8.0 m
 - c. 12 m
 - d. 16 m
 - e. 16 m/s^2

ANS: D PTS: 2 DIF: Average


PROBLEM

61. A 50-gram superball traveling at 25.0 m/s is bounced off a brick wall and rebounds at 22.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms, what is the average acceleration of the ball during this time interval?

ANS:

 $13\ 400\ m/s^2$

PTS: 2 DIF: Average

PTS: 3 DIF: Challenging

68. A car originally traveling at 30 m/s manages to brake for 5.0 seconds while traveling 125 m downhill. At that point the brakes fail. After an additional 5.0 seconds it travels an additional 150 m down the hill. What was the acceleration of the car after the brakes failed?

ANS: 4.0 m/s²

PTS: 2 DIF: Average